THE PICTURE OF THE TAOIST GENII PRINTED ON THE COVER of this book is part of a painted temple scroll, recent but traditional, given to Mr Brian Harland in Szechuan province (1946). Concerning these four divinities, of respectable rank in the Taoist bureaucracy, the following particulars have been handed down. The title of the first of the four signifies ‘Heavenly Prince’, that of the other three ‘Mysterious Commander’.

At the top, on the left, is Liu Thien Chih, Comptroller-General of Crops and Weather. Before his deification (so it was said) he was a rain-making magician and weather forecaster named Liu Chiin, born in the Chin dynasty about +340. Among his attributes may be seen the sun and moon, and a measuring-rod or carpenter’s square. The two great luminaries imply the making of the calendar, so important for a primarily agricultural society, the efforts, ever renewed, to reconcile celestial periodicities. The carpenter’s square is no ordinary tool, but the gnomon for measuring the lengths of the sun’s solstitial shadows. The Comptroller-General also carries a bell because in ancient and medieval times there was thought to be a close connection between calendrical calculations and the arithmetical acoustics of bells and pitch-pipes.

At the top, on the right, is Wen Yuan Shuai, Intendant of the Spiritual Officials of the Sacred Mountain, Thai Shan. He was taken to be an incarnation of one of the Hour-Presidents (Chia Shen), i.e. tutelary deities of the twelve cyclical characters (see p. 440). During his earthly pilgrimage his name was Huan Tzu-Yu and he was a scholar and astronomer in the Later Han (b. + 142). He is seen holding an armillary ring.

Below, on the left, is Kou Yuan Shuai, Assistant Secretary of State in the Ministry of Thunder. He is therefore a late emanation of a very ancient god, Lei Kung. Before he became deified he was Hsin Hsing, a poor woodcutter, but no doubt an incarnation of the spirit of the constellation Kou-Chhen (the Angular Arranger), part of the group of stars which we know as Ursa Minor. He is equipped with hammer and chisel.

Below, on the right, is Pi Yuan Shuai, Commander of the Lightning, with his flashing sword, a deity with distinct alchemical and cosmological interests. According to tradition, in his early life he was a countryman whose name was Thien Hu. Together with the colleague on his right, he controlled the Spirits of the Five Directions.

Such is the legendary folklore of common men canonised by popular acclamation. An interesting scroll, of no great artistic merit, destined to decorate a temple wall, to be looked upon by humble people, it symbolises something which this book has to say. Chinese art and literature have been so profuse, Chinese mythological imagery so fertile, that the West has often missed other aspects, perhaps more important, of Chinese civilisation. Here the graduated scale of Liu Chih, at first sight unexpected in this setting, reminds us of the ever-present theme of quantitative measurement in Chinese culture; there were rain-gauges already in the Sung (+12th century) and sliding calipers in the Han (+1st). The armillary ring of Huan Tzu-Yu bears witness that Naburiannu and Hipparchus, al-Naqqash and Tycho, had worthy counterparts in China. The tools of Hsin Hsing symbolise that great empirical tradition which informed the work of Chinese artisans and technicians all through the ages.
AND seeing that the Arts and Crafts, with other like Feats, whose inventours be contained in this book, are in this Realm of England occupied and daily put in exercise to the profit of many, and ease of all men, it were in mine opinion both a point of detestable unkindnesse, and a part of extrem inhumanity, to defraud them of their praise and perpetual memory, that were Authors of so great Benefits to the universal World.

Polydore Vergil

De Rerum Inventoribus (1512)

English edition of Thomas Langley, 1659
Rewi Alley
New Zealander by birth and citizenship
Chinese by adoption and grace
pioneer of the industrial co-operatives
teacher of engineering
lover of Chinese youth
writer and poet

and

Solomon Abramovitch Trone
Engineer, sometime adviser on industrialisation in Russia,
China, India and Israel
humanist and man of vision
'Elektrifikatsiya! Elektrifikatsiya!'

to these two friends
this volume is
dedicated
The Syndics of the Cambridge University Press desire to acknowledge with gratitude certain financial aid towards the production of this book, afforded by the Bollingen Foundation.

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxxv</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxxvii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xli</td>
</tr>
<tr>
<td>Author's Note</td>
<td>xlii</td>
</tr>
</tbody>
</table>

27 MECHANICAL ENGINEERING

(a) Introduction, p. 1

1. The name and concept of engineer, p. 9
2. Artisans and engineers in feudal-bureaucratic society, p. 10
3. Traditions of the artisanate, p. 42
4. Tools and materials, p. 50

(b) Basic mechanical principles, p. 65

1. Levers, hinges and linkwork, p. 69
2. Wheels and gear-wheels, pedals and paddles, p. 73
3. Pulleys, driving-belts and chain-drives, p. 95
4. Crank and eccentric motion, p. 111
5. Screws, worms and helicoidal vanes, p. 119
6. Springs and spring mechanisms, p. 126
7. Conduits, pipes and siphons, p. 127
8. Valves, bellows, pumps and fans, p. 135

(c) Mechanical toys, p. 156

(d) Types of machines described in Chinese works, p. 165

1. The nature of the Chinese engineering literature, p. 166
2. Eotechnic machinery, powered by man and animals, p. 174
 (i) Pounding, grinding and milling, p. 183
 (ii) Sifting and pressing, p. 205
3. Palaeotechnic machinery; Jesuit novelty and redundance, p. 211
 (i) A provisional balance-sheet of transmissions, p. 222
 (ii) The steam-turbine in the Forbidden City, p. 225
4. The 'Cardan' suspension, p. 228
5. The locksmith's art, p. 236
CONTENTS

(e) Vehicles for land transport, p. 243
 (1) Chariots in ancient China, p. 246
 (2) Wagons, camp-mills and hand-carts, p. 253
 (3) The wheelbarrow and the sailing-carriage, p. 258
 (4) The hodometer, p. 281
 (5) The south-pointing carriage, p. 286

(f) Power-sources and their employment (I), Animal traction, p. 303
 (1) Efficient harness and its history, p. 304
 (i) Throat-and-girth harness in Sumer and Shang, p. 306
 (ii) The first rationalisation; breast-strap harness in Chhu and Han, p. 308
 (iii) Comparative estimates, p. 312
 (iv) Radiation of the inventions, p. 315
 (v) The second rationalisation; collar-harness in Shu and Wei, p. 319
 (2) Animal power and human labour, p. 328

(g) Hydraulic engineering (I), Water-raising machinery, p. 330
 (1) The swape (ṣ̌ādūf; counterbalanced bailing bucket), p. 331
 (2) The well-windlass, p. 335
 (3) The scoop-wheel, p. 337
 (4) The square-pallet chain-pump and the pater­noster pump, p. 339
 (5) The sû́jya (pot chain-pump), p. 352
 (6) The noria (peripheral pot wheel), p. 356

(h) Power-sources and their employment (II), Water flow and descent, p. 362
 (1) Spoon tilt-hammers, p. 362
 (2) Water-wheels in West and East, p. 366
 (3) The metallurgical blowing-engines of the Han and Sung, p. 369
 (4) Reciprocating motion and the steam-engine’s lineage, p. 380
 (5) Hydraulic trip-hammers in the Han and Chin, p. 390
 (6) Water-mills from the Han onwards, p. 396
 (7) The problem of the inventions and their spread, p. 405

BIBLIOGRAPHIES page 603
Abbreviations, p. 604
A. Chinese books before + 1800, p. 611
B. Chinese and Japanese books and journal articles since + 1800, p. 632
C. Books and journal articles in Western languages, p. 648

GENERAL INDEX page 709
Table of Chinese Dynasties 754
Summary of the Contents of Volume 4 755
Addendum 758
LIST OF ILLUSTRATIONS

351 Title-page of the +1646 edition of Guido Panciroli's book on the history of inventions (Pl. CXXIV) facing p. 6
352 Title-page of Jan van der Straet's set of engravings depicting discoveries and techniques considered new in his time (+1585 to +1638) (Pl. CXXV) facing p. 7
353 A late Chhing representation of artisans at work in the Imperial Workshops (Shang Fang) page 15
354 Paper block-print icon of the patron saint of all artisans and engineers, Kungshu Phan page 43
355 An illustration from the Lu Pan Ching. Using a drawknife in the timber-work of a watch-tower under construction page 45
356 Building a pavilion or watch-tower; fresco from cave no. 445 at Chhien-fo-tung (Pl. CXXVI) facing p. 46
357 Japanese swordsmiths in ritual dress at work in their forge (Anon. 36) (Pl. CXXVII) facing p. 47
358 Han model of man-power tilt-hammer in iridescent green glazed pottery (Nelson Art Gallery, Kansas City) (Pl. CXXVIII) facing p. 50
359 The oldest extant drawing of the tilt-hammer, from the Kêng Chih Thu of +1210 (Pl. CXXVIII) facing p. 50
360 Traditional rope-suspended pile-driver, in use on the Old Silk Road (orig. photo., 1943) (Pl. CXXIX) facing p. 51
361 Chinese carpenter's plane (drawing from the collection of Mr R. A. Salaman) page 53
362 Frame- or bow-saw with toggle stick, from the Thu Shu Chi Chhhêng page 54
363 Sawyers in the Chungking shipyards in 1944 (Beaton, 1) (Pl. CXXX) facing p. 54
364 Apprentices using the Chinese double-tanged file (Pl. CXXXI) facing p. 55
365 The double-tanged file in use in a coin-minting workshop of the +17th century (Thien Kung Khai Wu) (Pl. CXXXII) facing p. 54
366 The strap-drill in use (Hommel, 1), as by shipwrights (Pl. CXXXIII) facing p. 55
LIST OF ILLUSTRATIONS

367 The bow-drill in use (Hommel, 1), as by carpenters
(Pl. CXXXV) facing p. 56

368 The pump-drill (Hommel, 1), used by brass smiths
(Pl. CXXXIV) facing p. 56

369 Alternating-motion treadle lathe, phan chëh (Frémont, 5) page 57

370 Apparatus for wire-drawing, yuan theh hsien (Frémont, 18) page 59

371 Adjustable outside caliper gauge with slot and pin, self-dated, +9 page 62

372 A bamboo litter chair, chiao tzu or hua-han (from Mason, 1) page 63

373 Ways of using and jointing bamboo for pipes and conduits
(Spörty & Schröter) page 64

374 Flails as examples of linkwork and chain connection page 70

375 Link-hinge on a bronze wine-kettle (ho) of the -10th century
(Pl. CXXXV) facing p. 70

376 Bronze castings of complex design from the -6th century
(Chou period) excavated at Loyang (Pl. CXXXVI) facing p. 71

377 Polar projection illustrating the distribution of the war-
chariot in antiquity (Bishop, 2) page 73

378 The dishing of vehicle-wheels: drawings from traditional
English examples (Sturt, 1) page 76

379 The park of vehicles of the Warring States period (-4th or
-3rd century) discovered in 1951 during the excavations
of the royal tombs at Hui-hsien in Shantung
(Pl. CXXXVII) facing p. 76

380 Detail of two chariots in the Hui-hsien park (Pl. CXXXVII)
 facing p. 76

381 Reconstruction of the Hui-hsien chariot type, scale drawings
 page 78

382 Reconstructed model of the Hui-hsien chariot type
(Pl. CXXXVIII) facing p. 78

383 Hui-hsien chariot model, showing wheel dish
(Pl. CXXXVIII) facing p. 78

384 Repaired and assembled model chariot from a tomb of the
Former Han period (-1st century) at Chhangsha
(Pl. CXXXIX) facing p. 79

385 Two nail-studded cart-wheels with outward dish doing duty as
fly-wheels for a manually operated paternoster pump (orig.
photo., 1958) (Pl. CXXXIX) facing p. 79

386 Reconstruction of the Chhangsha chariot type page 79

387 Quasi-diametral struts and outboard axle-bearing on the
wheels of a Cambodian farm-cart (orig. photo., 1958)
(Pl. CXL) facing p. 80

388 A wheelwright’s shop of the Han period; a stone relief
from Chia-hsien, near Yen-chou (Shantung), found in
1954 (Pl. CXL1) facing p. 81

389 Conjectural reconstruction of a Han heavy-duty composite
cart-wheel (Lu, Salaman & Needham) page 81

390 Variations and combinations of shafts, wheels and cranks page 83

391 Gear-wheels from the Chhin and Han periods (-3rd to
+3rd centuries) (Pl. CXLIi) facing p. 86

392 Objects believed to be gear-wheels with chevron-teeth
(double helical gear) (Pl. CXLIi) facing p. 87

393 Basic forms of pedals, treadles and treadmills page 90

394 Crane pulleys in the Wu Liang tomb-shrine reliefs (W. Fair-
bank, 1) (Pl. CXLIV) facing p. 94

395 Han pottery jar representing a well-head with pulley and
bucket (Laüfer, 3) (Pl. CXLV) facing p. 96

396 moulded brick from Chhiung-lai in Szechuan showing the
salt industry (Pl. CXLVI) facing p. 97

397 Pulley tackle, gearing, and a Hellenistic drum-treadmill,
shown in the Chhi Chhi Thu Shuo (+1627) page 97

398 The differential, or ‘Chinese’ windlass (Davis, 1) page 98

399 A traditional method used by Chinese builders for raising
heavy weights (Tissandier, 4) page 99

400 Another use of the windlass pulley, the reel on the fishing-
rod (San Tah Tha Hui, +1609) page 101

401 The earliest illustration of the fishing-rod reel, a painting by
Ma Yuan, c. +1193 (from Sirén, 6) (Pl. CXL VII) facing p. 102

402 The Chinese multiple-spindle spinning-machine, an illustra-
tion of +1313 (Pl. CXLVIII) facing p. 103

403 Contemporary photograph (Hommel, 1) of a three-spindle
spinning-machine similar to that in the preceding figure
(Pl. CXLIX) facing p. 102

404 The rimless driving-wheel (Pl. CL) facing p. 103
LIST OF ILLUSTRATIONS

405 The oldest representation of the spinning-wheel yet known from any culture; a painting attributed to Chhien Hsian and in any case datable about +1270 (from Waley, 19) (Pl. CL I) facing p. 102

406 The block-spoked driving-wheel, a form in which the ends of the spokes bear grooved blocks on which the driving-belt is carried (orig. photo., 1943) (Pl. CLII) facing p. 103

407 Scale drawing of a Szechuanese spinning- or quilling-wheel (Than Tan-Chhiung, 1) page 104

408 Quilling-wheel in use for silk-throwing and the preparing of the weft; a picture from the King Chih Thu (+1210) (Pl. CL III) facing p. 106

409 The classical Chinese silk-reeling machine (sao chih, here su chih chhuang), an illustration from the Tshan Sung Ho Pien of Sha Shih-An et al. (1843) (Pl. CL IV) facing p. 107

410 The oldest known illustration of an endless power-transmitting chain-drive, from Su Sung’s Hsin I Hsiang Fa Yao (+1090) page 111

411 Ancient Egyptian crank drills, forerunners of the brace-and-bit drill, from Old Kingdom reliefs page 114

412 Oblique crank on a farmer’s well windlass at Kan-nan, Hei-lung-chiang province, Manchuria (orig. photo., 1952) (Pl. CL V) facing p. 114

413 Crank in the form of an eccentric lug, fitted with connecting-rod and hand-bar (+1313) page 117

414 The Chinese rotary-fan winnowing-machine in its classical form (from the Nung Shu, +1313) page 118

415 Farmyard model in iridescent green glazed pottery from a tomb of the Han period (2nd to 2nd century; Nelson Art Gallery, Kansas City) (Pl. CL VI) facing p. 118

416 The first Chinese diagram of a continuous screw or worm and its male and female threads (San Tchih Thu Hsi) page 121

417 A cotton gin, probably the most ancient form of rolling-mill (National Museum, Kandy) (Pl. CL VII) facing p. 122

418 Another traditional Sinhalese cotton-gin with two enmeshing worms (Pl. CL VII) facing p. 122

419 A Chinese cotton-gin of +1313 with two hand-cranks page 123

420 Chinese cotton-gin with hand-crank and treadle page 123

421 Irrigation flume constructed in wood (chia tshao) page 128

422 Brine conduits in bamboo piping at the Tzu-liu-ching salt-fields, Szechuan, 1944 (Beaton, i) (Pl. CL VIII) facing p. 128

423 Connecting a joint in a bamboo drill-haft for the salt-industry in Szechuan, +1637 (Pl. CL IX) facing p. 129

424 Ancient and medieval Chinese water-pipes page 130

425 Earthenware tiger-head water-spool to fit the delivery end of a pipeline (ca. 4th or 3rd century) (Pl. CL X) facing p. 132

426 The bathing pavilion or Lodge of Artificial Rain in the Royal Gardens at Anurâdhapura, Ceylon (orig. photo., 1958) (Pl. CL XI) facing p. 133

427 a, b The oldest illustrations of the Chinese double-acting piston-bellows (c. +1280) page 136

427 c, d The Chinese double-acting piston-bellows (Hommel, 1) (Pl. CL XII) facing p. 136

428 A battery of double-acting piston-bellows in use by bronze-founders, +1637 (Pl. CL XIII) facing p. 137

429 Annamese single-acting double-cylinder metallurgical bellows (after Schroeder, in Frémont, 14) page 138

430 Forge bellows from a Hsi-Hsia fresco at Wan-fu-hsia (Yulin-khu), Kansu, dating from the +10th to +13th centuries (Tuan Wen-Chieh, 2) (Pl. CL XIV) facing p. 140

431 The fire-piston, an indigenous form of lighter common to South-east Asia and Madagascar, the Malayan culture area (Hough, 1) (Pl. CL XV) facing p. 140

432 Part of a scroll-painting of the Chhing period showing the method of drawing brine from the deep bore-holes in the Szechuanese salt-fields (from the collection of Mr R. Alley) (Pl. CL XV) facing p. 141

433 Illustrations of the military flamethrower for naphtha or Greek fire (distilled petroleum) from the Wu Ching T’ung Yao of +1044 page 146

434 Reconstruction and explanation of the mechanism of the double-acting double-piston single-cylinder force-pump used in the +11th-century flamethrower page 148

435 Open trestle-operated rotary-fan winnowing-machine (yang shan), from Thien Kung Khat Wu (+1637) page 152

436 Grain-pounding with tilt-hammers, and winnowing by means of upright fan-boards; a Han moulded brick found at Phêng-shan Hsien (Pl. CL XVI) facing p. 154
LIST OF ILLUSTRATIONS

437 An artificial channel for floating wine-cups at royal garden-parties; in the grounds of the Phosok-ch'ong Pavilion at Kyongju in Korea (Chapin, t) (Pl. CLXVII) facing p. 160

438 An Arabic version of the mechanical cup-bearers aboard their automatic vessel; from a +1115 MS. of al-Jazari's book on ingenious devices written at the beginning of the previous century (Pl. CLXVII) facing p. 160

439 Utilisation and adaptation of the traditional Chinese style in craftsman ship and engineering to meet contemporary needs; designs from the National Exhibition of Agricultural Machinery, Peking, 1938. A tea-leaf rolling and rubbing-mill page 173

440 Contemporary adaptations; a wheelbarrow-mounted crop-sprayer with a drive from the wheel page 175

441 Contemporary adaptations; a mowing-machine of almost wholly wooden construction page 175

442 Reciprocating motion in primitive mills page 185

443 Rotary mills page 186

444 Typical Chinese rural hand-quern page 188

445 Chinese rotary mills; the lung, of baked clay or wood, used for hulling grain and decorticating rice (Pl. CLXVIII) facing p. 188

446 Chinese rotary mills; the mo, of stone, used for comminuting husked grain, rice or naked wheat, to flour (Pl. CLXIX) facing p. 189

447 Typical Han tomb-model of rotary hand-quern with a double hopper page 190

448 Pot-quern or paint-mill page 191

449 Ox-driven cereal grinding-mill (mo) page 193

450 Mule-driven cereal grinding-mill with crossed driving-belt from a larger whim wheel page 194

451 Geared animal-driven milling-plant (ten mo), with eight mills worked directly by the central whim wheel page 196

452 Longitudinal-travel edge-runner mill (yen nien), grinding cinnamon for vermilion (chu), and mainly used in the mineral and pharmaceutical industries page 197

453 Rotary double edge-runner mill (shih nien), for millet, kao-liang, hemp, etc page 198

LIST OF ILLUSTRATIONS

454 Rotary bogie-wheel edge-runner mill in Hupei (Pl. CLXX) facing p. 198

455 Hand-roller (hsiio nien) worked by two girls page 200

456 Animal-driven roller-mill with hopper and road-wheel (kun nien) page 201

457 The trapetum, an olive-crushing mill, characteristic of classical Greece (after Drachmann, 7) page 202

458 The mola olearia, another type of olive-crushing mill, used in the Hellenistic world (after Drachmann, 7) page 203

459 Animal-driven rolling-mill for expressing the juice of the sugar-cane (ya chê) page 205

460 Treadle-operated sifting or bolting machine (mien io) page 207

461 Hydraulic sifting or bolting machine (shui ti lo) page 208

462 The principal types of pressing plant page 210

463 The most characteristic Chinese oil-press, a great tree-trunk slotted and hollowed out (Pl. CLXXI) facing p. 210

464 Model of the rope-clutch press as used in the paper and tobacco industries (Mercer Museum) (Pl. CLXXII) facing p. 211

465 An endless-chain bucket-conveyor, as it appeared in the Chhi Chhi Thu Shuo of +1627 page 212

466 The endless-chain bucket-conveyor, from Besson's engineering treatise of +1578 (Pl. CLXXIII) facing p. 212

467 A water-pump worked by a Hellenistic drum-treadmill, from the Chhi Chi Thu Shuo of +1627 page 214

468 The original from which the previous picture was taken, an illustration from Zonca's engineering treatise of +1588 page 214

469 Mechanical, or cable, ploughing (tai keng), an illustration from the Chhi Chi Thu Shuo (Chhi Chhi, +1588) page 221

470 Inclined man-power treadmill (Ramelli, +1588) page 223

471 Double swape worked by a rotating conical cam (Besson, +1578) page 223

472 Model of the steam-turbine road-carriage constructed by P. M. Grimaldi, together with many other scientific and technical demonstrations, for the entertainment and instruction of the young Khang-Hsi emperor about +1671 (Pl. CLXXV) facing p. 226

473 Tibetan steam-jet fire-blower in copper (Museum of Archaeology and Ethnology, Cambridge) (Pl. CLXXVI) facing p. 227
474 The Cardan suspension or gimbals as a nest for navigators while taking their observations, a proposal of Besson, +1567 page 230
475 The Cardan suspension or gimbals as a cradle for a patient or traveller in a horse-drawn ambulance or litter, a proposal of Branca, +1567 page 230
476 The Cardan suspension in the notebook of Villard de Honne-court, c. +1237 (Pl. CLXXVII) facing p. 230
477 A +13th-century hand-warming stove with Cardan suspension (St Peter's Treasury, Rome) (Pl. CLXXVIII) facing p. 231
478 Chinese perfume-burner with Cardan suspension of the Thang period (c. +9th century), in silver-work (Kempe Collection) (Pl. CLXXVIII) facing p. 231
479 A brass Tibetan globe-lamp with Cardan suspension for temple use (Pl. CLXXIX) facing p. 230
480 Interior of the brass Tibetan globe-lamp showing the suspension of four rings and five pivot-axes (Pl. CLXXX) facing p. 231
481 A Chinese gimbal-mounted azimuth compass of the +18th century page 232
482 Children engaged in a dragon procession, part of an inlaid lacquer screen (collection of Dr Lu Gwei-Djen) (Pl. CLXXXI) facing p. 234
483 The evolution of the locksmith's art; models from Frémont (17) (Pl. CLXXXII) facing p. 236
484 The evolution of the locksmith's art, continued (Pl. CLXXXII) facing p. 236
485 Roman keys (British Museum) (Pl. CLXXXIII) facing p. 237
486 Mechanism of a +1st-century Roman lock in the British Museum (Smith, 1) page 239
487 Mechanism of a type of lock common to Chinese and Roman practice (after Hommel, 1) page 239
488 Mechanism of a common type of Chinese door-lock used for sheds, stores, workshops, etc. (Hommel, 1) page 240
489 Anchor- or T-key in contemporary Chinese use (Pl. CLXXXIV) facing p. 240
490 Examples of the spring padlock, in wrought iron and brass, from Anhui and Chiangsi (Hommel, 1) (Pl. CLXXXV) facing p. 241

LIST OF ILLUSTRATIONS

491 A type of spring padlock widespread in China (after Hommel, 1) page 241
492 Diagram to illustrate the evolution of wheeled vehicles. page 244
493 A baggage-cart (chan chhê) from the I-nan tomb reliefs, c. +193 (Pl. CLXXXVI) facing p. 246
494 Chou or Han quadrages in a hunting scene on an inscribed bronze vessel (Freer Art Gallery) (Pl. CLXXVII) facing p. 247
495 Han quadrages from an inscribed bronze vessel (Jung Kêng's collection) page 247
496 Sketch of the type of horse-drawn chariot or light cart characteristic of the late Warring States, Chhin and Han periods page 248
497 Ornamented bronze axle-caps of the Warring States period from a tomb in Shansi (Pl. CLXXXVIII) facing p. 250
498 Country cart at Lanchow, Kansu (orig. photo., 1943) (Pl. CLXXXIX) facing p. 251
499 Baggage-cart (chan chhê) of the Han period; rubbing of a moulded brick from Phêng-hsien (Pl. CLXXXIX) facing p. 251
500 A diagram from Juan Yuan's archaeological study of vehicle building according to the Chou Li, entitled Khao Kung Chi Chê Chih Thu Chieh (1820) page 251
501 Another drawing, a plan of the vehicle body, with the axle and its bearings underneath it. page 252
502 Targone's field mill, redrawn by Beck (1) page 255
503 The field mill as it appeared in the Chhi Chhi Thu Shuo of +1627 page 256
504 The most characteristic type of Chinese wheelbarrow, with central wheel and housing above it, to carry both heavy loads and passengers (Pl. CXC) facing p. 260
505 Reconstruction of Chuko Liang's army service wheelbarrow according to the specifications in the Chuko Liang Chi (c. +230) facing p. 261
506 'The one-wheeled push-barrow of the south', from Tham Kung Khui Wu (+1657) (Pl. CXCI) facing p. 262
507 A wheelbarrow in a relief of +150 (Pl. CXCI) facing p. 266
508 A wheelbarrow depicted on a moulded brick taken from a tomb of +118 at Chhêngtu, Szechuan (Pl. CXCII) facing p. 266
509 Tung Yung's father sitting on a wheelbarrow; a scene from the Wu Liang tomb-shrine reliefs of +147 page 264
Reconstruction of the mechanism of the south-pointing carriage according to Lanchester (1).

Another scene from Chhing Ming Shang Ho Thu (PI. CXCV)

A train of wheelbarrows with auxiliary wheels at the forward end for surmounting small obstacles (type i) (PI. CXCVI)

Sketch of a sailing wheelbarrow, the sail assisting animal traction

Diagram of a sailing wheelbarrow from van Braam Houckgeest (+ 1797)

Vignette of an imagined Chinese land-sailing carriage (Mercator, + 1613)

Another vignette of the imagined Chinese land-sailing four-wheeled wagons (Speed, + 1626)

The successful sailing-carriages constructed by Simon Stevin (+ 1660), a print by de Gheyn (PI. CXCVII)

Ice-yachts on the Liao River, near Yung-khou in Manchuria, c. 1935 (PI. CXCVII)

A drum-carriage of the Han dynasty, used in imperial processions; from the Hsiao Thang Shan tomb-shrines, c. + 125 (Pl. CXC VIII)

Working model of a Han hodometer (Wang Chen-To, 3) (Pl. CXCIX)

Mechanism of the working model (Pl. CC)

Ornamental figure of jade for a model south-pointing carriage

Reconstruction of the mechanism of the south-pointing carriage according to Moule (7) and Wang Chen-To (3)

Plan of the Moule-Wang reconstruction

List of Illustrations

530 Wang Chen-To's working model with the large gear-wheel removed (Pl. CCII) facing p. 294
531 The more complex arrangement proposed by Moule (7) to satisfy the specification for a south-pointing carriage due to Wu Té-Jen (+ 1107) page 296
532 Diagram to illustrate the principle of the differential drive of motor-vehicles page 297
533 Reconstruction of the mechanism of the south-pointing carriage according to Lanchester (1) page 299
534 Lanchester's working model with the housing removed to show the mechanism (Pl. CCII) facing p. 300
535 Action photographs showing the efficiency of the mechanism of the differential-gear reconstruction of the south-pointing carriage (a set from Mr George Lanchester) (Pl. CCIII) facing p. 301
536 The three main forms of equine harness page 305
537 The age-old ox-yoke harness for bovine animals (orig. photo., 1958) (Pl. CCIV) facing p. 306
538 Burial of a chariot, with horses and charioteer, excavated at Ta-sau-khung Tshun near Anyang (c. -12th century) (Pl. CCV) facing p. 306
539 One of the bronze 'yokes' for the horses in the Shang chariot burial (Pl. CCV) facing p. 307
540 A form of 'yoke' still persisting in Han times, seen on a moulded brick excavated near Chhêng-tu (Pl. CCV) facing p. 307
541 Han breast-strap harness (Wu Liang) (Pl. CCVI) facing p. 308
542 Han bronze model of a light luggage trap (Pl. CCVI) facing p. 308
543 Breeching and hip-strap hanging from the shafts of a parked chariot (Wu Liang) (Pl. CCVII) facing p. 309
544 Another carriage harness relief of the Han period, from the I-nan tomb-shrines, c. + 193 (Pl. CCVII) facing p. 309
545 Elucidation of the I-nan relief to show the forked shafts, the cross-bar, the 'yoke', and the harness components page 309
546 Breast-strap harness in statu nascendi; a horse and chariot figured on a round lacquer box of the kind made in the State of Chhu, c. -4th century, found in a Han tomb near Chhansha (Pl. CCVIII) facing p. 310
547 Trackers hauling a boat upstream; a fresco painting of the early Thang period from cave no. 332 at Chhien-fo-tung, Tunhuang (Pl. CCIX) facing p. 311
548 Diagram to explain the harness system seen in the Chhangsha lacquer painting page 311
549 Attempted ameliorations of throat-and-girth harness page 314
550 The harness of the foreground horse in the Maraudi relief, now in the Musée Calvet, Avignon page 316
551 The nearer of two horses attached to one of the two chariots carved on the lowest architrave of the southern gateway at Sâñchi (probably late 1st century) in India page 316
552 Evidence of possible experiments for the improvement of horse harness in the late Roman empire, the sarcophagus of Cornelius Statius (+ 3rd century) (PI. CCX) facing p. 316
553 Another Gallo-Roman representation of a harnessed horse; a carved panel in the Landesmuseum, Trier (+ 4th century) (PI. CCX) facing p. 316
554 A third late Roman example; horse and cart in the +4th-century mosaics at Ostia, the ancient port of Rome (PI. CCXI) facing p. 321
555 Han tomb-model of a dog wearing throat-and-girth harness (Cernuschi Museum) (PI. CCXII) facing p. 321
556 Diagrams to explain the evidence of the fresco paintings at the Chhien-fo-tung cave-temples, Tunhuang page 320
557 Origins of collar-harness. Part of the procession of the Lady Sung, wife of General Chang I-Chhao, the Exarch of the Tibetan Marches (the Tunhuang region, on the Old Silk Road). A fresco at Chhien-fo-tung datable + 851 (PI. CCXIII) facing p. 320
558 Enlargement of the lowest (foreground) baggage-cart in the procession of the Exarch's consort; a copy-painting by Ho Yi (PI. CCXIII) facing p. 320
559 Typical collar-harness still in use in north and north-west China (orig. photo., 1958) (Pl. CCXIV) facing p. 321
560 The Chinese three-component system of equine harness still extant in the Iberian peninsula; an example in southern Portugal (orig. photo., 1960) (Pl. CCXV) facing p. 322
561 The oldest representation of equine harness in the Chhien-fo-tung cave-temple frescoes, painted under the Northern Wei between + 477 and + 499 (Pl. CCXVI) facing p. 323
562 A slightly later representation, datable between + 520 and + 524 (Pl. CCXVI) facing p. 323
563 Rubbing of a Buddhist stele dated +493 commemorating the monastic profession of Kuo Shih-Jen (Pl. CCXVII) facing p. 324
564 Moulded bricks in the tomb of Pao San-Niang at Chaohua, Szechuan, between +220 and +260, depicting something very like collar-harness (Pl. CCXVIII) facing p. 325
565 Moulded brick ascribed to the Han period showing a chariot drawn by three horses in traces all bearing thick annular objects round their withers and chests (collection of Ti Phing-T'ao) (PI. CCXIX) facing p. 324
566 Moulded brick of Chhin or Early Han date (− 3rd or −2nd century) depicting a four-wheeled wagon being drawn rapidly along by five horses each apparently harnessed with a collar and traces (collection of Ti Phing-T'ao) (Pl. CCXX) facing p. 325
567 Diagram to show the effect of a short-slung withers strap, the simulation of a collar in iconographic records page 325
568 Horse and cart on a Buddhist stele of the +6th century (Chavannes, 9) (Pl. CCXXI) facing p. 326
569 Camel-cart in a Sui fresco at Chhien-fo-tung, c. +600 (PI. CCXXI) facing p. 326
570 Modes of attachment of equine harness to vehicles or machinery page 328
571 The swape or counterbalanced bucket lever for drawing water from wells; a Han representation from the Hsiao Thang Shan tomb-shrine reliefs, c. +125 (Chavannes, II) (PI. CCXXII) facing p. 330
572 A swape or well-sweep (chieh kao) from the Thien Kung Khai Wu (+1637) page 333
573 A battery of flume-beamed swapes in al-Jazari's treatise on mechanical contrivances of +1206 (Pl. CCXXIII) facing p. 334
574 Well-windlass (lu-lu) with crank, from the Thien Kung Khai Wu (+1637) page 336
575 Scoop-wheel (kua chhel) or hand-operated paddle-wheel sweeping up water into a flume, from the Shou Shih Thung Khao (+1742) page 338
576 Typical Chinese square-pallet chain-pump (fan chhel) (orig. photo., 1943) (Pl. CCXXIV) facing p. 338
<table>
<thead>
<tr>
<th>Page</th>
<th>Illustration Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>578</td>
<td>Detailed view of the mechanism of the square-pallet chain-pump (PI. CCXXV)</td>
</tr>
<tr>
<td>579</td>
<td>The square-pallet chain-pump in the Thien Kung K'ai Wu of +1637</td>
</tr>
<tr>
<td>580</td>
<td>Square-pallet chain-pump manually operated with cranks and connecting-rods (pa chheh), from Thien Kung K'ai Wu</td>
</tr>
<tr>
<td>581</td>
<td>Square-pallet chain-pump worked by an ox whim and right-angle gearing (mu chheh), from Thien Kung K'ai Wu</td>
</tr>
<tr>
<td>582</td>
<td>Square-pallet chain-pump worked by a horizontal water-wheel and right-angle gearing (shui chheh), from Thien Kung K'ai Wu</td>
</tr>
<tr>
<td>583</td>
<td>Belt-conveyors based on the principle of the square-pallet chain-pump at work on a hydraulic engineering project in 1958 (PI. CCXXVI)</td>
</tr>
<tr>
<td>584</td>
<td>Discarded assemblies of cast-iron gear-wheels and sprocket-wheels for paternoster pumps (orig. photo., 1958) (PI. CCXXVI)</td>
</tr>
<tr>
<td>585</td>
<td>Triple paternoster pump manually operated with two cranks (orig. photo., 1958) (PI. CCXXVII)</td>
</tr>
<tr>
<td>586</td>
<td>Paternoster pump and ‘flywheel’ weighted with two millstones, manually operated by eccentric, connecting-rod and hand-bar (orig. photo., 1958) (PI. CCXXVII)</td>
</tr>
<tr>
<td>587</td>
<td>The sāqīya or pot-chain pump, characteristic of Hellenistic and Islamic culture, a diagram in al-Jazari’s book on ingenious mechanical contrivances (+1206).</td>
</tr>
<tr>
<td>588</td>
<td>A modernised sāqīya at Yediküllü, near Istanbul (orig. photo., 1948) (PI. CCXXVIII)</td>
</tr>
<tr>
<td>589</td>
<td>A Chinese sāqīya from the Thien Kung K'ai Wu</td>
</tr>
<tr>
<td>590</td>
<td>Discarded sāqīya gear-wheel and drum-wheel of wood (orig. photo., 1958) (PI. CCXXIX)</td>
</tr>
<tr>
<td>591</td>
<td>Industrial use of the sāqīya in traditional style; one of the brine-raising towers (chhē lou) in the salt-fields at Tzu-liu-ching, Szechuan (PI. CCXXX)</td>
</tr>
<tr>
<td>592</td>
<td>The noria or peripheral pot wheel (thang chhēh); a drawing from the Nung Chêng Chhiuan Shu (+1628)</td>
</tr>
<tr>
<td>593</td>
<td>A group of three norias at work near Chhêngtu, Szechuan (orig. photo., 1943) (PI. CCXXXI)</td>
</tr>
<tr>
<td>594</td>
<td>A high-lift noria, some 45 ft. in diameter, constructed entirely of bamboo and wood (orig. photo., 1943) (PI. CCXXXII)</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS
617 A battery of hydraulic trip-hammers worked by an under-

618 A martinet forge-hammer, from Diderot's encyclopaedia, c. +1770 (Pl. CCXXXIX) facing p. 392

619 A vertical pestle stamp-mill, characteristic of medieval Europe (c. +1430) page 394

620 Probably the oldest European illustration of the martinet forge-hammer, from Olaus Magnus' De Gentibus Septem-

621 The most characteristic Chinese form of water-mill, a millstone driven by a horizontal water-wheel (teo lun thu tui mo) page 397

622 Geared water-powered milling plant, nine mills worked by an overshot vertical water-wheel and right-angle gearing (shai chuam lien mo), an illustration of +1742 page 399

623 Contemporary Chinese water-wheels; one of the horizontal wheels of the Chu Chia Nien water-mill near Chhêng-tu, Szechuan (orig. photo., 1958) (Pl. CCXL) facing p. 400

624 Horizontal rotor still unfinished, Chhêng-tu (orig. photo., 1958) (Pl. CCXL) facing p. 400

625 Horizontal water-wheel in position under a water-mill near Thien-shui, Kansu (orig. photo., 1958) (Pl. CCXL) facing p. 400

626 Interpretation of the description of the water-mills of Sandâbil (Shantan in Kansu) by Ibn al-Muhalil, c. +940 page 402
LIST OF ILLUSTRATIONS

641 The Jesuits as astronomers in China, a Beauvais tapestry of the late +17th century (Musée de l'ancien Eveché, Le Mans) (Pl. CCXLVIII) facing p. 436

642 The muses of the sciences as ladies of the imperial court, an allegorical painting in Western style by Tung Chi-Chiang (+1555 to +1636) (Pl. CCXLIX) facing p. 437

643 A "self-sounding bell", i.e. a striking clock of European style such as the Jesuits introduced to China from +1583 onwards page 438

644 Two Presidents of Double-Hours, examples from a set of twelve pottery figurines from a Thang tomb at Han-sên-chai, Sian (Pl. CCLI) facing p. 440

645 The simplest type of early +14th-century European mechanical clock (Pl. CCLI) facing p. 441

646 Drawings from Berthoud (1) to show the essentials of the verge-and-foliot escapement of early weight-driven mechanical clocks (Pl. CCLII) facing p. 442

647 The mercury-leaking-compartment drum 'escapement' in the Castilian Libros del Saber de c. +1276 (Pl. CCLIII) facing p. 443

648 Drawings from Berthoud (1) to show the combination of the pendulum with the verge and pallets introduced by Galileo and Huygens in the mid +17th century (Pl. CCLIV) facing p. 444

649 Drawings from Berthoud (1) to show the anchor escapement with pendulum oscillation introduced by Clément in the late +17th century (Pl. CCLI) facing p. 445

650 Pictorial reconstruction of the astronomical clock-tower built by Su Sung and his collaborators at Kaifeng in Honan (+1090) page 449

651 General diagram of the works of the clock-tower (Hsin 1 Hsiang Fa Yao) page 451

652a The "Water-Powered Armillary (Sphere) and Celestial (Globe) Tower" (Shui Yün I Hsiang Thai) of Su Sung; diagram of the power and transmission machinery page 452

652b Provisional scale drawing of the transmission machinery in Su Sung's clock-tower (Cambridge, 1) page 453

653 Driving-wheel (shu lun) and sump (shui shui hu), from Hsin 1 Hsiang Fa Yao page 454

LIST OF ILLUSTRATIONS

654 Right-angle gearing of main driving-shaft (shu chu) and vertical transmission shaft (thien chu), from Hsin 1 Hsiang Fa Yao page 454

655 Wheel with jacks reporting the quarters (pao kho su-chhen lun), from Hsin 1 Hsiang Fa Yao page 455

656 Upper and lower norias with their tanks and the manual wheel for operating them (Hsin 1 Hsiang Fa Yao) page 458

657 The "celestial balance" (thien heng) or escapement mechanism of Su Sung’s clockwork (Hsin 1 Hsiang Fa Yao) page 458

658 Scale drawing of the escapement mechanism (Cambridge, 1) page 460

659 Experimental working model of the Chinese water-wheel linkwork escapement (Mr John Cambridge, July 1961) (Pl. CCLVI) facing p. 462

660 The only Chinese illustration of an anaphoric clock like those of the Hellenistic and Arabic culture-areas, a drawing from the Chhi Chhi Thu Shuo of +1627 . . . page 467

661 Reconstruction of a possible mechanism for the ‘orrery’ movements of medieval Chinese clocks (Liu Hsien-Chou, 6) page 473

662 A Chinese representation of the bringing of astronomical instruments as presents by the embassy of Lord Macartney in +1793; a silk tapestry in the National Maritime Museum, Greenwich (Pl. CCLVII) facing p. 476

663 The relation of calendar-making to the invention of the escapement; plot of the number of new calendars introduced in each century between +400 and +1900 page 489

664 The relation of calendar-making to the invention of the escapement; plot of the number of new calendars introduced in each 25-year period between +200 and +1300 page 491

665 Clockwork-driven demonstrational armillary sphere by Josias Habrecht, made in Strasburg in +1572 (Pl. CCLVIII) facing p. 492

666 The Copernican terrarium made for the Bishop of Lübeck in +1651 (Pl. CCLIX) facing p. 493

667 Late +18th-century design for a heliocentric demonstrational armillary sphere (Pl. CCLX) facing p. 492

668 Reconstruction by Liu Hsien-Chou (6) of the mechanism of one of the sand-driven wheel-clocks of Chan Hui-Yuan (c. +1370) page 511
The first appearance of the verge-and-foliot escapement in a Chinese clock design; the 'wheel clepsydra' (lun hu) described by Wang Cheng in his Chu Chhi Thu Shuo of +1627.

Astronomical clock in the form of a celestial globe, with concealed works, constructed by Chhi Yen-Huai in 1830 (Pl. CCLXI).

Uranographic clockwork-driven model or orrery constructed in 1814 by or for the Japanese Buddhist monk Entsû (Pl. CCLXII).

A tipping bucket mechanism for rotating a disc or globe by water-power, from al-Jazari's treatise on striking clepsydras (+1206).

Water-wheels in Arabic horological machinery, another device from al-Jazari's treatise.

A third water-power device from al-Jazari's treatise.

An example of the continuing utilisation of medieval mechanical and horological devices in modern apparatus, the continuous-recording gas calorimeter of Sir Charles Boys.

The magnetic perpetual-motion wheel proposed by Petrus Peregrinus (+1269).

European medieval man peers out through the firmament-to see the rotational machinery of the solid celestial spheres, a German woodcut of the +16th century (Pl. CCLV).

A monastic water-driven wheel-clock of +13th-century Europe, an illumination in a biblical MS. (Bodleian Library).

Revolving bookcase figured in the Chhi Chhi Thu Shuo of +1627.

The source of the illustration used by Johann Schreck & Wang Cheng, the revolving bookcase depicted in Ramelli's engineering treatise of +1588.

The Wheel of Fortune, a device from the woodcut title-page of the first translation of Petrarch's De Remediis utriusque Fortunae libri duo into a living language, Czech, printed at Prague, +1501.

Scale drawings of the Repository Hall of the Lung-Hsing Temple at Chêngting (Liang Sau-Chhêng, 1).

One of the revolving repositories intended to contain the Buddhist patrology, the Ta Tsang or Tripitaka (Pl. CCLXIX).

Design for a revolving repository of the Buddhist scriptures (chusan lun ching tsang), from the Ying Tsao Fa Shih of +1103.

Wheel-shaped rotatable case for the classified storage of movable type-faces, invented by Pi Shêng about +1045.

Diagrams of windmills from the cosmographical treatise of al-Dimashqi, c. +1300.

Horizontal windmills in Seistan (Pl. CCLXX)

The first European picture of Chinese horizontal windmills, from Nieuhoff's account of one of the Dutch embassies, +1656

Typical Chinese horizontal windmill working a square-pallet chain-pump in the salterns at Taku (Pl. CCLXII).

Modern design for a pump windmill based on the traditional luffing sail type (orig. photo., +1958).

Horizontal windmill of the Persian type with shield-walls, put forward as a new design in the Chhi Chhi Thu Shuo of +1627.

West Indian horizontal windmill working a sugar-mill (Pl. CCLXXII).

Verantius' windmill with suspended luffing flaps.

Verantius' streamlined 'anemometer' sails designed to oppose minimum wind-resistance in the return phase.

Oblique-axis windmill characteristic of Chiangsu and Chekiang (Pl. CCLXXIII).

Contemporary Chinese design for an experimental water-raising windmill of streamlined 'anemometer' type (orig. photo., +1958).

Model of the 'Jumbo' windmill or 'go-devil' used extensively on the plains of Kansas and Nebraska, c. +1890 (Greville Bathe).

Prayer-flags and four-cup 'anemometer' prayer-wheels on and around the tomb of a Khan of the Khoshot.
LIST OF ILLUSTRATIONS

690 Another example of four-cup ‘anemometer’ prayer-wheels, seen at the Mongol settlement of Shang-chia on the Tsaidam plateau in 1890 (Pl. CCLXXV) facing p. 566

700 The Savonius S-rotor forestalled in a particular type of Tibetan wind-driven prayer-drum (Pl. CCLXXV) facing p. 566

701 The myth and magic of flight, one of the innumerable Buddhist apsaras (angels) depicted in the fresco paintings of the Chiien-fo-tung cave-temples at Tunhuang (Pl. CCLXXVI) facing p. 568

702 The oldest printed picture of the aerial car of the mythical Chi-Kung people, a page from the I Yu T’hu Chih encyclopaedia, c. +1430 page 571

703 Another pictorial version of the aerial car of the Chi-Kung people, from the Shan Hai Ch’ing Chu page 572

704a A bird-drawn flying car in the Chiien-fo-tung frescoes (Pl. CCLXXVIIa) facing p. 572

704b Kite-flying at Haikuan (Allom & Wright) (Pl. CCLXXVIIb) facing p. 573

705 Chinese cambered-wing kite page 579

706 The ‘bamboo dragonfly’ (chu chhing-thing) or Chinese helicopter top page 584

707 Page of drawings sent by Cayley to Dupuis-Delcourt in 1853 illustrating an improved Chinese helicopter top which would mount more than 90 ft. into the air (Pl. CCLXXVIII) facing p. 584

708 A train of kites bearing aloft a military observer, 1909 (Pl. CCLXXIX) facing p. 590

709 Pictures from the Ching Hua Yuan, a novel by Li Ju-Chen written about 1815, adumbrating practical aircraft (Pl. CCLXXX) facing p. 592

710 Another scene from the Ching Hua Yuan (Pl. CCLXXXI) facing p. 593

LIST OF TABLES

54 Trades and industries described in the Khao Kung Chi chapter of the Chou Li page 16

55 Classification of mechanical operations for changing the volume and form of matter page 54

56 Principal machines described and illustrated in traditional Chinese books page 177

57 Types of pressing machines used in Greece and Roman Italy page 209

58 Machines described and illustrated in the Chinese books produced under Jesuit influence page 215

59 Roles of different culture-areas in the development of mechanical clockwork page 533
LIST OF ABBREVIATIONS

The following abbreviations are used in the text and footnotes. For abbreviations used for journals and similar publications in the bibliographies, see pp. 604ff.

BCFA Britain–China Friendship Association.
CCTS Teng Yü-Han (Johann Schreck) & Wang Cheng, Chihi Chihi Thu Shuo (Diagrams and Explanations of Wonderful Machines), +1627.
CPCRA Chinese People’s Association for Cultural Relations with Foreign Countries.
CSHK Yen Kho-Chün (ed.), Chhüan Shang-hu San-Tai Chhin Han San-Kuo Liu Chhao Wên (complete collection of prose literature (including fragments) from remote antiquity through the Chhin and Han Dynasties, the Three Kingdoms, and the Six Dynasties), 1836.
CSS Feng Yün-Pheng & Feng Yün-Yuan, Chin Shih So (Collection of Carvings, Reliefs and Inscriptions), 1821.
HCCC Yen Chieh (ed.), Huang Chhing Ching Chieh (monographs by Chhing scholars on classical subjects).
HF Hsiung San-Fa (Sabatino de Ursis) & Hā Kuang-Chhi, Thai Hsi Shui Fa (Hydraulic Machinery of the West), +1612.
K Karlgren, Grammata Serica (dictionary giving the ancient forms and phonetic values of Chinese characters).
KCCY Chhen Yuan-Lung, Ko Chhah Ching Yuan (Mirror of Scientific and Technological Origins), an encyclopaedia of +1735.
KCKW Wang Jen-Chün, Ko Chhah Ku Wei (Scientific Traces in Olden Times), 1896.
KCT Lou Shou, Keng Chih Thu (Pictures of Tilling and Weaving), +1145. See Franke (11); Pelliot (24).
KYCC Chhühan Hsi-Ta, Khai-Yuan Chan Chhing (The Khai-Yuan reign-period Treatise on Astrology and Astronomy), +729.
LSCC Lū Pu-Wei, Lū Shih Chhun Chhia (Master Lū's Spring and Autumn Annals), a compendium of natural philosophy, −239.
LIST OF ABBREVIATIONS

MCPT Shen Kua, "Mêng Chhi Pê Thun" (Dream Pool Essays), +1089.
NCCS Hsi Kuang-Chhi, "Nung Chêng Chhian Shu" (Complete Treatise on Agriculture), +1639.
NCNA New China News Agency.
NS Wang Chen, "Nung Shu" (Treatise on Agriculture), +1313.
R Read, Bernard E., et al., "indexes, translations and précis of certain chapters of the Pên Tshao Kang Mu of Li Shih-Chen. If the reference is to a plant see Read (1); if to a mammal, see Read (2); if to a bird see Read (3); if to a reptile see Read (4) or (5); if to a mollusc see Read (5); if to a fish see Read (6); if to an insect see Read (7)."
SCTS Chhien-Ting Shu Ching Thu Shuo (imperial illustrated edition of the Historical Classic) 1905.
SF Thao Taung-I (ed.), "Shuo Fu" (Florilegium of (Unofficial) Literature), c. +1368.
SSTK O-Erh-Thai et al. (ed.), "Shou Shih Thung Khao" (Complete Investigation of the Works and Days), an imperially commissioned treatise on agriculture and rural crafts, +1742.
STTH Wang Chhi, "San Tshai Thu Hui" (Universal Encyclopaedia), +1609.
T Tunhuang Archaeological Research Institute numbers of the Chhien-fo-tung cave-temples. If an identification is given according to the system of Hsieh Chih-Liu in his Tunhuang I Shu Hsil Lu (Shanghai, 1955) the Institute number and the Pelliot number are also given, but if a single number is given it is the Institute number. A valuable concordance table of the three systems is given in Hsieh’s book, and a still more complete one in Chhen Tsu-Lung (1).
TCKM Chu Hsi et al. (ed.), "Thung Chien Kang Mu" (Short View of the Comprehensive Mirror of History for Aid in Government), general history of China, +1189, with later continuations.
TCTC Ssuma Kuang, "Tzu Chih Thung Chien" (Comprehensive Mirror of History for Aid in Government), +1184.
TH Wieger, L. (1), "Textes Historiques."
TKKW Sung Ying-Hsung, "Thien Kung Khai Wu" (The Exploitation of the Works of Nature), +1637.
TPYL Li Fang (ed.), "Thai-Phing Yu Lan" (the Thai-Phing reign-period (Sung) Imperial Encyclopaedia), +983.
TSCC Chhen Meng-Lei et al. (ed.), "Thu Shu Chi Chheng"; the Imperial Encyclopaedia of +1726. Index by Giles, L. (2).
TT Wieger, L. (6), "Taoism", vol. 1, Bibliographie Générale (catalogue of the works contained in the Taoist Patrology, Tao Tsang).
ACKNOWLEDGEMENTS

List of Those who have kindly read through Sections in Draft

The following list, which applies only to this volume, brings up to date those printed in Vol. 1, pp. 15 ff., Vol. 2, p. xxiii, Vol. 3, pp. xxxix ff. and Vol. 4, pt. 1, p. xxi.

Mr Robert Brittain (Williamstown, Mass.) Water-raising Machinery.
Miss Alison Burford (Cambridge) Animal Traction.
Prof. Aubrey Burstall (Newcastle) All subsections.
Dr J. Coales (Cambridge) South-pointing Carriage.
Mr J. H. Combridge (London) All subsections.
Dr A. G. Drachmann (Copenhagen) Basic Machines, Clockwork, Windmill.

Prof. V. Elisséeff (Paris) All subsections.
Mr C. H. Gibbs-Smith (London) Aeronautics.
Dr Falconer Henry (Cambridge) All subsections.
Mr R. P. N. Jones (Cambridge) South-pointing Carriage.
Dr Lo Jung-Pang (Seattle) Vehicles, Animal Traction.
Dr L. A. Moritz (Achimoto) Milling.
Dr Dorothy M. Needham, F.R.S. (Cambridge) All subsections.
Prof. Luciano Petech (Rome) All subsections.
Dr Ladislao Reti (São Paulo) Palaeotechnic Machinery.
Mr Raphael Salaman (Harpenden) Tools and Materials.
Sir George Sansom (Berkeley, Calif.) Wheelbarrow and Sailing-Carriage.
Ing. Th. Schiöler (Copenhagen) Water-raising Machinery.
The late Dr Dorothea Singer (Par) All subsections.
Mr John Stunitz (Cleveland, Ohio) All subsections.
Dr E. G. Sterland (Bristol) All subsections.
Mr Rex Wailes (Beaconsfield) Windmill.
Dr Michael Wood (Cambridge) All subsections.
Mr Hans Wulff (Kensington, N.S.W.) All subsections.
Pursuing our exploration of the almost limitless caverns of Chinese scientific history, so much of which has never yet come to the knowledge and recognition of the rest of the world, we now approach the glittering veins of physics and physical technology; a subject which forms a single whole, constituting Volume Four, though delivered to the reader in three separate volumes. First come the physical sciences themselves (Vol. 4, pt. 1) and then their diverse applications in all the many branches of mechanical engineering (Vol. 4, pt. 2), civil and hydraulic engineering, and nautical technology (Vol. 4, pt. 3).

With the opening chapter we find ourselves at a focal point in the present study, for mechanics and dynamics were the first of all the conquests of modern science. Mechanics was the starting-point because the direct physical experience of man in his immediate environment is predominantly mechanical, and the application of mathematics to mechanical magnitudes was relatively simple. But ancient and medieval China belonged to a world in which the mathe\-matisation of hypotheses had not yet brought modern science to birth, and what the scientific minds of pre-Renaissance China neglected might prove almost as revealing as that which aroused their interest and investigation. Three branches of physics were well developed among them, optics (Section 26g), acoustics (26h), and magnetism (26i); mechanics was weakly studied and formulated, dynamics almost absent. We have attempted to offer some explanation for this pattern but without any great conviction, and better understanding of the imbalance must await further research. The contrast with Europe, at least, where there was a different sort of one-sidedness, is striking enough, for in Byzantine and late medieval times mechanics and dynamics were relatively advanced while magnetic phenomena were almost unknown.

In optics the Chinese of the Middle Ages kept empirically more or less abreast of the Arabs, though greatly hampered in theory by the lack of that Greek deductive geometry of which the latter were the inheritors. On the other hand they never entertained that peculiar Hellenistic aberration according to which vision involved rays radiating from, not into, the eye. In acoustics the Chinese proceeded along their own lines because of the particular and characteristic features of their ancient music, and here they produced a body of doctrine deeply interesting but not readily comparable with those of other civilisations. Inventors of the bell, and of a great variety of percussion instruments not known in the West, they were especially concerned with timbre both in theory and practice; developing their unique theories of melodic composition within the framework of a twelve-note gamut rather than an eight-note scale. At the end of the + 16th century Chinese mathematical acoustics succeeded in solving the problem of equal temperament just a few decades before its solution was reached in the West (Section 26h, 10). Lastly, Chinese investigation of magnetic phenomena and their practical application constituted a veritable epic. Men were
arguing in China about the cause of the declination of the magnetic needle, and using it at sea, before Westerners even knew of its directive property.

Readers pressed for time will doubtless welcome once more a few suggestions. In the chapters which we now present it is possible to perceive certain outstanding traditions of Chinese physical thought and practice. Just as Chinese mathematics was indelibly algebraic rather than geometrical, so Chinese physics was wedded to a prototypic wave-theory and perennially averse to atoms, always envisaging an almost Stoic continuum; this may be seen in Section 26b and followed through in relation to tension and fracture (c, 3) and to sound vibrations (h, 9). Another constant Chinese tendency was to think in pneumatic terms, faithfully developing the implications of the ancient concept of *chi* (= *pneuma, prāṇa*). Naturally this shows itself most prominently in the field of acoustics (Section 26h, 3, 7, etc.), but it was also connected with some brilliant successes in the field of technology such as the inventions of the double-acting piston-bellows and the rotary winnowing-fan (Section 27b, 8), together with the water-powered metallurgical blowing-machine (27h, 3, 4, direct ancestor of the steam-engine itself). It was also responsible for some extraordinary insights and predictions in aeronautical prehistory (27m, 4). Traditions equally strong and diametrically opposite to those of Europe also make their appearance in the purely technical field. Thus the Chinese had a deep predilection for mounting wheels and machinery of all kinds horizontally instead of vertically whenever possible; as may be followed in Section 27 (h, k, l, m).

Beyond this point, guidance to the reader is not very practicable since so many different preoccupations are involved. If he is interested in the history of land transport he will turn to the discussion of vehicles and harness (Section 27e, f), if he delights, like Leviathan, in the deep waters, a whole chapter (29) will speak to him of Chinese ships and their builders. The navigator will turn from the compass itself (26i, 9) to its fuller context in the haven-finding art (29f); the civil engineer, attracted by a survey of those grand water-works which outdid the pyramids of Aegypt, will find it in Section 28.

The folklorist and the ethnographer will appreciate that 'dark echoes: in the origins of the metric system (Section 26c, 6), the development of lenses (g, 5), and the estimation of pitch-pipe volumes (h, 8)—or the rise of astro-

For the discoveries and inventions which have left permanent mark on human affairs, it would be impossible even to summarise here the Chinese contributions. Perhaps the newest and most surprising revelation (so unexpected even to ourselves that we have to withdraw a relevant statement in Vol. 1) is that of the six hidden centuries of mechanical clockwork which preceded the clocks of the 14th-century Europe. Section 27f is a fresh though condensed treatment of this subject, incorporating still further new and strange material not available when the separate monograph *Heavenly Clockwork* was written in 1957 with our friend Professor Derek J. de Solla Price, now of Yale University. It still seems startling that the key invention of the escapement should have been made in a pre-industrial agrarian civilisation among a people proverbially supposed by bustling nineteenth-century Westerners to take no account of time. But there are many other equally important Chinese gifts to the world, the development of the magnetic compass (Section 26l, 4, 6), the invention of the first cybernetic machine (27e, 5), both forms of efficient equine harness (27f, 1), the canal lock-gate (28f, 9, v) and the iron-chain suspension bridge (28e, 4). The first true crank (Section 27b, 4), the stern-post rudder (Section 29h), the man-lifting kite (Section 27m)—we cannot enumerate them all.

In these circumstances it seems hardly believable that writers on technology have run up and down to find reasons why China contributed nothing to the sciences, pure or applied. At the beginning of a recent popular *florilegium* of passages on the history of technology one comes across a citation from the 18th-century Taoist book *Kuan Yin Ts’ao* giving as an example of 'oriental rejection of this world and of worldly activity'. It had been culled from an interesting essay on religion and the idea of progress, well known in the thirties and still stimulating, the author of which, led astray by the old rendering of Fr Wieger, had written: 'It is obvious that such beliefs can afford no basis for social activity and no incentive to material progress.' He was, of course, concerned to contrast the Christian acceptance of the material world with 'oriental' otherworldliness, in which the Taoists were supposed to participate. Yet in almost every one of the inventions and discoveries we here describe the Taoists and Mohists were intimately involved (cf. e.g. Sections 26c, g, h, i, 27a, c, h, j, 28e, etc.). As it happened, we had ourselves studied the same *Kuan Yin Ts’ao* passage and

Needham (32); cf. (11).
Needham, Wang & Price (1); cf. Needham (38).

*""
given parts of it in translation at an earlier stage; from this it can be seen that Wieger's version was no more than a grievously distorted paraphrase. Far from being an obscurantist document, denying the existence of laws of Nature (a concept totally unheard-of by the original writer) and confusing reality with dream, the text is a poem in praise of the immanent Tao, the Order of Nature from which space and time proceed, the eternal pattern according to which matter disperses and reassembles in forms ever new; full of Taoist relativism, mystical but in no way anti-scientific or anti-technological, on the contrary prophesying of the quasi-magical quasi-rational command over Nature which he who truly knows and understands the Tao will achieve. Thus upon close examination, an argument purporting to demonstrate the philosophical impotence of 'oriental thought', turns out to be nothing but a figment of occidental imagination.

Another method is to admit that China did something but to find a satisfying reason for saying nothing about it. Thus a recent compendious history of science published in Paris maintains that the sciences of ancient and medieval China and India were so closely bound to their peculiar cultures that they cannot be understood without them. The sciences of the ancient Greek world, however, were truly sciences as such, free of all subordination to their cultural matrix and fit subjects with which to begin a story of human endeavour in all its abstract purity. It would be much more honest to say that while the social background of Hellenistic science and technology can be taken for granted because it is quite familiar to us from our schooldays onwards, we do not yet know much about the social background of Chinese and Indian science, and that we ought to make efforts to get acquainted with it. In fact, of course, no ancient or medieval science and technology can be separated from its ethnic stamp, and though that of the post-Renaissance period is truly universal, it is no better understandable historically without a knowledge of the milieu in which it came to birth.

Finally, many will be desirous of looking into questions of intercultural contacts, transmissions and influences. Here we may only mention examples still puzzling of occidental imagination.

In a brilliant ponencia at the Ninth International Congress of the History of Sciences at Barcelona in 1959 Professor Willy Hartner raised the difficult question of how far anyone can ever anticipate anyone else. What does it mean to be a precursor or a predecessor? For those who are interested in intercultural transmissions this is a vital point. In European history the problem has assumed acute form since the

AUTHOR'S NOTE

a Vol. 2, pp. 449 and 444.

c Cf. Section 18 in Vol. 2 above.

We have not printed a contents-table of the entire project since the beginning of Vol. 1, and it has now been felt desirable to revise it in prospectus form. So much work has now been done in preparation for the later volumes that it is possible to give their outline subheadings with much greater precision than could be done seven years ago. More important, perhaps, is the division into volumes. Here we have sought to retain unaltered the original numbering of the successive Sections, as for the needs of cross-referencing we must. Vol. 4, as originally planned, included physics, all branches of engineering, military and textile technology and the arts of paper and printing. As will be seen, we now entitle Vol. 4 Physics and Physical Technology, Vol. 5 Chemistry and Chemical Technology and Vol. 6 Biology and Biological Technology. This is a logical division, and Vol. 4 concludes very reasonably with Nautics (29), for in ancient and medieval times the techniques of shipping were almost entirely physical. Similarly Vol. 5 starts with Martial Technology (30), for in this field and in those times the opposite was the case; the chemical factor was essential. We found not only that we must embody iron and steel metallurgy therein (hence the slight but significant change of title), but also that without the epic of gunpowder, the fundamental discovery of the first known explosive and its development through five pre-Occidental centuries, the history of Chinese military technique could not be written. With Textiles (31) and the other arts (32) the same argument was found to apply, for so many of the processes (retting, fulling, dyeing, ink-making) allied them to chemistry rather than to physics. Of course we could not always consistently adhere to this principle; for instance, no discussion of lenses was possible without some knowledge of glass technology, and this had therefore to be introduced at an early stage in the present volume (26g, 5, ii). For the rest, it is altogether natural that Mining (36), Salt-winning (37) and Ceramic Technology (38) should find their place in Vol. 5. The only asymmetry is that while in Vols. 4 and 6 the fundamental sciences are dealt with at the beginning of the first part, in Vol. 5 the basic science, chemistry, with its precursor, alchemy, is discussed in the second part. This probably matters the less because in ready response to the critics who found Vol. 3 too heavy and bulky for comfortable meditative evening reading, the University Press has decided to produce the present volume in three physically separate parts, each being as usual and complete in itself.

One author's note on the plan of the work (conventions, bibliographies, indexes, etc.) to which we must closely adhered, and we promised that in the last volume a list would be given of the editions of the Chinese books used. It now seems undesirable to wait so long, and thus for the convenience of readers with knowledge of the Chinese language we propose to append to the last part of this Volume an interim list of these editions down to the point then reached.

China to Europeans has been like the moon, always showing the same face—a myriad peasant-farmers, a scattering of artists and recluses, an urban minority of scholars, mandarins and shopkeepers. Thus do civilizations acquire "stereotypes" of one another. Now, raised upon the wings of the space-ship of linguistic resource and technology, we intend to see what is on the other side of the disc, and to meet the artisans and engineers, the shipwrights and the metallurgists of China's three-thousand-year-old culture. In our note at the beginning of Vol. 3 we took occasion to say something of the principles of translation of old scientific texts and of the technical terms contained in them. Since this is the first volume largely devoted to the applied sciences we are moved to insert a few reflections here on the present position of the history of technology, a discipline which has suffered even more perhaps than the history of science itself from that dreadful dichotomy between those who know and those who write, the doers and the recorders. If men of scientific training, with all their handicaps, have contributed far more than professional historians to the history of science and medicine (as is demonstrably true), technologists as a whole have been even less well equipped with the tools and skills of historical scholarship, the languages, the criticism of sources, and the use of documentary evidence. Yet nothing can be more futile than the work of a historian who does not really understand the crafts and techniques with which he is dealing, and for any literary scholar it is hard to acquire that familiarity with things and materials, that sense of possibilities and probabilities, that understanding of Nature's ways, in fact, which comes (in greater or lesser measure) to everyone who has worked with his hands whether at the laboratory bench or in the factory workshop. I always remember once studying some medieval Chinese texts on light-penetration mirrors (thou huang chien), that is to say, bronze mirrors which have the property of reflecting from their polished surfaces the designs executed in relief on their backs. A non-scientific friend was really persuaded that the Sung artisans had found out some way of rendering metal transparent to light-rays, but I knew that there must be some other explanation and it was duly found (cf. Section 26g, 3). The great humanists of the past were very well aware of their limitations in these matters, and sought always, so far as possible, to gain acquaintance with what my friend and teacher, Gustav Haloun, used half-wistfully half-ironically to call the realia. In a passage we have already quoted (Vol. 1, p. 7), another outstanding sinologist, Friedrich Hirth, urged that the Western translator of Chinese texts must not only translate, he must identify, he must not only know the language but he must also be a collector of the objects talked about in that language. The conviction was sound, but if porcelain or cloisonné could (at any rate in those days) be collected and contemplated with relative ease, how much more difficult is it to acquire an understanding of machinery, of tanning or of pyrotechnics, if one has never handled a lathe, fitted a gear-wheel or set up a distillation.

What is true of living humanists in the West is also true of some of the Chinese scholars of long ago whose writings are often our only means of access to the techniques of past ages. The artisans and technicians knew very well what they were doing, but they were liable to be illiterate, or at least inarticulate (cf. the long and illuminating text which we have translated in Section 274, 2). The bureaucratic scholars, on the other hand, were highly articulate but too often despised the rude mechanicals whose...
activities, for one reason or another, they wrote about from time to time. Thus even
the authors whose words are now so precious were often more concerned with their
literary style than with the details of the machines and processes which they mentioned.
This superior attitude was also not unknown among the artists, back-room experts
(like the mathematicians) of the officials' yamen, so that often they were more interested
in making a charming picture than in showing the precise details of machinery when
they were asked to limn it, and now sometimes it is only by comparing one drawing
with another that we can reach certainty about the technical content. At the same time
there were many great scholar-officials throughout Chinese history from Chang Heng
in the Han to Shen Kua in the Sung and Tai Chen in the Chihing who combined a
perfect expertise in classical literature with complete mastery of the sciences of their
day and the applications of these in an artisanal practice.

For all these reasons our knowledge of the development of technology is still in a
lamentably backward state, vital though it is for economic history, that broad meadow
of flourishing speculation. In a recent letter, Professor Lynn White, who has done
as much as anyone else in the field, wrote memorable words with which we fully agree:
'The whole history of technology is so rudimentary that all one can do is to work very
hard, and be happy when one's errors are corrected.' On every hand pitfalls abound.
On a single page of a recent most authoritative and admirable collective treatise, one
of our best historians of technology can first suppose Heron's toy windmill to be an
Arabic interpolation, though the Pneumatica never passed to us through that language,
and a moment later assert that Chinese travellers in +400 saw wind-driven prayer
wheels in Central Asia, a story based on a mistranslation now just 123 years old. The
same authoritative treatise says that Celtic wagons of the 1st century had hubs
equipped with roller-bearings, and we ourselves at first accepted this opinion. We
learnt in time, however, that examination of the actual remains preserved at Copenhagen
makes this highly improbable, and that reference to the original paper in Danish clinches the matter—the pieces of wood which came out from the hub-spaces
when disinterred were flat strips and not rollers at all. We have often been saved from
other such mistakes only by the skin of our teeth, so to say, and it is not in a spirit
of criticism, but rather to demonstrate the difficulties of the work, that we draw
attention to them.

Certain safeguards one can always try to obtain. There is no substitute for actually
seeing for oneself in the great museums of the world, and the great archaeological sites;
there is no substitute for personal intercourse with the practitioners themselves. To be sure the scholarly standard of any particular work must necessarily
depend upon the ground which is covered. Only the specialist using intensive
methods—a Rosen elucidating the tangled roots of ophthalmic lenses or a Drachmann exploring Roman oil-presses—can afford the time to go into a matter au fond and bring truth

\[1\] Truly all the conclusions in the present volume must be regarded as provisional. Faithfully though
we seek to apply the comparative method, our final assessment is often only a bridge built upon wide-
spaced and insecure piers looming out of the mist. A single new and crucial fact can sometimes change
the whole complexion of what seemed a fairly stable pattern. Our successors will doubtless see more
clearly—but how it all happened Allah knoweth best.

\[2\] Lau Yü, VII, xxii.

\[3\] 自翻

\[4\] 孔人行必有我師
moving towards forms of ever greater unity, complexity and organisation. We recognised these invalidating theses as indeed our own, and if we had a door like that of Wittenberg long ago we would not hesitate to nail them to it. No critic has subjected our beliefs to a more acute analysis, yet it reminded us of nothing so much as that letter which Matteo Ricci wrote home in + 1595 to describe the various absurd ideas which the Chinese entertained about cosmological questions.¹ (One), he said, they do not believe in solid crystalline celestial spheres, (Item) they say that the heavens are empty, (Item) they have five elements instead of the four so universally recognised as consonant with truth and reason, etc. But we have made our point.

A decade of fruitful collaboration came to an end when early in 1957 Dr Wang Ling¹ (Wang Ching-Ning²) departed from Cambridge to the Australian National University at Canberra, where he is now Professorial Fellow in Chinese Studies. Neither of us will ever forget the early years of the project, when our organisation was finding its feet, and a thousand problems had to be solved (with equipment much less adequate than now) as we went along. Dr Wang’s partnership was exercised throughout the present volume. The essential continuity of day-to-day collaboration with Chinese scholars was however happily preserved at his departure by the arrival of a still older friend, Dr Lu Gwei-Djen,³ late in 1956. Among other posts, Dr Lu had been Research Associate at the Henry Lester Medical Institute, Shanghai, Professor of Nutritional Science at Ginling College, Nanking, and later in charge of the Field Cooperation Offices Service in the Department of Natural Sciences at UNESCO headquarters in Paris. With a basis of wide experience in nutritional biochemistry and clinical research, she is now engaged in pioneer work for the biological and medical part of our plan (Vol. 6). Probably no single subject in our programme presents more difficulties than that of the history of the Chinese medical sciences. The volume of the literature, the systematisation of the concepts (so different from those of the West), the use of ordinary and philosophical words in special senses so as to constitute a subtle and precise technical terminology, and the strangeness of certain important branches of therapy—all demand great efforts if the result is to give, as has not yet been given, a true picture of Chinese medicine. It is very fortunate that time permits our excavations to commence from the bedrock upwards. At the same time Dr Lu has participated in the revision of the present volume for press, and in certain fields such as the history of the wheelwrights’ art and the history of efficient equine harness has joined another friend, Mr Raphael Salaman, and myself, in active original research outside the field of her own speciality.

A year later (early in 1958) we were joined by Dr Ho Ping-Yü,⁴ then Reader in Physics at the University of Malaya, Singapore. Primarily an astro-physicist by training, and translator of the astronomical chapters of the Chin Shu, he was happily willing to broaden his experience in the history of science by devoting himself to the study of alchemy and early chemistry, helping thus to lay the foundations for the relevant volume (Vol. 5). Such work had been initiated some years earlier by yet another friend, Dr Tshao Thien-Chhin,¹ when a Research Fellow of Caius College, before his return to the Biochemical Institute of Academia Sinica at Shanghai. Dr Tshao had been one of my wartime companions, and while in Cambridge made a most valuable study of the alchemical books in the Tao Tang.⁵ Dr Ho Ping-Yü was able to extend this work with great success in many directions. Although Dr Ho is now Professor of Chinese at the University of Malaya, Kuala Lumpur, it is my earnest hope that he will be able to rejoin us in Cambridge for the final preparation of the volume on chemistry and chemical technology.

It is good to record that already a number of important subsections of both these volumes (5 and 6) have been written. The publication of some of these in draft form facilitates criticism and aid by specialists in the different fields.

Lastly, an occidental collaborator appears with us on the title-page of the first part of this volume, Mr Kenneth Robinson, one who combines most unusually sinological and musical knowledge. Professionally he is an educationalist, and with a Malayan background in teachers’ training, now as Education Officer in Sarawak frequents the villages and long-houses of the Dayaks and other peoples, whose remarkable orchestras seem to him to evoke the music of the Chou and Han. We were fortunate indeed that he was willing to undertake the drafting of the Section on the recondite but fascinating subject of physical acoustics, indispensable because it was one of the major interests of the scientific minds of the Chinese middle ages. He is thus the only participator in this enterprise so far who has contributed direct authorship as well as research activity. Another European colleague, Mr John Combrige, of the Engineering Department of the General Post Office, has greatly added to our understanding of medieval Chinese clockwork, especially by experiments with working models.

Once again it is a pleasure to offer public gratitude to those who have helped us in many different ways. First, our advisers in linguistic and cultural fields unfamiliar to us, notably Prof. D. M. Dunlop for Arabic, Dr Shackleton Bailey for Sanskrit, Dr Charles Sheldon for Japanese, and Mr G. Ledward for Korean. Secondly, those who have given us special assistance and counsel, Dr H. J. J. Winter in medieval optics, Dr Laurence Picken in acoustics, Mr E. G. Sterland in mechanical engineering, the late Dr Herbert Chatley in hydraulic engineering and Cdr. George Naish in nautics. Thirdly, all those whose names will be found in the adjoining list of readers and kind critics of Sections in draft or proof form (p. xli). But only Dr Dorothy Needham, F.R.S., has weighed every word in these volumes and our debt to her is incalculable.

Once again we renew our warmest thanks to Mr Derek Bryan, O.B.E., and Mrs Margaret Anderson for their indispensable and meticulous help with press work, and to Mr Charles Curwen and Mr Ian McMaster for acting as our agents-general with regard to the ever-increasing flood of current Chinese literature on the history and archaeology of science and technics. Miss Muriel Moyle has continued to provide her very detailed indexes, the excellence of which has been saluted by many reviewers.

² 王科安
³ 魯桂珍
⁴ 何丙郁
⁵ 胡天啟
As the enterprise continues, the volume of typing and secretarial work seems to grow beyond expectation, and we have had many occasions to recognise that a good copyist is like the spouse in Holy Writ, precious beyond rubies. Thus we most gratefully acknowledge the help of the late Mrs Betty May, Miss Margaret Webb, Miss Jennie Plant, Miss June Lewis, Mr Frank Brand, Mrs W. M. Mitchell, Miss Frances Boughton, Mrs Gillian Rickaysen and Mrs Anne Scott McKenzie.

The part played by publisher and printer in a work such as this, considered in terms either of finance or technical skill, is no less vital than the research, the organisation and the writing itself. Few authors could have more appreciation of their colleagues executive and executant than we for the Syndics and the Staff of the Cambridge University Press. Among the latter formerly was our friend Frank Kendon, for many years Assistant Secretary, whose death occurred after the appearance of Volume 3. Known in many circles as a poet and literary scholar of high achievement, he was capable of divining the poetry implicit in some of the books which passed through the Press, and the form which his understanding took was the bestowal of infinite pains to achieve the external dress best adapted to the content. I shall always remember how when Science and Civilisation in China was crystallising in this way, he "lived with" trial volumes made up in different styles and colours for some weeks before arriving at a decision most agreeable to the author and his collaborators—and what was perhaps more important, equally so to thousands of readers all over the world.

To the Master and Fellows of the Hall of the Annunciation, commonly called Gonville and Caius College, a family of immediate colleagues, I can offer only inadequate words. I do not know where else conditions so perfect for carrying out an enterprise such as this could be found, a peaceful workshop in the topographical centre of the University and all its libraries, between the President's apple-tree and the Porta Honoris. The daily appreciation and encouragement of every one in the Society helps us to surmount all the difficulties of the task. Nor can I omit meed of thanks to the Head of the Department of Biochemistry and its Staff for the indulgent understanding which they show to a colleague seconded, as it were, to another universe.

The financing of the research work for our project has always been difficult and still presents serious problems. We are nevertheless deeply indebted to the Wellcome Trust, whose exceptionally generous support has relieved us of all anxiety concerning the biological and medical volume. We cannot forbear from offering our deepest gratitude for this to its Scientific Consultant, formerly long its Chairman, Sir Henry Dale, O.M., F.R.S. An ample benefaction by the Bollingen Foundation, elsewhere acknowledged, has assured the adequate illustration of the successive volumes. To Dato Lee Kong-Chian of Singapore we are beholden for a splendid contribution towards the expenses of research for the chemical volume, and Dr Ho's work towards this was made possible by sabbatical leave from the University of Malaya. Here we wish to pay a tribute to the memory of a great physician and servant of his country, Wu Lien-Tê, of Emmanuel College, already Major in the Chinese Army Medical Corps before the fall of the Chhing dynasty, founder long ago of the Manchurian Plague Prevention Service and pioneer organiser of public health work in China. During the last year of his life Dr Wu exerted himself to help in securing funds for our work, and his kindness in this will always be warmly remembered. Some kind well-wishers of our enterprise have now grouped themselves together in a committee of 'Friends of the Project' with a view to securing further necessary financial support, and to our old friend Dr Victor Purcell, C.M.G., who most kindly accepted the honorary secretaryship of this committee, our best appreciation is offered. At various periods during the studies which see the light in these volumes we have also received financial help from the Universities' China Committee and from the Managers of the Ocean Steamship Company acting as Trustees of funds bequeathed by members of the Holt family; for this we record most grateful thanks.
At this point we enter upon the discussion of the wider applications of physical principles in the control of forces and the use of sources of power. It may at first sight be found surprising that this is not preceded by an account of mining and metallurgy in old China. But although metals played so dominant a part in post-Renaissance engineering, this was by no means their role in the Middle Ages, either in East or West. The classification of Mumford\(^\text{a}\) will be remembered—our present 'neotechnic' phase of electricity, nuclear energy, alloys and plastics followed upon a 'palaeotechnic' one in which coal and iron were the keynotes, but before that there had been an enormously longer period, the 'eotechnic' phase. In its Chinese manifestation, this was the age of wood, bamboo, and water, and it lasted until the spread of Renaissance technology over the Asian continent. Of course such a periodisation does not mean that metals were not of great importance in old China; one might instance the social significance of bronze for weapons in the Chou, the refined use of bronze for gear-wheels and crossbow-triggers in the Han,\(^\text{b}\) an age when cast-iron plough-shares were in general use, and the making of steel implements both then and later. In some respects, such as the mastery of iron-casting,\(^\text{c}\) and the first use and knowledge of zinc,\(^\text{d}\) the Chinese were much ahead of Europeans. But most engineering constructions of any large size continued to be mainly of wood and stone.

It will be convenient to defer an account of the chief Chinese books on engineering until our consideration of the various fundamental types of machines.\(^\text{e}\) The literature is distinctly small, however, perhaps mainly because the constructions of artisans, however ingenious, were too often regarded as unworthy the attention of the Confucian literati. Nevertheless, considerable numbers of illustrations have survived from the +11th century onwards (the springtime of printing), and there existed what may be called specific iconographic traditions of engineering drawing, though the draughtsmen or artists evidently did not always clearly understand what it was they were illustrating, and may have thought it beneath their dignity to enquire too closely. On the other hand, a great number of texts, many in the dynastic histories, have also survived.

The difficulty with the pictures (when the veil of scholarly dilettantism is not impenetrable) is that we know where we are technologically, but we cannot always easily get back to the original date of the illustration. Extensive research in Sung editions by persons of engineering as well as sinological competence will be necessary

\(^\text{a}\) (I), p. 109. Two of the words were first introduced by Patrick Geddes. There are, of course, other classifications, such as Leroi-Gourhan's 'rustic'; 'semi-industrial', etc. (I), vol. I, p. 41. The appraisal of some of these by Mumford (4) in a revaluation of his own work is well worth reading.

\(^\text{b}\) See p. 86 below, and Sect. 30e.

\(^\text{c}\) See Sect. 33 and Sect. 36.

\(^\text{d}\) See Sect. 30f and Needham (32).

\(^\text{e}\) See pp. 165 ff., 168 below.
to improve this situation, and even so the limits of what has been preserved may be reached fairly soon. That late pictures may, however, perpetuate correct technological traditions, is strikingly shown by the case of a +17th-century silkicultural book, certain illustrations of which portray with great detail a description in an +18th-century text. Conversely, the difficulty with literary sources alone is that we may have a firm date, which indeed may be quite early, but we are not always sure where we are technologically, either because the description of the mechanism is insufficient, or because there is ground for fearing that the meanings of the technical terms have suffered changes from time to time. The only cure for this is presumably the discovery and analysis of further texts.

Chinese technical literature has sometimes been reproached for a certain vagueness or ambiguity. What weight there is in this depends from this fact that Confucian scholars sometimes had to write about things which did not really interest them, while the technicians themselves, who could really have explained matters, did not write at all. But the opinion of Laufer, set down more than forty years ago, is worth recording.

In studying the same subject (he said) in Chinese and European literature, I find more and more that Chinese literature is not as bad as it is made out to be, even by sinologists, and that European literature is not as good as we like to boast it to be, in comparison with that of Chinese and other nations. In investigating Chinese things, it is safe to consult Chinese accounts in each and every case. In spite of all their drawbacks (which I readily admit), these are simple, plain, matter-of-fact, and to the point, while the corresponding European notes prove in many cases superficial, misleading, or entirely erroneous.

27. MECHANICAL ENGINEERING

Studies of the history of engineering in the Chinese culture-area have been very few, so that those of Chang Yin-Lin (2, 5), Liu Hsien-Chou (1, 4, 5) and Charlie (2, 3) deserve particular gratitude. That of Horwitz (1) already mentioned, which traced some of the illustrations in the T'ien Shu Chi Ch'ing encyclopedia of +1726 to previous European sources, gave a quite one-sided impression which its author redeemed in subsequent papers (6, 7). To these and many others by this notable Austrian historian of technology we shall refer in their place. For tools rather than machines there is the unique and valuable book of Hommel (1) on contemporary traditional Chinese practice. The only companion volume to Hommel (so far as we know) is the recent interesting treatise of Than Tan-Chhiung (1) on traditional Chinese technology, abundantly illustrated with scale drawings. These secondary sources are all of real value. The book of Julien & Champion, though old, remains a classic, but it belongs rather to the realm of metallurgy and chemical technology.

That of Horwitz (1) already mentioned, which traced some of the illustrations in the T'ien Shu Chi Ch'ing encyclopedia of +1726 to previous European sources, gave a quite one-sided impression which its author redeemed in subsequent papers (6, 7). To these and many others by this notable Austrian historian of technology we shall refer in their place. For tools rather than machines there is the unique and valuable book of Hommel (1) on contemporary traditional Chinese practice. The only companion volume to Hommel (so far as we know) is the recent interesting treatise of Than Tan-Chhiung (1) on traditional Chinese technology, abundantly illustrated with scale drawings. These secondary sources are all of real value. The book of Julien & Champion, though old, remains a classic, but it belongs rather to the realm of metallurgy and chemical technology. Laufer (1) on the pottery of the Han dynasty contains unexpectedly copious discussions of certain matters in the history of Chinese engineering. We shall mention other aids, both in Chinese and Western languages, from time to time, but it is worth pointing out that the number of translations of original texts in this field was exceedingly small before we began our work.

The study of tools and the simpler machines borders of course upon the realms of anthropology, raising questions which can only be answered by comparative studies of the technologies of all peoples in the eotechnic stage. Leroi-Gourhan, whose book on comparative technology (1) is the most interesting of the kind which we have found, points out how illogical the conventional categories are, indeed how unconsciously Eurocentric, when traditional Chinese medicine, for instance, has been treated as part of ethnography, while the parallel material of our own Middle Ages has been accepted as part of the true history of medical science. European music, however, primitive, is music—all other music is anthropology. In fact, the technical arts of a people such as the Chinese blend not only into those of other, neighbouring, peoples at much more archaic stages of development, but also, like our own, going in time, connect with the tools and customary operations of prehistoric man. Hence arise all problems of invention and diffusion, such as are considered in the classical books of Mason (2) and Sayce (1). To these processes of invention and the adoption or neglect of inventions, especially in relation to the social milieu, we shall return in

27. MECHANICAL ENGINEERING

Studies of the history of engineering in the Chinese culture-area have been very few, so that those of Chang Yin-Lin (2, 5), Liu Hsien-Chou (1, 4, 5) and Charlie (2, 3) deserve particular gratitude. That of Horwitz (1) already mentioned, which traced some of the illustrations in the T'ien Shu Chi Ch'ing encyclopedia of +1726 to previous European sources, gave a quite one-sided impression which its author redeemed in subsequent papers (6, 7). To these and many others by this notable Austrian historian of technology we shall refer in their place. For tools rather than machines there is the unique and valuable book of Hommel (1) on contemporary traditional Chinese practice. The only companion volume to Hommel (so far as we know) is the recent interesting treatise of Than Tan-Chhiung (1) on traditional Chinese technology, abundantly illustrated with scale drawings. These secondary sources are all of real value. The book of Julien & Champion, though old, remains a classic, but it belongs rather to the realm of metallurgy and chemical technology. Laufer (1) on the pottery of the Han dynasty contains unexpectedly copious discussions of certain matters in the history of Chinese engineering. We shall mention other aids, both in Chinese and Western languages, from time to time, but it is worth pointing out that the number of translations of original texts in this field was exceedingly small before we began our work.

The study of tools and the simpler machines borders of course upon the realms of anthropology, raising questions which can only be answered by comparative studies of the technologies of all peoples in the eotechnic stage. Leroi-Gourhan, whose book on comparative technology (1) is the most interesting of the kind which we have found, points out how illogical the conventional categories are, indeed how unconsciously Eurocentric, when traditional Chinese medicine, for instance, has been treated as part of ethnography, while the parallel material of our own Middle Ages has been accepted as part of the true history of medical science. European music, however, primitive, is music—all other music is anthropology. In fact, the technical arts of a people such as the Chinese blend not only into those of other, neighbouring, peoples at much more archaic stages of development, but also, like our own, going in time, connect with the tools and customary operations of prehistoric man. Hence arise all problems of invention and diffusion, such as are considered in the classical books of Mason (2) and Sayce (1). To these processes of invention and the adoption or neglect of inventions, especially in relation to the social milieu, we shall return in

27. MECHANICAL ENGINEERING

Studies of the history of engineering in the Chinese culture-area have been very few, so that those of Chang Yin-Lin (2, 5), Liu Hsien-Chou (1, 4, 5) and Charlie (2, 3) deserve particular gratitude. That of Horwitz (1) already mentioned, which traced some of the illustrations in the T'ien Shu Chi Ch'ing encyclopedia of +1726 to previous European sources, gave a quite one-sided impression which its author redeemed in subsequent papers (6, 7). To these and many others by this notable Austrian historian of technology we shall refer in their place. For tools rather than machines there is the unique and valuable book of Hommel (1) on contemporary traditional Chinese practice. The only companion volume to Hommel (so far as we know) is the recent interesting treatise of Than Tan-Chhiung (1) on traditional Chinese technology, abundantly illustrated with scale drawings. These secondary sources are all of real value. The book of Julien & Champion, though old, remains a classic, but it belongs rather to the realm of metallurgy and chemical technology. Laufer (1) on the pottery of the Han dynasty contains unexpectedly copious discussions of certain matters in the history of Chinese engineering. We shall mention other aids, both in Chinese and Western languages, from time to time, but it is worth pointing out that the number of translations of original texts in this field was exceedingly small before we began our work.

The study of tools and the simpler machines borders of course upon the realms of anthropology, raising questions which can only be answered by comparative studies of the technologies of all peoples in the eotechnic stage. Leroi-Gourhan, whose book on comparative technology (1) is the most interesting of the kind which we have found, points out how illogical the conventional categories are, indeed how unconsciously Eurocentric, when traditional Chinese medicine, for instance, has been treated as part of ethnography, while the parallel material of our own Middle Ages has been accepted as part of the true history of medical science. European music, however, primitive, is music—all other music is anthropology. In fact, the technical arts of a people such as the Chinese blend not only into those of other, neighbouring, peoples at much more archaic stages of development, but also, like our own, going in time, connect with the tools and customary operations of prehistoric man. Hence arise all problems of invention and diffusion, such as are considered in the classical books of Mason (2) and Sayce (1). To these processes of invention and the adoption or neglect of inventions, especially in relation to the social milieu, we shall return in
Section 49 on limiting factors. Meanwhile the interesting work of Schuhli (1) on the social philosophy of engineering may be strongly recommended as companion reading for what will follow in the present Section.

In the field of biography a good deal of spade-work has been done in China. Arising out of the activities of the Society for Research in the History of Chinese Architecture, a valuable series of collections of short lives of technologists of all kinds, not only builders, has been published. These are due to the work of Chu Chhi-Chhien and his collaborators. More recently there has been a popularisation of such knowledge in the small book of Yen Yü (1) which deals with fifteen engineers and technicians, and eleven scientific men, from antiquity onwards. A similar popular work by Chhien Wei-Chhang (2) on the history of science and engineering in China devotes five chapters to the latter. Although these productions are of a quite elementary character they could profitably be read by specialists in the traditional sinological fields.

Since the greatest works on the history of science, such as that of Sarton (1) and Thorndike (1), are relatively weak on the side of engineering and technology, we have had to rely for the comparative background of Chinese mechanics on other more specialised books. When the first draft of this Section was made we did not have the advantage of the collective History of Technology edited by the doyen of British history of science, the late Charles Singer, with a band of collaborators, and written by many individual authors. In framework it is of course confined (albeit so compendious) to the history of technology in Europe and the ancient civilisations of the Near East, but the implications of this were recognised and explained by Singer (10) in a special article at the end of the second volume. The rich content of the whole work has fortunately been available to us in the later stages. A parallel series of volumes, all due to the pen of one writer, Forbes (10-15), has also been at our disposal. These sometimes touch upon East Asian developments and transmissions and sometimes omit them, in neither event always felicitously, however. The less recent collective work edited by Uccelli (1) is on a large scale and excellently illustrated, but very deficient in bibliography and source references. Similar comments apply to the important work of Feldhaus (2), for which some of his other books (7, 8, 9) were preparations or abridgments. At the other extreme of size are the small books of Ducassé (1) and Lilley (3), which can serve only as preliminary guides, though offering interesting points of view. Another contemporary book of repute is that of Forbes (3); it contains much of interest but lacks reliability on all non-European origins, which indeed it seems deliberately to minimise. We are however much indebted to Forbes for his useful bibliography (1) of the literature on the history of technology in West European languages. The best one-volume history of engineering in the Western world probably remains that of Usher (1), but Beckmann's old book on inventions (1) is by no means superseded. Perhaps the most outstanding and intellectually satisfying contribution known to us is the general and systematic history of machinery by T. Beck (1), which covers the whole period from the beginning of the Alexandrians to the end of the Renaissance, providing a large number of very clear diagrams. This work, unfortunately scarce, is quite invaluable, and nothing which has appeared during the past fifty years has in any way replaced it.

For engineering in European antiquity the chief aids are well enough known, including a small but brilliant work by a great scholar, Diels (1); a voluminous treatise in four volumes by Blümner (1); and, intermediate in size, the lively but not too reliable book of Neuburger (1). In addition there are the comments of all the editors of writers such as Heron (e) or Vitruvius (a), and much valuable secondary literature. On ancient Egyptian industries one turns to the useful book of Lucas (1). Among older works, that of A. Espinas (1) is sociological and speculative, while that of Vierendeel (1) attempts to cover modern as well as ancient times, but not with success. The new book of F. Klemm (1) is here much better; it differs from all others in that it is a florilegium of relevant quotations dating from occidental antiquity to the post-Renaissance period.

For the history of engineering and technology in medieval Europe, important both for comparisons with Chinese eotechnic developments, and for the acceptance of inventions from the East by the West, four outstanding memoirs come to mind, those of Bloch (3), de Noëttes (3), Lynn White (1)' and Stephenson (1). The last-named, like that of Horwitz (3), is based on illustrations in a famous MS. of +1023 (cf. Amelii, 1), the De Rerum Naturis of Harbanus Maurus (+770 to +855), founder of the famous school at Fulda in Germany. Gille (4, 11) has essayed general reviews of the technological developments in Europe between +1100 and +1400, and has devoted a good paper (12) to the +13th-century military engineers of Germany, supplementing thus Berthelot's classical descriptions (4, 5, 6). On Leonardo da Vinci and his time the studies of Uccelli (2), Gille (3) and Hart (1, 2, 3, 4) have proved helpful. Concerning the great Renaissance books on machinery, the enquirer may find help in the works

1. They draw upon a wide variety of literary sources including of course the biographies of technologists in the official dynastic histories, and their abridgments in TSSC; Khan hsiung chien, ch. 5. The first six instalments of the register were prepared by Chu Chhi-Chhien & Liang Chhi-Hsiung (4-6), who were joined by Liu Ju-Lin in the seventh. The latter one bears the names of Chu Chhi-Chhien & Liu Yen-Chen (1, 4).
2. It is interesting to note that in 1953 these books were reaching a circulation of nearly 100,000 copies. Still greater audiences are attained by the most popular books such as the little pictorial introduction of Ho Chi-Mei & Jui Kuang-Thing (1), which runs over the whole history of technology in the simplest terms, giving due place and part throughout to Chinese inventions and discoveries, but drawing largely also upon the European technological classics of all periods. Such productions must of the greatest value in educating the rural masses of China to play their part in the modern world.
3. Singer, Holmyard, Hall & Williams (1).
5. A new edition, revised and enlarged, appeared in 1954. Now we have also Burritt (1). The English publishers of this qualified for the censure of the republic of letters, since they issued the translation with a drastically abbreviated index and the total omission of the bibliographies appended to each chapter, the general bibliography, and the table of sources of the illustrations.
6. E.g. Woodcroft (1).
7. E.g. Morgan (1); Granger (1).
8. Such as the papers of T. Beck (4, 5, 9); Gille (5), and especially Drachmann (3, 7, 9).
9. We must regret that Professor Lynn White's Medieval Technological and Social Change (7), with all its valuable new insights and information, appeared too late to help us in our surveys. But the justice which he does to Asian contributions (as also in 8, 9) is highly gratifying. For the same reason Professor Liu Hsien-Chou's History of Chinese Engineering Inventions (8), which contains some interesting material not previously published, could not be taken into account by us.
10. Cf. Sarton (1), vol. 1, p. 555. Other great medieval Western figures also have their modern compatriots: Theodore Michael; Hasting (3), Haywood & Smith (1) for +13th-century Theophrastus; Lassau & Darcel (1) and Hahnlosen (1) for +14th-century Villard de Honneecourt.
11. See further, pp. 91, 110, 113, etc., below. On Guido da Vigevano see Hall (3).
of Taenzler (1), Davison (1), Gille (6) and Parsons (2), as well as in the fundamental and systematic account of T. Beck (1). Useful albums of late medieval and Renaissance technological illustrations are now coming forward (e.g. that of Schmithals & Klemm, 1). Another of Gille’s reviews (13) takes up the engineering problems specific to the + 17th century. As for the history of wood-work in building and other branches of technology nothing surpasses the treatise of Moles (1).

Works on the history of engineering in modern times are available in even greater abundance, though the level of scholarship tends to be lower. It is interesting sometimes to follow through in them principles which have been found to originate in cotechnic China. But for tracing the late history of engineering and technology, obsolete textbooks are often more useful than up-to-date ones—containing as they do informative material which was afterwards omitted; hence the value of John Harris’s Lexicon Technicum of + 1708, or Andrew Ure’s early + 19th-century Dictionary of Arts, Manufactures and Mines. We have already long been referring in this book to the encyclopaedia of the history of technology compiled by Feldhaus (1); a unique work, if perhaps more valuable for the excellence and abundance of its illustrations than for the accuracy of its text. The treasury of Feldhaus has been extended, but not at all replaced, by the encyclopaedia of Uccelli (3). It is also very useful to have at hand the chronological register of inventions and discoveries put together by Darmstädter (1).

In quite a different category to any of the foregoing, but not to be overlooked for our purpose, are the books by Western engineers who have themselves worked and travelled in China. They form a very considerable literature, but here we need only mention such examples as that of Parsons (1) with its interesting illustrations, and the more thoughtful description of Esterer (1). Others will be drawn upon as need arises. Related to these, and not at all irrelevant to the present subject, are the treatises on the industries of Japan, Korea, Indo-China, and other neighbouring cultures, the majority of which seem to be by Western students. This completes the account of the comparative aids to the investigation of the story of Chinese engineering and technology which it seemed desirable to include by way of introduction.

When we trace it back far enough, the history of technology can be seen to originate in the famous + 16th- and + 17th-century literary quarrel between the supporters of the ‘Ancients’ and the ‘Moderns’. Hardly anyone in the Middle Ages would have noticed that technology had a history, but at the Renaissance it gradually dawned on historians that the ancient Romans did not write on paper, knew nothing of printed books, and used no collar harness, spectacles, explosive weapons or magnetic compasses. The disquiet caused by this realisation was partly the occasion of the controversy, but took its place in an important aspect of the inevitable clash between the left-hand side of the allegorical picture represents the achievements of the ancient West, but they are placed under the sign of the moon. Beside the toppling obelisk of Roman law, a cherub holds the winged skull of classical learning and blows the bubbles of empty Greek or scholastic philosophy. On the right, in contrast, the sun shines brightly on the achievements of the modern world, with its discoveries of the exotic, strange peoples and strange craft. The cherub at the top, surveyed by Janus’ youthful face, holds up the flaming heart of new inspiration, while at the bottom panels display the non-European arts of gunpowder and typography.
the humanistic polymaths and the experimental philosophers. Among the protagonists of the Moderns, Jerome Cardan in +1550 signalled the compass, printing and gunpowder as three inventions to which 'the whole of antiquity has nothing equal to show'.a The same argument was urged by Jean Bodin sixteen years later, in his rejection of the theory of the 'Golden Age' and the belief in the degeneration of man.b Francis Bacon gave it its most eloquent expression in +1620.c Few writers at that time, and few historians later,d recognised clearly the non-European origin of the three inventions, or drew from this fact its full implications. But the result was a new branch of learning and a literature still today interesting to read, in which the origins of these new and disturbing discoveries were sought for.

Here we have space to mention only three as representative out of many books, first Polydore Vergil's e De Rerum Inventoribus, first issued in +1499 but reproduced in a multitude of editions, then Guido Panciroli's f bulky Rerum Memorabilium of +1599 with its English translation of +1715, and lastly Thomas Powell's g slight but amusing Humane History of most Manual Arts (+1661). Beckmann was, as it were, the last of this tradition, and at the same time the first of the modern historians of technology. To visualise the new aspects of human knowledge which they valued, we may glance at one of Panciroli's title-pages (Fig. 351). Here the achievements of Greece and Rome are represented on the left, with a little vignette below of the light shining in darkness, but on the right the new and opulent Far East and Far West come forward in the person of an American Indian with a pigtail, behind whom we see palm-trees and lateen sails. Below, significantly, pride of place is given to the printing-press and to a cannonade. But perhaps the most striking of all the symbolical pictures of this period is the title-page which Johannes Stradanus h prefixed to his series of engravings entitled Nova Reperta (New Discoveries), first issued about +1585, and completed by +1638. We reproduce it here in Fig. 352. It lists the great new discoveries and inventions in the following order: (1) America, (2) the magnetic compass, (3) gunpowder weapons, (4) the printing-press, (5) the mechanical clock, (6) guaiacum, i (7) distillation, (8) silk, and (9) the stirrup. We know now that no less than six of these (2, 3, 4, 5, 8, 9) were directly derived, at the very least by stimulus diffusion, j from

a De Substitutitate, bk. 2.
b Methodus ad fasiliem Historiarum Cognitionem, ch. 7, pp. 359ff.
c Novum Organon, bk. 1, aphorism 129; Ellis & Spedding ed. p. 300. The passage has already been quoted in full; Vol. I, p. 19.
d Even Bury () passed over in silence the fact that the cardinal inventions cited by Cardan, Bodin, Bacon and so many others, were all of Chinese origin.
g Welsh writer, c. +1572 to +1635 (?). Bibliography in John Ferguson (2), vol. 1, pt. 3.
h Jan van der Street, a Fleming from Bruges (+1534 to +1605), who lived most of his life in Florence. His technological illustrations have been republished and edited by Dibner (2).
i The resinous waxy wood of an American tree, Guaiacum officinale, of great repute in the +16th century as lignum vitae or Holy Wood for the treatment of syphilis (cf. da Orta (1), ed. Markham, pp. 386ff.). Any results were probably due to its irritant diuretic and purgative effects (Sollmann (1), p. 692). But it proved to be useful for making gear-wheels and bearings (cf. p. 499 below).
j See Vol. I, pp. 244ff., and on the specific topics, Sects. 261, 30, 32, 271 (pp. 440ff. below), and 31.
A few words may not be out of place here regarding the origins of the terms used for engines in Western languages and in Chinese. To our minds, the word 'engine' has come to have so vivid and precise a meaning that it is hard at first to remember that it derives from that quality of cleverness or ingenuity which is (or was thought to be) inborn in certain people—"ingenium", indwelling genius, innately generated. Since derivatives of these roots were already in common Roman usage for expressing qualities of wit, craft and skill, it is not surprising that 'ingeniarius', as a term in the more restricted sense, is found in Europe with increasing frequency from the 17th century onwards. Not till the 18th was it freed from its primary military connotation. The course of events in China was not quite parallel with this.

From the earliest times the word kung¹ implied work of an artisanal character, technical as opposed to agricultural. This is perpetuated in the modern term for engineering, hang ch'eng²; the second of the two characters having originally meant measurement, dimension, quantity, rule, examination, reckoning, etc. Other old words such as chi³ (originally the loom, the machine par excellence) and ten⁴ (originally lighting) came in the course of time to do duty for mechanical and electrical devices respectively. But none of their combinations, as applied to persons, is even medieval. The really old term for artisan-engineer was chuang⁵ in which an axe or the technical-work character is set in what may be a box (K-741), but more probably is a carpenter's square (chi⁶ 7). One oracle-bone form of this (K-954) actually shows a man holding a carpenter's square. The word kung itself also derives from a drawing of this instrument. It is safe to conclude that in Chinese culture, primarily etonic as it was, engineering work par excellence was wood-work. The Chou Li⁷ calls master-craftsmen Kuo Kung.⁸

This is not the whole of the story, however. Technical ability which was particularly skilful and admirable was called chihiao⁹ (K-126).¹⁰ The right-hand radical here is interesting because it is related to a number of other forms in which the general meaning is that of 'breathing-out'. Alone, as khaa¹¹ it means, according to the Shou Wen, to sob; but much more familiar is the terminal expiratory exhalatory particle used so much in Chou and early Han poetry, kai.¹² Some relatives, such as hao¹³,¹⁴ to call out,

An elaborate treatment has been given by Schimank (1). "E Strash (1), pp. 131, 133; Lynn White (9), p. 150. "Allahsh ingenior", London, +1527; Ballman (1), p. 11. ² Cf. the Fang Chh'ung¹⁵ chapter of the Chou Cheng Kuan Shu, which deals with certain forms of calculation; cf. Vol. 3, p. 26 above. ³ The most classical expression for a machine is a 'strange contrivance' (ochhi chia). Another old term is choa chih, or sometimes ochi chih. These latter phrases have a significant social background. ⁴ For example, the Hsi Chung T'ung Chih refers to Ting Huan (see below, p. 233) as ochia chih¹⁶, and the San Kuo Chih calls Ma Chih (see below, p. 39) a ming chih.¹⁷

² See Sect. 29 below.
³ See Sect. 32 below.
⁴ Stradanus' own historical attributions are interesting. He allotted the compass to Italy and the printing-press and gunpowder to Germany in conventional style. It is perhaps characteristic of the Europocentric bias of historians of technology that not a word is said in his treatise of Chinese grinding (cf. Vol. 3, pp. 667ff.), apart from milling techniques, which we shall discuss in detail below (pp. 183ff.), we shall meet with grinding machines proper on a number of occasions, e.g. in connection with the generally recognised earliest occurrence (+ 9th century) of the crank in Europe (p. 112), or the oldest illustration of a driving-belt (+15 century) in that culture (p. 102). In this of course he was quite right, as we may see in the monographs of On Chou and Woodbury (3).
⁶ Naturally other streams joined to form this literature, e.g. the Greek and Roman traditions of legendary inventors and culture-heroes. On this cf. the monograph of Kleinhanther (1). See also Vol. 1, pp. 51ff., and below, pp. 42ff.
⁷ See Sectis Scientiae, ed. Owen, ch. 22.
⁸ Cf. the Fang Chh'ung¹⁵ chapter of the Chou Cheng Kuan Shu, which deals with certain forms of calculation; cf. Vol. 3, p. 26 above.
⁹ The most classical expression for a machine is a 'strange contrivance' (ochhi chia). Another old term is choa chih, or sometimes ochi chih. These latter phrases have a significant social background. ⁴ For example, the Hsi Chung T'ung Chih refers to Ting Huan (see below, p. 233) as ochia chih¹⁶, and the San Kuo Chih calls Ma Chih (see below, p. 39) a ming chih.¹⁷

² See Sect. 29 below.
³ See Sect. 32 below.
⁴ Stradanus' own historical attributions are interesting. He allotted the compass to Italy and the printing-press and gunpowder to Germany in conventional style. Silk had come from 'a city', Serinda (cf. Vol. 1, p. 285, and Sect. 31), and he thought it so important that he added six further engraved plates on it under the title Vermiss Sacris. Stradanus then strangely denied the water-mill to Western antiquity, and also (with justice this time) the windmill, though he did not know its Persian home. Another technique which he denied to Western antiquity was the polishing of armour by power-driven wheels. In this of course he was quite right, as we may see in the monographs of Schroeder (1) and Woodbury (3) on the history of grinding machinery. Apart from milling techniques, which we shall discuss in detail below (pp. 185ff.), we shall meet with grinding machines proper on a number of occasions, e.g. in connection with the generally recognised earliest occurrence (+ 9th century) of the crank in Europe (p. 112), or the oldest illustration of a driving-belt (+15 century) in that culture (p. 102). It is perhaps characteristic of the Europocentric bias of historians of technology that not a word is said in these works on the outstanding example of ancient and medieval achievement in mechanical grinding—the jade-cutting steel discs of Chinese antiquity (cf. Vol. 3, pp. 667ff.). An engraving by Israel van Meckeen, c. 1485, is accepted as the first clear evidence of a vertical grinding-wheel with treadle and crank, but this probably holds good only for Europe, for as we shall see, all the components were either as old, or older, in China. The first powered grinding-wheels are depicted in Leonardo, but we do not know whether they were actually built and used in his time; in any case they become common in Europe with increasing frequency from the +16th onwards. Good drawings are in Zonca (+1641), pp. 33, 56, 59. The history of grinding machinery is of particular interest because is it so closely connected with the development of means for holding the work against the wheel and of guiding their relative motions mechanically. When modern grinding machines intended for obtaining precise shapes, rather than for massive abrasion, sharpening or polishing, developed in the 19th century they could take advantage of all the work that had been done on the lathe—its strong bed, stocks, chucks, swivel tables and lead screws.

But none of their combinations, as applied to persons, is even medieval. The really old term for artisan-engineer was chuang⁵ in which an axe or the technical-work character is set in what may be a box (K-741), but more probably is a carpenter's square (chi⁶ 7). One oracle-bone form of this (K-954) actually shows a man holding a carpenter's square. The word kung itself also derives from a drawing of this instrument. It is safe to conclude that in Chinese culture, primarily etonic as it was, engineering work par excellence was wood-work. The Chou Li⁷ calls master-craftsmen Kuo Kung.⁸

This is not the whole of the story, however. Technical ability which was particularly skilful and admirable was called chihiao⁹ (K-126).¹⁰ The right-hand radical here is interesting because it is related to a number of other forms in which the general meaning is that of 'breathing-out'. Alone, as khaa¹¹ it means, according to the Shou Wen, to sob; but much more familiar is the terminal expiratory exhalatory particle used so much in Chou and early Han poetry, kai.¹² Some relatives, such as hao¹³,¹⁴ to call out,

⁶ Naturally other streams joined to form this literature, e.g. the Greek and Roman traditions of legendary inventors and culture-heroes. On this cf. the monograph of Kleinhanther (1). See also Vol. 1, pp. 51ff., and below, pp. 42ff.
are still in common use. The semantic significance of the term for engineering genius in Chinese, therefore, would be identical with that of Latin, but expressed in the opposite way, not emphasising that genius which was born in, but that which was manifested and breathed out.

Sometimes artisans and engineers were simply called 'makers' or 'doers'. The former verb, tsao, is used for constructors of armillary spheres or seismographs, such as Chang Heng (cf. Vol. 3, p. 527 above); while the title Chiang Tso, Commander of the Builders (lit. Makers or Doers), occurs as early as the Chhin, for officials in charge of artisans and workshops. Tsao has a strongly creative undertone, implying invention or innovation. Tso is more executive and organisational, as in the title common later, Chiang Tso Ta Chiang, Arch-Craftsman and Commander of the Builders.

Thus besides the semantic contrasts noted above, the associations of the Chinese terms for engineers and artisans seem always to have been more civilian and less military than those of the ingeniiarii, 'ingeniarii' and 'ingynours' of the West.

(2) ARTISANS AND ENGINEERS IN FEUDAL-BUREAUCRATIC SOCIETY

At the beginning of the Section on astronomy it was necessary to say a good deal about the 'official' character of that science in China. The astronomer (also a State astrologer) was lodged in part of the imperial palace, and the Bureau to which he belonged was an integral part of the civil service. To some extent, and on a lower plane, artisans and engineers also participated in this bureaucratic character, partly because in nearly all dynasties there were elaborate Imperial Workshops andArsenals, and partly because, during certain periods at least, those trades which possessed the most advanced techniques were 'nationalised', as in the Salt and Iron Authorities under the Former Han. We shall also see later (p. 32) that there was a tendency for technicians to gather around the figure of one or another prominent official who encouraged them, as his personal followers.

In all the preceding discussions of this book, where philosophers, princes, astronomers or mathematicians were mainly concerned, we have been dealing exclusively with the educated part of the Chinese population. But now we reach a turning-point in the role of the technical workers in feudal-bureaucratic society seems therefore indispensable here. This belongs, it is true, to the 'social background' which Sect. 48 will study, but we find it irresistibly obtruding itself here as part of the foreground. It is generally allowed that the most important document for the study of ancient Chinese technology is the Khao Kung Chi (Artificers' Record) chapter of the Chou Li (Record of the Institutions lit. Rites) of the Chou Dynasty. Though the book in general is a Han compilation, it is supposed to report traditions which came down from the Warring States period (e.g. ~4th century), but whether this is true also of the 'Artificers' Record' has been harder to say. All the ancient commentators agree that the original text of that part of the Chou Li which described the activities of the Minister of Public Works (Sau Khung), whose operations were supposed to belong to the winter season, was lost at the beginning of the Han. The substitute for it which now forms the Khao Kung Chi was collected by Prince Hsien of Ho-Chien (Li T'ê) (d. ~130), and must have necessitated an entourage of technicians rather more practical than those who surrounded the Prince of Huai-Nan. Though some have thought that the present text was written by Liu Hsin late in the ~1st century, internal evidence is against such a dating. Kuo Mo-Jo (1) noticed that the Khao Kung Chi mentions products or crafts of all the major States except Chhi, and that some of the weights and measures to which it refers were characteristic of Chhi. Yang Lien-Sheng (2) found three places where expressions in the dialect of Chhi occur. The suggestion thus arises that the document stems from an official compilation of the State of Chhi in the Warring States period. This would agree very well with the known eminence of that country in all kinds of techniques and sciences. It would also raise an interesting comparison with the Kuan Tsu book, a text which is now thought to have been put together by the Chi-Hsia Academicians of Chhi.

In any case, there is no doubt that although the text of the Khao Kung Chi took its present form in the early Han, it embodies a great deal of earlier date. Many commentators have written it as if it had been written at the beginning of the Han; but the most important those of Chung Chungi about ~75, Chen Hung (3) about ~150, and Chia Kung-Yen (4) during the ~4th century. All are collected in the Chhin Ting Chou Kuan 1 Su; the imperial edition of the Chou Li was collected in ~1748. Among the directors of this project was Fang Pao (5), who devoted a special study to the 'Artificers' Record', the Khao Kung Hsi I. (6) The standard emendation of the text itself is due to Sun 1-Jang (3). In ~1746

could have done nothing, and not seldom it was from them that ingenious inventors and capable engineers rose up to leave particular names in history. A brief discussion of the role of the technical workers in feudal-bureaucratic society seems therefore indispensable here. This belongs, it is true, to the 'social background' which Sect. 48 will study, but we find it irresistibly obtruding itself here as part of the foreground. It is generally allowed that the most important document for the study of ancient Chinese technology is the Khao Kung Chi (Artificers' Record) chapter of the Chou Li (Record of the Institutions lit. Rites) of the Chou Dynasty. Though the book in general is a Han compilation, it is supposed to report traditions which came down from the Warring States period (e.g. ~4th century), but whether this is true also of the 'Artificers' Record' has been harder to say. All the ancient commentators agree that the original text of that part of the Chou Li which described the activities of the Minister of Public Works (Sau Khung), whose operations were supposed to belong to the winter season, was lost at the beginning of the Han. The substitute for it which now forms the Khao Kung Chi was collected by Prince Hsien of Ho-Chien (Li T'ê) (d. ~130), and must have necessitated an entourage of technicians rather more practical than those who surrounded the Prince of Huai-Nan. Though some have thought that the present text was written by Liu Hsin late in the ~1st century, internal evidence is against such a dating. Kuo Mo-Jo (1) noticed that the Khao Kung Chi mentions products or crafts of all the major States except Chhi, and that some of the weights and measures to which it refers were characteristic of Chhi. Yang Lien-Sheng (2) found three places where expressions in the dialect of Chhi occur. The suggestion thus arises that the document stems from an official compilation of the State of Chhi in the Warring States period. This would agree very well with the known eminence of that country in all kinds of techniques and sciences. It would also raise an interesting comparison with the Kuan Tsu book, a text which is now thought to have been put together by the Chi-Hsia Academicians of Chhi.

In any case, there is no doubt that although the text of the Khao Kung Chi took its present form in the early Han, it embodies a great deal of earlier date. Many commentators have written it as if it had been written at the beginning of the Han; but the most important those of Chung Chungi about ~75, Chen Hung (3) about ~150, and Chia Kung-Yen (4) during the ~4th century. All are collected in the Chhin Ting Chou Kuan 1 Su; the imperial edition of the Chou Li was collected in ~1748. Among the directors of this project was Fang Pao (5), who devoted a special study to the 'Artificers' Record', the Khao Kung Hsi I. (6) The standard emendation of the text itself is due to Sun 1-Jang (3). In ~1746

The word chung means 'empty' and here originally signified empty time, i.e. 'leisure' of the people, a surcease from their agricultural employment, during which they were to be mobilised for other purposes.

~ Cf. Vol. 1, p. 95. The great parallel was of course the compilation of the Li Shih Chih-Hui Chih in the ~3rd century by the scholars and technicians of Chhin (cf. Vol. 3, p. 199).
Tai Chen produced a brilliant critical archaeological analysis of the technology in the *Chou Li*, the *Kiao Kung Chi Thu*. His example was followed by Chiheng Yao-Thien in his *Kiao Kung Chiahuang Wu Hsiao Chi* (Brief Notes on the Specifications), and in his *Thung I Lu*. Other writers made studies of particular sections in the *Kiao Kung Chi*, e.g. that of Juan Yuan (2) on the procedures of the wheelwrights and cartwrights.

The opening paragraphs of the *Kiao Kung Chi* are so interesting that they are worth giving in full.

The State has six classes of workers, and the hundred artisans form one of them. There are those who sit to deliberate upon the Tao (of society) and there are others who take action to carry it on. Some examine the curvature, the form, and the quality (of natural objects) in order to prepare the five raw materials, and to distribute them for making instruments (useful for) the people. Others transport things rare and strange from the four corners (of the world) to make objects of value. Others again devote their strength to augment the products of the earth, or to (weave tissues from) silk and hemp.

Now it is the princes and lords who sit to deliberate upon the Tao, while carrying it into execution is the duty of ministers and officials. Examining the raw materials and making the useful instruments is the work of the hundred artisans. Transportation is the affair of merchants and travellers, tilling the soil belongs to the farmers, and weaving is the office of women workers.

In the land of Yüeh, there are no special makers of hoes (po) but every man knows how to make one. In the land of Yen, there are no special makers of hide armour (kan), but every man knows how to make it. In the land of Chhin, there are no special makers of pikestaffs (iu), but every man can make them. Among the nomads (Hu) the bow and the chariot are necessities, and all men there are skilled at making them.

Tools and machines were invented by men of wit. Metal melted in the Huai River, it turns into the bitter-fruited orange (chih chih), and all men there are skilled at making them. In this case the season has not been suitable, or the earth has been transplanted to the north. But with good material and good workmen it still may happen that the product is not good; in this case the season has not been suitable, or the chih of the earth has not been obtained.

Take, for example, the sweet-fruited orange (chih chih), when it is transplanted to the north of the Huai River, it turns into the bitter-fruited orange (chih chih). The crested mynah (bud5) never comes north of the Chi River. And badgers (ho5) die if they cross the Wén. This is natural because of the chih of the earth.

People prize the knives of Chêng, the axes of Sung, the pen-knives of Lü, and the double-edged swords of Wu and Yüeh. No other places can make these things so well. This is natural because of the chih of the earth. So also the best horn comes from Yen, the best hardwood from Chêng, the best arrow-wood from Fêng-Hu, and the best gold and tin from Wu and Yüeh. These are the natural virtues of these materials.

Heaven has its seasons of production and destroying: trees and plants a time to live and a time to die. Even stone crumbles (li), and water freezes or flows. These are according to the natural seasons of heaven.

Generally speaking, wood-working comprises seven operations, metal-working six, treatment of skins and furs five, painting five and polishing five, modelling in clay two. Metal-work includes forging (chu4), smelting (yeh4), bell-founding, making measures, containers, agricultural implements and swords. Work with skins includes drying, making hide armour, drums, leather and furs. Painting includes embroidery in one or more colours, the dyeing of feathers, basketry, and silk cleaning. Polishing includes the working of jade, the cutting and testing of arrows, sculpture and the making of stone-chimes. Modelling in clay includes the art of the potter and that of the tile-moulder.

This last was the art most esteemed by the dynasty of Shun. The Haia gave first place to the art of house-construction, and that of the Yin (Shang) preferred the art of making vessels. But that of the Chou set highest the work of chariot body builders.

[The writer then accepts upon a discussion of chariots.]

By way of remembering where we are, it be noted in passing that this document was probably written, in consciously archaic form, some time in the 2nd century, but referring to the early part of the 3rd and containing whatever reminiscences could be collected from still earlier periods. The first half of the 3rd century was the time of activity of Euclid, and the beginnings of the Museum at Alexandria; Megasthenes was carrying out his diplomatic mission in India, and Berossos was transmitting as much as possible of Babylonian astronomy to the Greeks. In engineering, the Pharos of Sostratus was more or less contemporary with the Great Wall of Chhin Shih Huang Ti.
The passage shows something of the characteristic Chinese love of arbitrary systematisation, but is clearly based largely on fact, and correlative thinking appears only in the eleventh paragraph, where the favourite techniques of the several dynasties are mentioned. The passage opens with a notable statement of the distinction between manual work (shu) and mental (hsiieh), and goes on (in the fourth paragraph) to suggest that there was a time when there were no specialised manual workers in Chihi. The four conditions of industrial production—season (shih), local factors (chhi), virtues of materials (mei) and skill (chhiao)—appear in the sixth paragraph, and of all of these except skill the text goes on to give examples. In doing so, it makes some interesting statements on the ecology of plants and animals, explaining the naturalness of local factors. These have certainly always been important in the siting of industries, the presence of ores or coal or forests, the nature of the water, and so on. The penultimate paragraph, which seeks to classify the various techniques, follows closely, in the technical terms which it uses, the names of the various kinds of artisans mentioned in the text of the Khao Kung Chi itself. These seem to be very incomplete (for example, there is mention of embroiderers but nothing about different types of weavers, and a special category of feather-dyers, but nothing about those who dye cloth); yet this is perhaps natural in view of what is known about the history of the text. Table 54 reproduces for reference all the classes of artisans mentioned in the Khao Kung Chi.

If the tables of officials, with their ranks and classes of assistants, which the Chou Li gives for all the other ministries, had been preserved for the Ministry of Works (the ‘Winter Office’, Tung Kuan?), we should perhaps know more than we do about the organisation of the Imperial Workshops, at any rate for the Han time itself. Unfortunately, they were contained in the part which was lost, and those who filled the gap did not supply them. The question arising is one of great importance, namely to what extent the most advanced techniques and industries in ancient times were under centralised bureaucratic control. The Imperial Workshops certainly produced all the ceremonial objects, commodities of daily life, vehicles and machines, required for the courts of the emperor and the princes; and there could be no sharp distinction between such work and the manufacture of arms and equipment for the imperial forces. When the salt and iron industries were ‘nationalised’, all the artisans concerned in them from the +12th century, (5), pp. 159 ff., 161. This is concerned mainly with the making of Buddhist images. The Sinhalese glosses are on a Sanskrit original, believed to derive from the architectural and technological Silpaśāstra, a corpus which Coomaraswamy places in the +5th century.

† One suspects that there is some connection here with the theory of the five elements and their relation to the successive dynasties (cf. above, Vol. 2, p. 263).

‡ The Ming book, Foon I Lu, has an interesting list (ch. 2, p. 73) of the different kinds of natural waters—petrifying, chalybeate, sulphurous, copper-depositing, etc.—with tacit reference to siting of industries. Cf. Vitruvius, viii, iii.

§ The dyers (jen jen) appear, indeed, among other artisans mentioned elsewhere in the Chou Li, ch. 1, p. 92; ch. 2, p. 358 (Biot (1), vol. I, pp. 19, 166). They belonged to the inner apartments of the palace together with the textile workers.

Ⅰ The names may of course be the official titles of the comptrollers or foremen rather than the names of the trades themselves. A special study of them has been made by Yoshida Mitsukuni (3).
27. MECHANICAL ENGINEERING

Table 54. Trades and industries described in the Khao Kung Chi, chapter of the Chou Li

(An asterisk indicates that the section is missing)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jade workers*</td>
<td>yu jen</td>
<td>玉人</td>
<td>12</td>
<td>1a</td>
</tr>
<tr>
<td>Stone carvers</td>
<td>tiao jen</td>
<td>石人</td>
<td>5a*</td>
<td>5a</td>
</tr>
<tr>
<td>Stone-chine makers</td>
<td>chhing shih 青氏</td>
<td>5a *</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>(b) CERAMICS WORKERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potters</td>
<td>tiao jen</td>
<td>瓷人</td>
<td>7a</td>
<td>7b</td>
</tr>
<tr>
<td>Moulders (tiles)</td>
<td>fang jen</td>
<td>瓷人</td>
<td>7b</td>
<td>7b</td>
</tr>
<tr>
<td>(c) WOOD WORKERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow makers</td>
<td>chhieh jen</td>
<td>弓人</td>
<td>4b</td>
<td>4b</td>
</tr>
<tr>
<td>Bow makers</td>
<td>kung jen 弓人</td>
<td>24a</td>
<td>44</td>
<td>580</td>
</tr>
<tr>
<td>Cabinet makers in valuable woods*</td>
<td>tsu jen</td>
<td>梓人</td>
<td>8a</td>
<td>43</td>
</tr>
<tr>
<td>Weapon handle makers</td>
<td>lu jen</td>
<td>銀人</td>
<td>13a</td>
<td>13a</td>
</tr>
<tr>
<td>Surveyors, builders and carpenters</td>
<td>chien jen 匠人</td>
<td>15a</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>Agricultural implement handle makers, see Cartwrights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) CANAL AND IRRIGATION DITCH BUILDERS (and hydraulic engineers in general)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic workers*</td>
<td>chheng jen 匠人</td>
<td>18a</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>(e) METAL WORKERS (kung chin chih 銅錳之工)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Lower alloy' founders*</td>
<td>chu shih 銅氏</td>
<td>20b, 21a</td>
<td>41</td>
<td>490</td>
</tr>
<tr>
<td>'Higher alloy' founders</td>
<td>yeh shih 楚氏</td>
<td>20b, 21a</td>
<td>490, 492</td>
<td></td>
</tr>
<tr>
<td>Bell-founders</td>
<td>fu shih 銅氏</td>
<td>23a, 23a</td>
<td>490, 492</td>
<td></td>
</tr>
<tr>
<td>Measure makers</td>
<td>li shih 梓氏</td>
<td>25b</td>
<td>491, 503</td>
<td></td>
</tr>
<tr>
<td>Plough makers</td>
<td>tsu shih 梓氏</td>
<td>20b*</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>Sword-smiths</td>
<td>tao shih 桃氏</td>
<td>20b, 22b</td>
<td>491, 492</td>
<td></td>
</tr>
<tr>
<td>(f) VEHICLE MAKERS (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheelwrights</td>
<td>lun jen 鍇人</td>
<td>11</td>
<td>7a</td>
<td>40</td>
</tr>
<tr>
<td>Master wheelwrights</td>
<td>hao kung 鍇工</td>
<td>12b</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>Body makers</td>
<td>yu jen 鍇人</td>
<td>14b</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>Shaft and axle makers</td>
<td>chou jen 鍇人</td>
<td>16a</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Cartwrights</td>
<td>chhieh jen 匠人</td>
<td>12</td>
<td>21b</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 54 (cont.)

(g) ARMOURERS (of hide, not metal)					
Cuirass makers	han shih 銅氏	11	26b	41	506
(h) TANNERS					
Tanners	wej jen 麟人	30b	514		
Skinners	pao jen 猪人	50a	509		
Furriers	cheh jen 猪人	30b	514		
(i) DRUM-MAKERS	yin jen 聲人	20b	511		
(j) TEXTILE, DYEING, AND EMBROIDERY WORKERS (hsu i chih shih 織染之事)					
Feather-dyers	chang shih 梓氏	31b	516		
Basket-makers	huan shen 猪人	32a*	517		
Silk-cleaners	mang shih 梓氏	33a	517		

* Much information about the forms of the various ceremonial pieces, but hardly a word about the techniques of working.
* A long and elaborate section, which makes no mention of the crossbow, 但, though this is spoken of elsewhere, pp. 239, 241, 246.
* Mainly musical instruments and cups. They had a foreman or manager, tsu shih 梓師.
* This section contains valuable information on irrigation canals, cf. Vol. 4, pt. 3.
* 'Lower alloy' bronze was a 3 Cu: Sn mixture, said here to be used for writing-knives.
* 'Higher alloy' bronze was a 3 Cu: Sn mixture, said here to be used for arrow-heads, lance-heads, etc.
* * Per han 坊.
* Their measurements and dimensions are related to standard weapon lengths.
* Also make handles for agricultural implements.
* Those who remove the gum from the natural silk.

must also have come under immediate government control. At other times, and in other industries during this time, there can be no doubt that the largest part was played by handicraft production independently undertaken by and for the common people. But it may be safe to assume that when any large or unusually complex piece of machinery was constructed (e.g. the early water-mills) this was done either in the imperial workshops or under the close supervision of important provincial officials.

* In the Early Han period there were Supervisors of Industry (Kung Kuan 1) in ten commanderies.
* The most important texts on these Han government factories have been brought together by Chi Chih-hung-Yuan (1).
* In charge of the production and taxation of goods. This may have meant only a general control over the handicraft production of numerous families or small workshops but it certainly involved the collection of a market sales tax. The degree of control exercised by the Supervisors of Weaving (Fu Kuan), especially important in Shantung, is also uncertain. But there can be no doubt that the Supervintendent of the forty-six Iron Bureaux (Thieh Kuan 3) and the thirty-five Wood Bureaux (Mu Kuan 4) were directly responsible for the technical organisation of the production itself, since these were nationalised industries.

* The Iron Authority had particular importance for agriculture because its factories forged and cast the necessary implements. To these officials there were added, especially important in the Later Han period, Supervisors of Orange Horticulture (Chu Kuan 7) and of the Timber Industry (Mu Kuan 8) in Szechuan. On the whole subject, see the study by Lao Kan (4).
27. MECHANICAL ENGINEERING

A thorough monograph which would follow through the history of workshops, imperial workshops and government factories in China is one of the most urgent sinological needs (cf. Fig. 355).

The imperial workshops went by many names, of which Shang Fang was one of the most usual. We have already met with the phrase as a title, in the life of the magician Luan Ta (Vol. 4, pt. 1, p. 315 above), translating it "Magician and Pharmacist-Royal to the Prince of Chiao-Tung," but the word fang applies of course widely to all kinds of techniques. That was in the 2nd century, but by the end of the 1st the expression had come to mean the Imperial Workshops, as is distinctly stated in the biographies of Wang Chi (d. + 40) and Tshai Yung (d. + 192). About this time phrases such as Chu Chin Chi Hi Wu (Comptroller of the Forbidden Instruments) occur, indicating that devices and machines (e.g. crossbow-triggers, hodometers, the south-pointing carriage, etc.) were made and conserved in the workshops in the category of 'secret' or 'restricted'. Occasionally the names of the artisans come down to us. Swann (1) has reproduced a black lacquer lid bearing the following inscription:

In the 3rd year of the Chien-Phing reign-period (-4) this vessel, capacity three pints, and lid, were made at the Western Factory of Szechuan (in the same style of workmanship) as His Majesty's personal cart; lacquered base of hempen cloth, incised designs, painted ornamentation, and handles of gilt. Lacquer was made by the artisan Yu and applied by artisan I; bronze work and gilding by artisan Ku; painting by artisan Feng; incising by artisan Jung; cleaning by artisan Pao; and finishing by artisan Tsung. Supervision by official Chii in charge of artisans and labour, by chief country magistrate Kiel, his first assistant Hsien, his secretary Kuang, and by official Kiel of the provincial administration.

Significantly, perhaps, five administrators were needed for seven technicians, but it is pleasant, at any rate, to have the names of some of the latter.

All dynasties seem to have had imperial workshops; in the +4th century we seem to hear of them particularly under foreign rulers such as the Hunnish Later Chao, who has also made a longer study (2) of the workshops. Perhaps these States were less subject to Confucian orthodoxy than purely Chinese governments. When we come to the Thang, there is a great deal of information which has been collected by des Rotours. The workshops were under a central Bureau (Shao Fu Chien) with eight departments: three workshops (centre, left and right) (Shang Shu), a Weaving and Dyeing Section (Chih Jan Shu), three Foundry Sections including a Mint (Chang Yeh Shu), and two Chih Chien, and finally a Bureau for Barter with Foreign Peoples (Hu Shih Chien), in fact a Sales Department. From the description in the Hsin Thang Shu, it is clear that every kind of technique known in the +8th century from the purely metallurgical and engineering to the purely artistic was carried on in these institutes. There were periodical examinations as to technical skill, and every object was stamped with the name of the artisan who had made it. At one time from six to seven thousand artisans were spoken of. Unfortunately the Thang history describes the products of the work rather than the techniques employed. All this was separate from other equally important Bureaux: the Chiang Tao Chien (Office of Works), which was mainly concerned with building construction and ceramics, the Chin Chhi Chien (Arsenals Administration), which made crossbows, catapults, and all army equipment, and the Tu Shui Chien (General Water Conservancy), which looked after irrigation works, canals, bridges and the like.

This is perhaps not the place to follow further this interesting subject, which needs more attention than it has yet had. A wealth of information is undoubtedly available, e.g. in Sung books such as the Shih Wu Chi Yuan, which tells us about the imperial factories in Wu Tai and Sung times, when another name, that of Tao Fang, became more general; and gives details about the State workshops of the goldsmiths and silversmiths. Material for the Mongol period existed in the Yuan Ching Shih Ta Tien and though this was lost, the relevant parts were copied from the Yung Lo Ta Tien by Wen thing Shih and so preserved. Thus we have the Yuan Tai Hua Su Chi (Record of the Government Atelier of Painting and Sculpture), and the Ta Yuan Chih (Kung Wu Chi) (Record of the Government Weaving Mills). The story of the activities of the Ministry of Works during the Ming and Chching would constitute a book in itself. For those who can read between the lines of massed inventories and requisitions, a mine of information is available in a book compiled by Ho Shih-Chin in +1615; the Kung Pu Chhang Khu Hsi Chih (What should be known to Officials) about the Factories, Workshops and Storehouses of the Ministry of Works). This is of considerable size, and we shall draw upon it later more than once.

1 Chhien Han Shu, ch. 25, p. 318. A gloss by Yen Shih-Ku gives authority for this interpretation.
2 Biography in Chhien Han Shu, ch. 72, p. 83.
3 Biography in Chhien Han Shu, ch. 208, p. 173; cf. Shu Hsi Hsi, Han, ch. 6, p. 14.
4 It was in the Shang Fang Workshops that Lien Hsiao was ordered by the emperor about -50 to test the methods of Lien An, the Prince of Hui-Nan, for making alchemical gold. A full account of this interesting event will be given in Sect. 33. See Chhien Han Shu, ch. 36, pp. 68 ff. where the metallurgical and minting functions of the Shang Fang are also referred to.
5 Ts. Swann (1).
6 In this connection it is interesting to find the same bureaucratic tendency at the other extreme of Chinese history. When the Fuchow Dockyard was set up in 1866 it was placed in charge of two French engineers, Giquel (2).
7 On the ten tö workshops of the Han palaces see Yonezawa (1), who has also made a longer study (2) of the Shang Fang during the Wei, Chin and Nan Fei Chhao periods. Many Han mirrors bear inscriptions showing that they originated from the Shang Fang (see Chhien Shih So, Chin sect., ch. 6, pp. 48 ff.). A typical inscription concerning the immortals depicted on the back of one of these (p. 196) has been translated by Kaltenmark (2), p. 11.
8 迄方
9 王吉
10 馨器
11 帝
12 古
13 宫
d 主

27. MECHANICAL ENGINEERING
It may be interesting only to add a passage from the Jesuit Gabriel de Magalhaens (An Wen-Sau), written about the middle of the +17th century, before the Ming system had been reorganised. He wrote:

The sixth and last superiour Tribunal is called Cum Pu (Kung Pu), or, the Tribunal of the Publick Works. This Tribunal takes care to build and repair the Kings' Palaces, their Sepulchres and Temples, wherein they honour their Predecessors, or where they adore their Deities, the Sun, Moon, Heaven and Earth, etc., as also the Palaces of all the Tribunals throughout the Empire, and those of the great Lords. They are also the Surveyors and Overseers of all the Towers, Bridges, Dams, Rivers, Lakes, and of all things requisite to render Rivers navigable, as High-ways, Wagons, Barks, Boats, and the like. To this Palace belong four more inferiour Courts. The first is called Yin Xen Su (Ying Shan Su), which examines and draws the Designs of all the works that are to be done. The second Yu Heng Su (Yu Heng Su), which has the ordering of all the Work-houses and Shops in all the Cities of the Kingdom for the making of warlike Arms and Weapons. The third Tum Xui Su (Tu Shui Su), takes care to make the Rivers and Lakes Navigable, to level the High-ways, to build and repair Bridges, and for the making of Wagons and Boats, and other things necessary for the convenience of Commerce. The fourth Ce Tien Su (Shan Chii Tien Su), are the Overseers of the King's Houses and Lands which he lets out to hire, and of which he has both the Rent and the Fruits of the Harvest.

In general, the provisional conclusion may be justified that a considerable proportion of the most advanced technologists in all ages in China were either directly employed by, or under the close supervision of, administrative authorities forming part of the central bureaucratic government.

But of course not all. The majority of artisans and craftmen, indeed, must always have been connected with small-scale family workshop production and commerce. Particular localities derived fame from skills which tended to concentrate there; one thinks of the lacquer-makers of Fuchow, the potters of Ching-te-chen, or the wheelwrights of Tzu-liu-ching in Szechuan. But Chinese technical skill tended to wander far and wide. In an earlier volume, we took note of metallurgists and well-drillers in - 2nd-century Parthia and Ferghana, and of textile technologists, paper-makers, goldsmiths and smiths, and painters in + 8th-century Samarqand and Kifah. Over and over again we shall see the respect which environting peoples had for the artisans of China. They did not hesitate to ask for them when circumstances permitted; thus in + 1126, when the Sung capital at Khiäfeng was being besieged by the Chin Tartars, they demanded from the city all sorts of craftsmen, including goldsmiths and silversmiths, blacksmiths, weavers and tailors; even Taoist priests. When the Taotist Chhiang Chüan Chén-hu made his famous journey from Shantung to Samarqand at the request of Chinchiz Khan in + 1221, he met Chinese workmen everywheren. At Chinkhui Balasaghun in Outer Mongolia they came in a body to meet him, with banners and bouquets of flowers. When he reached Samarqand he found numbers more of them. On his return two years later, he heard of a great many settled in a northern region, the valley of the Upper Yenisei. As late as + 1675, a Russian diplomatic mission officially requested that Chinese bridge-builders should be sent to Russia. What the technical traditions were which all these men represented the body of this Section will show.

Beyond this point one cannot further analyse their social context without becoming involved in difficult questions of status. To follow this path to its conclusion would trespass upon the proper subjects to which Section 48 (on the social and economic background of ancient and medieval Chinese science and technology) will seek to do justice. But here a few words at least must be said, even if only to sketch the background for the question—where did the inventors and the engineers come from? So far, all the technical workers we have mentioned were 'free' plebeians. A wheelwright or a lacquer-worker was a shu jen (shiu, yeoman; of 'decent birth'); or a liang jen, literally 'goodman'. He belonged to the commoners (hsiao min), and for the ancient philosophers would certainly have been a hsiao jen (menial man, banausic man) as opposed to a chün tzu (magnanimous quasi-aristocratic scholarly official man).

As he had a surname he was one of the pai hing (the 'old hundred families'), and belonged to the pien min (registered people). Only in very few cases are slaves or semi-serfs people mentioned as producers of wealth in the descriptions of the operations of the famous rich industrialists of the Chhin and Han periods.

Indeed, a classical passage in the Yen Thich Lan (Discourses on Salt and Iron) of -80 specifies free workers.

8 Near modern Uliassutai.
9 These were weavers making fine silks, guazos, brocades and damasks.
10 Chinh-Chuan Chien Jen Hu Yu Chi, ch. 1, pp. 139-228, ch. 2, pp. 94; cf. Waley (10), pp. 129, 131.
11 This was the embassy of Nicoline Milescue (the Envoy, Spatharid, hence Russ. Spathary), on whom see F pozosta (1), pp. 235-256; Cazen (1), pp. 2; and especially Baddeley (2), vol. 2, pp. 315, 385.
12 The word is thus qualified because ancient and medieval Chinese society cannot be judged by the same standards or in the same terms as that of the West. At a recent symposium on the comparative study of the institution of slavery it was concluded that in China 'the spectrum lacked both ends'. No one was 'free' in the fullest Greek sense and no one was as badly off as those who were under the in the ancient occidental civilisations. As Pulleyblank has written: 'No concept of positive freedom could exist in an organic society where every man's position was defined by his social relationships, which carried with them the political rights and limited corresponding duties, but moral obligations to superiors (ruler, father, elder brother, husband) by nature absolute and unlimited' (6), p. 205. The Aristotelian definition of property as of two kinds, things and men, was not the sort of definition which the Chinese wrote in for. They recognised in slaves inalienable human qualities, and considered them bound by the five fundamental social relationships just as much as other people. In fact, as Pulleyblank says (p. 217), slaves were not so much a legitimate form of private property in China as the most inferior stratum at the bottom of the social scale. These points are important for the following discussion. For a current study of the concepts of positive and negative freedom cf. Berlin (1).
Formerly the overbearing and powerful great families, obtaining control of the profits of the mountains and lakes, mined iron ore and smelted it with great bellows, and evaporated brine for salt. A single family would assemble a multitude, sometimes as many as a thousand men or more, for the most part wandering unattached plebeians (jang lue jen min1) who had travelled far from their own villages, abandoning the tombs (of their ancestors). Thus attaching themselves to the great families, they came together in the midst of mountain fastnesses or desolate marshes, bringing about thereby the fruition of businesses based on selfish intrigue (for profit) and intended to aggrandize the power of particular firms and factions.4

Needless to say, the speaker is the Lord Grand Secretary, defending the principle of the nationalisation of salt and iron.

But whatever the extent of government-organised production from time to time, the State relied upon an inexhaustible supply of obligatory unpaid labour in the form of the corvee (yao1, yu2; yu4). In Han times every male commoner between the ages of 20 (or 23) and 56 was liable for one month of labour service a year, unless belonging to some specially exempted group.5 Technical workers certainly performed these obligations in the Imperial Workshops, whether at the capital or in the provinces, or in the factories of such enterprises as the Salt and Iron Authorities. These organisations were never primarily staffed by slaves, and as time went on there were never primarily staffed by slaves, and as time went on there were

Among the first actions of the Sung dynasty, however, was the establishment of competitive silk mills and brocade workshops (Chin Kuan8) in the east, in the neighbourhood of the new capital at K’ai-feng9,10 and at the same time a strict prohibition of the trade of private silk merchants in Szechuan. It seems extremely probable that these steps struck a crushing blow at the industry there, and there can be little doubt that the impoverished silk-workers formed one of the principal sources of man-power for the revolutionary army of Wang and Li. Although the rebellion was subdued, the silk brocade manufacture centred at Ch’ing-hua gradually recovered in the course of time,11 and the part which it had played in one of the numerous revolts of peasants and workers in Chinese history12 was forgotten.

So far we have been thinking only of the artisans who were regular commoners. But this was by no means the lowest social level in ancient and medieval China, for below it there came a number of groups which might almost be termed 'depressed classes' and which certainly contained artisans, indeed sometimes men of skill and parts. The general term for these was chien min, 'base' or 'ignoble' people, in contradistinction to the liang jen. Thus the question arises whether there was a slave artisanate and how important it was.13 The majority of sinologists are agreed in believing that the institution of slavery in ancient and medieval China was primarily domestic in character and originally essentially penal. How far then were relatively unfree persons employed in the technical crafts? It can safely be said that a certain proportion of the artisanate was always of this kind, but it was probably generally quite small (less than 10%) in relation to the whole mass of workers in the crafts and

by Wang Hsiao-Po14 and Li Shun15 between +993 and +995. It has been variously regarded as a separatist movement designed to perpetuate the independence which the province had enjoyed during the Wu Tai period, and as an uprising of consciously socialist or communist inspiration, but it certainly had much to do with the treatment of the Szechuanese silk industry by the Sung government. Silk brocade (chin) manufacture had had an outstanding importance in the province since Chhin times,16 and beside the great salt-producing centre of Tzu-liu-ching and the timber and orange-growing industries had been one of the economic mainstays of the independence of the region.17 Among the first actions of the Sung dynasty, however, was the establishment of competitive silk mills and brocade workshops (Chin Kuan18) in the east, in the neighbourhood of the new capital at K’ai-feng,19 and at the same time a strict prohibition of the trade of private silk merchants in Szechuan. It seems extremely probable that these steps struck a crushing blow at the industry there, and there can be little doubt that the impoverished silk-workers formed one of the principal sources of man-power for the revolutionary army of Wang and Li. Although the rebellion was subdued, the silk brocade manufacture centred at Ch’ing-hua gradually recovered in the course of time,20 and the part which it had played in one of the numerous revolts of peasants and workers in Chinese history21 was forgotten.

So far we have been thinking only of the artisans who were regular commomners. But this was by no means the lowest social level in ancient and medieval China, for below it there came a number of groups which might almost be termed 'depressed classes' and which certainly contained artisans, indeed sometimes men of skill and parts. The general term for these was chien min, 'base' or 'ignoble' people, in contradistinction to the liang jen. Thus the question arises whether there was a slave artisanate and how important it was.22 The majority of sinologists are agreed in believing that the institution of slavery in ancient and medieval China was primarily domestic in character and originally essentially penal. How far then were relatively unfree persons employed in the technical crafts? It can safely be said that a certain proportion of the artisanate was always of this kind, but it was probably generally quite small (less than 10%) in relation to the whole mass of workers in the crafts and

by Wang Hsiao-Po14 and Li Shun15 between +993 and +995. It has been variously regarded as a separatist movement designed to perpetuate the independence which the province had enjoyed during the Wu Tai period, and as an uprising of consciously socialist or communist inspiration, but it certainly had much to do with the treatment of the Szechuanese silk industry by the Sung government. Silk brocade (chin) manufacture had had an outstanding importance in the province since Chhin times,16 and beside the great salt-producing centre of Tzu-liu-ching and the timber and orange-growing industries had been one of the economic mainstays of the independence of the region.17 Among the first actions of the Sung dynasty, however, was the establishment of competitive silk mills and brocade workshops (Chin Kuan18) in the east, in the neighbourhood of the new capital at K’ai-feng,19 and at the same time a strict prohibition of the trade of private silk merchants in Szechuan. It seems extremely probable that these steps struck a crushing blow at the industry there, and there can be little doubt that the impoverished silk-workers formed one of the principal sources of man-power for the revolutionary army of Wang and Li. Although the rebellion was subdued, the silk brocade manufacture centred at Ch’ing-hua gradually recovered in the course of time,20 and the part which it had played in one of the numerous revolts of peasants and workers in Chinese history21 was forgotten.

So far we have been thinking only of the artisans who were regular commomners. But this was by no means the lowest social level in ancient and medieval China, for below it there came a number of groups which might almost be termed 'depressed classes' and which certainly contained artisans, indeed sometimes men of skill and parts. The general term for these was chien min, 'base' or 'ignoble' people, in contradistinction to the liang jen. Thus the question arises whether there was a slave artisanate and how important it was.22 The majority of sinologists are agreed in believing that the institution of slavery in ancient and medieval China was primarily domestic in character and originally essentially penal. How far then were relatively unfree persons employed in the technical crafts? It can safely be said that a certain proportion of the artisanate was always of this kind, but it was probably generally quite small (less than 10%) in relation to the whole mass of workers in the crafts and
that more than a hundred thousand people

rather difficult to define.

latter to grain-pounding

the Chou in defining the former as condemned to penal servitude

suffered this the main source of recruitment in ancient times was certainly from

to draw because

of the good government of the

tion of the occupation, their disabilities applied also to other kinds of

technical trade was a long-lasting one. There is no doubt either about the position of

no descendants.

convicts

iron ore in the mountains.

descendants of convicts, since special training and long experience would be more

among Chinese scholars, most of whom are inclined to believe it true for the

Pulleyblank

children, self-sale slavery of debtors, rescue of exposed infants, kidnapping, etc., but these were of minor

importance. Etymologically the word

A number of well-known scholars suffered this fate, for varying terms of years.

semantically it implies a lightly-clad or barefoot follower.

I

There were also

g This word alone is ambiguous as it can also mean
corvee

e There were also

I

f

h

I3,14).

Pulleyblank

Cf. Wilbur (1), p. 224). Conversely the twenty-six ranches of the Han govern-

ment distributed over the northern and western frontiers were mainly staffed by government slaves, yet no record of any revolt has come down to us, and none of them rode off to join the Huns (cf. Wilbur (1), pp. 227, 233, 405).

meant an exile banished to guard the frontiers, i.e. a military convict.

A number of well-known scholars suffered this fate, for varying terms of years.

the life of a government slave tradesman was often considerably more comfortable, and certainly more secure, than that of a 'free' yeoman artisan.

We can now begin to ask the technological questions which interest us. What skills had the nu pi? A remarkable document dated ~ 59, purporting to be a purchase con-

tract between one Wang Pao and a bearded nu named Pien-Liao, has come down to

us from the Han. Apart from the products of the slave's labour in garden and orchard, he was supposed to be able to plait straw sandals, hew out cart shafts, make various

pieces of furniture and wooden clogs, whistle bamboo writing-tablets, twist rope and

weave mats—but besides all this he was to make knives and bows for sale in the neigh-

bouring market. There is a distinctly Aristophanic quality about the recital of the

obligations of the slave, but the technical skills demanded are quite clear. Another story

records how a young relative of an empress, Tou Kuang-Kuo, accidentally enslaved,

was employed about ~ 18 with a gang of a hundred others as a charcoal-burner.

and when the great agriculturalist Chao Kuo was made Commissioner of Army Supplies in ~ 87 he 'set skilled and clever male slaves (kung chhiao nu) with assistants to manufacture agricultural implements' of improved types in the Iron Bureaux Factories. The general conclusion (applicable also to later centuries) is that among the

nu slaves there were always some skilled craftsmen, but never as many as among the

ranks of the corveable commons.

A particularly tantalising term is thung, which has a connotation of youth and may perhaps best be translated 'serving-lads'. It has such a strongly industrial undertone that one is almost tempted to view it as some form of bonded apprentice-

ship. Though the Shuo Wen and other authorities make very little difference between thung and nu, the former may have been bondsmen for a long term of quasi-
educational years. An interesting passage speaks of the thung about ~100 in terms equivalent to 'hands' at a hiring fair, saying that in a single provincial capital there

would be a turnover of 'a thousand fingers of serving-lads a year (thung shou chih

It is a striking fact that while revolts hardly ever occurred among slaves, they were quite frequent among convicts, and then generally among those working in the Iron Bureaux Factories, where access to arms and residence was easy. Wilbur (1), p. 238).

This word alone is ambiguous as it can also mean corvee concepts or even disciples of philosophers; semantically it implies a lightly-clad or barefoot follower.

4 It is preserved in Chau Hsiao Chi, ch. 19, pp. 186 ff., and has been translated in full by Wilbur (1), p. 283 ff. Wang Pao was chiefly a literary courtier, but his biography (in Chhien Han Shu, ch. 649, pp. 60ff.) gives some information on steel-making. Cf. Hawkes (1), pp. 141 ff.

5 It is preserved in Chhien Han Shu, ch. 97, p. 263. It was chiefly a literary courtier, but his biography (in Chhien Han Shu, ch. 649, pp. 60ff.) gives some information on steel-making. Cf. Hawkes (1), pp. 141 ff.

6 Chhien Han Shu, ch. 97, p. 76. Chhien Han Shu, ch. 233, 4°5). In the first half of the 2nd century an extraordinary man named Tiao Hsien made a great success of employing 'bold and spirited male slaves (lou nu) in fishing and salt-refining, and as itinerant and resident merchants. They associated with cavalry generals and governors of commanderies. It was said 'Who would want noble rank when he could be a slave of Tiao?" See Chhien Han Shu, ch. 91, p. 59 (tr. Wilbur (1), p. 281; Swann (1), p. 455).

7 It is preserved in Chhien Han Shu, ch. 91, p. 79, tr. Wilbur (1), p. 315.

8 Wilbur (1), p. 281, by her translation tacitly concurs in this.

9 Swann (1), p. 453, for quotations and discussion.
Thus after the defeat of Chao by Chhin in -228, a Mr Cho, a family long enriched by iron-smelting, was reduced to poverty and deported to (Szechuan), whither he went accompanied only by his wife, pushing a barrow with all and soon became wealthy again to the extent of possessing eight hundred serving-lads the same town nearly a century later, had nearly as many. There has been some doubt about their function when he described the three hundred young men and girls (chia thung) working at the bellows and forges of the famous, if semi-legendary, smith Kan Chang.

Young people of 'serving-lad' status were also closely connected with those units of production, amounting sometimes almost to factories, which grew up within the dwelling-house compounds of the nobles and high officials. For example:

(Chang) An-Shih was honoured among the nobility, and had the income from ten thousand households, yet he dressed himself in coarse black cloth, and his wife personally wound silk (or spun hemp), carried out the twisting (and woven). His seven hundred household serving-lads (chia thung) were all skilled in manufactures, so that goods were produced within (his home) and the smallest things saved; thus he was able to accumulate commodities (for sale, barter or presentation). He was richer than the Commander-in-Chief (Ho) Kuang. The emperor (Hsuan) was afraid of the general and he was really much more fond of (Chang) An-Shih.

This was between -74 and -62. The mention of the powerful Ho Kuang is impossible to further without noting that whatever characteristics ancient and
medieval Chinese labour conditions may have possessed, they proved no bar to a long
series of 'labour-saving' inventions altogether prior to those arising in Europe and
Islam. Whether one thinks of the efficient trace harness for horses (from the -4th
century onwards), or of the appearance of the still better collar harness in the +5th, or
of the simple wheelbarrow in the +3rd (though not in Europe till a thousand years
later), one constantly finds that in spite of the seemingly inexhaustible masses of man-
power in China, lugging and hauling were avoided whenever possible. How striking
it is that in all Chinese history there is no parallel for the slave-manned oared war-
galley of the Mediterranean—land-locked though most of the Chinese waters were,
sail was the characteristic motive power throughout the ages, and the arrival of great
junks at Zanzibar or Kamchatka was only an extension of the techniques of the
Yangtze and the Tungting Lake. When the water-null appeared early in the +1st
century for blowing metallurgical bellows, the records distinctly say that it was
considered important as being both more humane and cheaper than man-power or
animal-power. And it gives food for thought to find around

The labour-saving power-machines of the later [Western] middle ages [he writes], were
produced by the implicit theological assumption of the infinite worth of even the most
degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the
degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the

degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the

degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the

degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the

degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the

degraded human personality, by an instinctive repugnance towards subJectmg
a monotonous drudgery which seems less than human in that it requires ,the

The contents of the present volume alone suffice to show that in Chinese

These are noble words, but can we be so sure that Christendom had a monopoly of
humanitarian urges to invention? If China was so often in fact first in the field with
labour-saving devices, had Confucian benevolence and Buddhist compassion nothing
to do with it? Perhaps it will be better to credit men at all times and everywhere with
Mencius' 'human-heartedness', and to look rather at the social and economic circum-
stances to understand what particular civilisations could or could not in the end
accomplish.

These preliminaries having been completed, we can now turn our attention to a
very brief survey of the social groups from which inventors and engineers originated.6
If in the following paragraphs we venture to sketch some provisional social categories
and patterns into which the mechanical genius of ancient and medieval China seems
to fall, we do it with all reservations. The elucidation of the place of inventors, engineers
and men of scientific originality in the society of their times is a special study in itself,
and we have not as yet been able systematically to pursue it, partly because it is in a
way secondary, the first task being to establish and verify their identity and what they
actually did. We are very far indeed from the ideal of a statistical treatment arranged
by sciences or by centuries, and it is unlikely that even Section 48 will be able to offer
much towards such an analysis. So many are the difficulties; for example, sinologists
have not yet systematised the interpretation and translation of official titles, indications
of rank, power and duties in the governmental bureaucratic hierarchy, and even when

It is important to emphasise here the great fluidity of ancient Chinese society. The great mass of
commoners was constantly gaining and losing people to the ranks of the gentry and nobles above, and
to those of the servile ranks below. There are innumerable examples of the meteoric rise and fall of
families. The usual term for convicts was but six years, and amnesties were frequent. Slaves could be,
and were, emancipated in several different ways. Life may have been rather uncertain and surprising,
but it held brilliant rewards as well as frightful dangers, and there were no rigid barriers of class or
caste.

In the following paragraphs we shall give, for simplicity, only the floras of the persons mentioned.
Their full biographical dates, when known, will be found at the places in the text where their work is
described in detail; and of course in the Biographical Glossary in Vol. 7.

Let us divide our life-histories into five groups, first high officials, the scholars who had successful and fruitful careers, secondly commoners, third members of the semi-servile groups, fourth those who were enslaved, and fifth, the rather significant group of minor officials, i.e. scholars who were not able to make their way upwards in the ranks of the bureaucracy. It will be seen that the numbers of examples which we can find in the different groups will vary considerably.

First, then, the high officials. Here we may take Chang Heng (fl. ± 120) and Kuo Shou-Ching (fl. ± 1280) as outstanding representatives of the type. Both we already know well, but a couple of sentences may recall their achievements. Chang Heng was the inventor of the first seismograph in any civilisation, and the first to apply motive power to the rotation of astronomical instruments; besides this he was a brilliant mathematician and designer of armillary spheres. Kuo Shou-Ching, more than a millennium later, was an equally good mathematician and astronomer but also planned most of the Yuan Grand Canal. Both of these men occupied the post of Astronomer-Royal, but in addition Chang Heng became President of the Imperial Chancellery, while Kuo Shou-Ching was Intendant of Waterways, and Academician.

Two entirely comparable figures are Su Sung and Shen Kua, whom we shall mention in a moment. All these men had the good fortune to find appreciation for their scientific and technical talents in their age—others were not so lucky.

Sometimes ability of this kind accompanied military gifts and offices. The Chhin general Meng Thien (fl. – 221) comes to mind. He accomplished the fusion and extension of previously existing walls to form the Great Wall, and built a road from the frontiers to the capital. He also planned a system of water-mills for the pumping of water to the fields, and the establishment of multiple geared water-mills for cereal grinding, as well as with the throwing of pontoon bridges across great streams such as the Yellow River. Chhiang Hsuan-invented a kind of slur-bow and some form of counterweighted trebuchet anticipating the work of trebuchet engineers in later times. During the long history of the Song there exists mention only of one astronomical invention of this kind, that of Tshai Lun, a prince of An-Feng (fl. + 1732), who was the inventor of grid sights for crossbows, and a famous shot with them as well. In the Thang we meet with Li Kao, a prince of Tshao (fl. ± 784), interested in acoustics and physics, but prominent here because of his successful use about this time of treadmill-operated paddle-boat warships. If similar vessels had not been constructed in China in the +5th century, a matter on which there is some uncertainty, then Li Kao’s fleet was the first practical achievement of an idea which (probably quite unknown to him) had been proposed, but not executed, in the West in early Byzantine times. We may add Chien Tsai-Yü (Cheng Shih Tan), a prince of a princely house in the Ming, already familiar to us for his work in mathematical acoustics (fl. ± 1590), and Thopa Yen-Ming, a prince of An-Feng in the Northern Wei (fl. ± 115) who will recur in a moment in another context.

Curiously, it seems quite exceptional to find an important engineer who attained high office in the Ministry of Works, age-old though this department was in the Chinese bureaucratic pattern. Perhaps this was because the real work was always done by illiterate or semi-literate artisans and master-craftsmen, who could never rise across that sharp gap which separated them from the ‘white-collar’ literati in the offices of the Ministry above. Perhaps they sometimes felt that they could get on with the job much better if the administrators upstairs were poets or courtiers not too
uncomfortably familiar with the tools and materials of the trade and mystery. And there may have been other reasons too:

‘I have taken plank and rope and nail, without the King his leave, After the custom of Portsmouth, but I will not suffer a thief.

Nay, never lift up thy hand at me! There’s no clean hands in the trade— Steal in measure’ quo’ Brygandyne. ‘There’s measure in all things made!’

However that may be, there were exceptions to the rigour of the Thung Chi cities at Chhang-an in +583 and at Loyang in +606, and made a wooden model of the cosmological Ming Thang temple. For many years Minister of Works (Kung Pu Shang Shu), his earlier post had been Director of the Architectural and Engineering Department of the Imperial Palaces (Chiang Tso Ta Chiang?). Yuwen Khai must have been a real expert in all the mechanical and constructional arts of his time.

During the Ming dynasty the way upwards for artisans to enter the administrative grades of the Ministry of Works seems to have been more open, and Friese (1) has sketched the careers of a number of men of this kind. Several wood-workers and joiners, notably Khui Hsiang (fl. +1409 to +1460), Tshai Hsien (fl. +1429) and Hsii Kao (fl. +1522 to +1560), who all showed merit as builders and architects, succeeded in this way, and the last-named rose to be President of the Ministry. Another example is Lu Hsien (fl. +1580 to +1606), who began as a stone-mason.

If our survey were further extended it would probably contain many more names of men of high official rank. This weightage would be partly due to the enormous social importance of hydraulic engineering works in Chinese society, a fact which rendered skill in this field always highly honourable among scholars and administrators otherwise tending to purely literary accomplishments. But it would also be due to a tendency readily discernible for technicians to cluster in the entourage of a distinguished civil official, who acted as their patron. It is more than probable that the find the examples of official of the most distinguished quality, who served as Ambassador and President of the great astronomical clock-tower at Khaifeng and for the greatest horological

treatise of the Chinese middle ages, but he surrounded himself, in order to accomplish this, with a remarkable band of engineers and astronomers, whose names he preserved and transmitted. Shen Kua (fl. +1080), equally gifted and equally successful, was Ambassador and Assistant Minister of Imperial Hospitality, but we think of him chiefly as the author of the most interesting and many-sided scientific book of the Sung period. It is in this work that we find the best authentic statement of the beginnings of printing in China, a statement which introduces us to that great inventive genius Pi Sheng, a man in hempen cloth (pi i, that is to say, a commoner, one not dressed in silk) who first devised, about +1045, the art of printing with movable type. ‘When Pi Sheng died’, says Shun Kua, ‘his fount of type passed into the possession of my followers, among whom it has been kept as a precious possession until now.’ Thus we have a striking glimpse of the entourage of technicians which an enlightened official could gather around him. Finally, well-known officials would be likely to figure largely in any survey because there were finally other reasons for the insertion of their biographies in the dynastic histories. Indeed the facts of most interest to us are often inserted by the historians, almost as an afterthought, at the end of the biographies.

With Pi Sheng we come now to the commoners, the liang jen. Men whose names alone we know can probably be safely placed in this group. Ting Huan (fl. +180), renowned for his pioneer use of the Cardan suspension and for his construction of rotary fans and ingenius lamps, is termed simply a ‘clever artisan’ (chhiao hsiung). His contemporary Pi Lan (fl. +186), a master-founder who installed water-raising machinery (square-pallet chain-pumps and norias) which brought a piped water-supply system to the palaces and city of Loyang, has no appellation, and was simply ‘ordered’ to do these and many other things by the chief palace eunuch Chang Jang. Yu Hao (fl. +970), that brilliant designer and builder of pagodas, was but a Master-Carpenter (Tu Lia Chiang?) and his celebrated Mu Ching (Timberwork Manual) was assuredly dictated to a scribe. Of Li Chhun, the great constructor of segmental arch bridges such as were not known elsewhere in the world until seven centuries after his time (fl. +610), we know almost nothing, and may presume him a commoner. Now and then an assistant hydraulic engineer or conservancy foreman (shui hsiung), makes a personal appearance, such as Kao Chhao (fl. +1047), who was right in his methods for stopping a breached dyke when everyone else was wrong. Sometimes

1. From Rudyard Kipling’s ‘King Henry VII and the Shipwrights’, in Remains and Fairytales.
2. See pp. 253 and 279 below.
3. From Sect. 28 below.
4. See Sect. 25/7 below.
5. See Sect. 25/8 below.
6. See Sect. 25/6 below.
7. See Sect. 25/5 below.
8. See Sect. 25/4 below.
9. See Sect. 25/3 below.
10. See Sect. 25/2 below.
11. See Sect. 25/1 below.
12. Reference has already been made to this, Vol. 3, p. 153.
13. His work will be fully described in Sect. 25 (8) below.
14. The story will be found in Sect. 25 (8) below.
15. See Sect. 25/7 below.
16. See Sect. 25/6 below.
17. See Sect. 25/5 below.
18. See Sect. 25/4 below.
19. See Sect. 25/3 below.
20. See Sect. 25/2 below.
21. See Sect. 25/1 below.
we have only the surname of a valued man, e.g. Lacquar-Artisan Wang from Suchow (Pheng-chiang chi chi Wang), who about +1345 devised dismountable boats and collapsible armillary spheres for the imperial court. He rose by +1360 to be Intendant of one of the Imperial Workshops (Kuan Chiang Thi Chi). Sometimes we do not even have the surname—an omission which makes one wonder whether such men were members of one or other of the servile or semi-servile groups in which surnames were not customary. Two cases come to mind: first the old craftsman (lao kung) who made astronomical apparatus, yet (as he said to Yang Hsiung about +10) could not transmit his skill and knowledge to his son; and secondly that 'Artisan from Haichow' (Haitchou chiang jen) who presented to the empress in +692 what was in all probability an anaporphic clock, but who also made Cardan suspensions and other ingenious devices.

In the category of regular commoners we should probably also place minor military officers, and certainly Taoists and Buddhist monks. Among the former we could mention Chih Chih Liao-Wen, a Taoist swordsmith who served in the army of Kuo Huan, the 'king-maker', founder of the Northern Chhi dynasty, advised him on five-element theory, and took charge of his arsenals. In the category of regular commoners we should probably also place minor military officers, and certainly Taoists and Buddhist monks. Among the former we could mention Chih Chih Liao-Wen, a Taoist swordsmith who served in the army of Kuo Huan, the 'king-maker', founder of the Northern Chhi dynasty, advised him on five-element theory, and took charge of his arsenals. Chih Chih Liao-Wen, if not the inventor, was one of the earliest protagonists of the co-fusion method of steel-making, a process ancestral to the Siemens-Martin open-hearth furnace, and he could not transmit his skill and knowledge to his son; and secondly that 'Artisan from Haichow' (Haitchou chiang jen) who presented to the empress in +692 what was in all probability an anaporphic clock, but who also made Cardan suspensions and other ingenious devices.

In the category of regular commoners we should probably also place minor military officers, and certainly Taoists and Buddhist monks. Among the former we could mention Chih Chih Liao-Wen, a Taoist swordsmith who served in the army of Kuo Huan, the 'king-maker', founder of the Northern Chhi dynasty, advised him on five-element theory, and took charge of his arsenals. Chih Chih Liao-Wen, if not the inventor, was one of the earliest protagonists of the co-fusion method of steel-making, a process ancestral to the Siemens-Martin open-hearth furnace, and he could not transmit his skill and knowledge to his son; and secondly that 'Artisan from Haichow' (Haitchou chiang jen) who presented to the empress in +692 what was in all probability an anaporphic clock, but who also made Cardan suspensions and other ingenious devices.

In view of the close association between Taoism and technical arts in ancient China, one would expect to find more Taoist inventors in the middle ages than have so far made their appearance. Nevertheless it is not at all difficult to name some. Of Than Thang Tao, was also a celebrated practitioner of the pattern-welding of swords. Another minor element theory, and took charge of his arsenals. Huan the 'king-maker', founder of the Northern Chhi dynasty, advised him on five-element theory, and took charge of his arsenals. Chih Chih Liao-Wen, if not the inventor, was one of the earliest protagonists of the co-fusion method of steel-making, a process ancestral to the Siemens-Martin open-hearth furnace, and he could not transmit his skill and knowledge to his son; and secondly that 'Artisan from Haichow' (Haitchou chiang jen) who presented to the empress in +692 what was in all probability an anaporphic clock, but who also made Cardan suspensions and other ingenious devices.

In view of the close association between Taoism and technical arts in ancient China, one would expect to find more Taoist inventors in the middle ages than have so far made their appearance. Nevertheless it is not at all difficult to name some. Of Than Thang Tao, was also a celebrated practitioner of the pattern-welding of swords. Another minor element theory, and took charge of his arsenals. Huan the 'king-maker', founder of the Northern Chhi dynasty, advised him on five-element theory, and took charge of his arsenals. Chih Chih Liao-Wen, if not the inventor, was one of the earliest protagonists of the co-fusion method of steel-making, a process ancestral to the Siemens-Martin open-hearth furnace, and he could not transmit his skill and knowledge to his son; and secondly that 'Artisan from Haichow' (Haitchou chiang jen) who presented to the empress in +692 what was in all probability an anaporphic clock, but who also made Cardan suspensions and other ingenious devices.
him a government slave (hsuan nu) and attaching him to the Bureau of Astronomy and Calendar. The rest of his story concerns us less, but the following emperor freed him (mien chi nu or fang yue liang nu) and later he occupied posts as Acting Superintendent of the Right Imperial Workshops (Yu Shiang-Fang Shu Chien Shih) and Acting Executive Assistant in the Bureau of Astronomy (Shou Thu Shih Chheng). We shall appreciate better in due course his role in the history of horological engineering, but it is clear at any rate that a long period of slavery was no bar to official, if not very exalted, position.

We now reach the last of our groups of technicians, and one of the most numerous, namely that of the minor officials—men who were sufficiently well-educated (even if of lowly origin) to enter the ranks of the bureaucracy, but whose particular talents or personalities frustrated all hopes of a brilliant career. These were the kind of men who could have become famous in science or engineering in a post-Renaissance world. Take Li Chieh, for instance (fl. +1100), the man who, building on the earlier works of Yu Hao and others, produced the greatest definitive treatise of any age on the millennial tradition of Chinese architecture; he was only an Assistant in the Directorate of Buildings and Construction (Chiang ‘Tso Chien Chheng’). He did in the end attain the Directorship itself but only for a year or so since the death of his father necessitated his retirement to the country. Then, although Li Chieh had been outstandingly successful as a practical architect as well as a writer, he was posted as magistrate to a provincial town, Kuochow in Honan, and the emperor’s message of recall to the capital arrived only after his death in +1110.

In this case we are fortunate to have a full biography written by a contemporary, Chheng Chh, who had probably himself served under Li Chieh. But in a hundred others there is no such record. An elaborate specification for hodometers (distance-measuring vehicles) prepared by Lu Tao-Lung in +1027 has come down to us, but no information whatever about the life of this engineer. Details about Li Chieh’s contemporary Wu Tse-Jen would be even more interesting since his specification for the more complicated south-pointing carriage in +1107 has stimulated many efforts at

a This is the ‘Kao Tsu’ of the biographies; correct Vol. 3, p. 633 accordingly.
b In other cases there were distinguished scientific men and technicians who came closely in contact with slavery. For example, the astronomer Yu Chi-Tshai, who wrote the Ling Tsu Pi Yuan (Secret Garden of the Observatory), one of our oldest extant complete treatises on the subject, spent a fortune in redeeming relatives and friends who had become enslaved in the wars between the Northern and Southern dynasties (ch. 49, p. 131f). He began as a client (ksa) of a governor of Ling-Nan, but when this patron died, Keng, instead of going home, joined some tribal people in the south and eventually led them in an uprising. When this was defeated and Keng Hsien captured, the general Wang Shih-Chi, realising his technical ability, saved him from death and admitted him among his slaves (chsia nu). Here his position was yet not so low that he could not receive instruction from an old friend, Kao Chih-Pao, who had become Astronomer-Royal, and it was as a result of this that Keng Hsien built an armillary sphere or celestial globe rotated continuously by water-power. It is interesting to find that the emperor rewarded him for this achievement by making

b This is fully translated below, p. 292.

b The main places are Wei Shu, ch. 20, p. 78; ch. 91, pp. 131ff; Pi Shih, ch. 89, pp. 131ff; Pi Chhi Shu, ch. 49, p. 38, and Sui Shu, ch. 16, pp. 9ff. A special study of the life and times of Hsintu Fang, including a collection of these sources, would be a valuable contribution.

c Ch. 4, pt. 1, pp. 187ff, above, and Rodde (17).
d Notably a Tain Chi Chhing (Manual of Divination by the Denary Cyclical Characters) and a Sse Shou Chhun Pse Tsung (The Four Traditional Schools of (Mathematical and Astronomical) Art associated with the (Classic of the) Consonant and the Circular Paths of Heaven). He also wrote on the hydrostatic ‘advisory’ vehicles (cf. Vol. 4, pt. 1, p. 34 above), but this was probably included in the lost Chi Chi Chhun. His contemporaries regarded him as one of the five leading astronomers and mathematicians of the northern and southern dynasties (+469 to +476 centuries) together with Chao Fei, Ho Chheng-Thien, Tse Chung-Chih, and Li Yeh-Hsing.

e His biography (Sui Shu, ch. 78, pp. 78ff. and Pi Shih, ch. 89, pp. 31ff) has been fully translated by Needham, Wang & Price (1), p. 83.

f This organisation, different from the Ministry of Works (Kung Pu) and much smaller, was concerned mainly with imperial palaces and temples. Li Chieh’s biography has been carefully studied by Yetts (8). He started as a very subordinate official in the Bureau of Imperial Sacrifices, but spent most of his career in the Directorate of Buildings and Construction, first as an Archivist, then Assistant, and—only after the appearance of his book—Assistant Director.

g See this, on p. 283 below.

h This is the ‘Kao Tsu’ of the biographies; correct Vol. 3, p. 633 accordingly.
its reconstruction in modern times. Chang Ssu-Hsüen, the Szechuanese who in +976 built the magnificent escapement-wheel clock operated by mercury instead of water and embodying what was probably the first of all power-transmitting chain-drives is known to history, was only a Student in the Bureau of Astronomy at the time, and there is no evidence that he ever rose above the position of Assistant in charge of Armillary Spheres and Clocks (Ssu Thien Hun I Chhāng). Sometimes Chinese engineers found that they could make a better career in the service of foreign dynasties, where the pressure of conventional literary culture was less and ingenuity could find spontaneous if unsophisticated admiration and support. Of this phenomenon many examples could be given. Hsieh Fei 3 and Wei Meng-Fien, both served the king of the Hsinnian Later Chao dynasty, Shih Hu, around +340. Wei indeed was his Director of Workshops, and together with Hsieh produced south-pointing carriages, floats with complicated mechanical puppets, wagon-mills (camp-mills), revolving seats, fountains, etc., 5 for all of which artistry Shih Hu had a particular liking. Another ‘nomadic’ dynasty, the Yen, that of Mujung Chhao 6 (in this case Hsien-pi or proto-Mongol), had the services of the most famous military engineer of his time (c. +410), Chang Kang. 7 He was a great expert on crossbows and perhaps the first inventor of the multiple-spring arcuballiste which were so characteristic of Chinese pre-gunpowder artillery down to the end of the Sung; 8 famous also for his knowledge of fortifications and the modes of attack upon them. In the end, however, he returned to Chinese allegiance and joined the founder of the Liu Sung dynasty. His parallel eight centuries later was Chang Jung, 4 Chief Military Artificer of Chagatai, the son of Chinghsia Khan, who built in +1220 a famous floating bridge with a hundred pontoons over the Amu Darya. Also a general of Mongol trebuchet artillery, this engineer constructed a road through the Sung-shu-thou pass east of Kuldja in Sinkiang which had forty-eight trestle bridges able to take two cars abreast. 9 These examples do not mean that the ‘nomadic’ peoples did not produce remarkable artisans and engineers themselves, for instance the odious Chhihkan A-Li 9 who served the king of the Hunnish Later Chao dynasty, Shih Hsüan, and so on. To end this history the best thing we can do is to present a translation of a +3rd-century essay by the philosopher and poet Fu Shih, 10 on his friend the engineer Ma Chü 4 (c. +260), perhaps one of the most interesting documents on the social history of ancient and medieval Chinese technology which we have found. 10

Mr Ma Chün, whose tua was Tâ-Hâng, came from Fu-feng 6 (in the Wei River valley between Wukung and Paochi) and was a man of wide renown for his technical skill (weng chhiāo). 10 In his youth he travelled into Honan but (at that time) he himself did not yet realise his own talent. Even then his powers of exposition fell far behind his mechanical ingenuity, and I doubt if he could express half of what he knew. Although he had a literary degree (po shih) 11 he remained poor. He therefore thought of improving the silk loom (ting chhiāo), and thus at last without need of explanations the world recognised his outstanding skill. The old looms had fifty heddles (tang 13) and fifty treadles (nieh 13). Some even had sixty of each. Mr Ma, fearing to lose the merit of his mourning period by wasting time, changed the design in such a way that it had only twelve treadles. Thus strange new patterns in many wonderful combinations were made, by the inspired conception of the inventor, all arising easily and naturally; indeed it would be impossible to describe the endless permutations of the Yin and Yang (the warp and woof) as the shuttle (šo phier 13) travelled back and forth. 11 But alas, how could he hope to explain to people the (principles of the) improvements which he had made?

1. Cf. the discussion on pp. 111, 457, 477 below.
2. We shall describe all these different contributions in their proper places below; pp. 150, 256, 287, 553.
3. On his life and work see Sect. 28 below.
4. See Sect. 99 below.
5. See Sect. 30d (2) below.
7. See Sect. 282 below.
8. See Sect. 30a below.
9. See Sect. 30d (7) below.
11. Cf. in the same Sect., pp. 486 below.
13. We have dealt with this already in Vol. 3, p. 491.
15. Also in Sect. 277 on pp. 448 ff. below.
16. The complete text, here conflated, is found in CSJK (Chin section), ch. 30, pp. 10 ff., and TSSC, Han hsiang tien, ch. 5, pp. 4 ff. Résumés also occur in the Fu Taun book (Han Wei Tshang Shu) as an appendix, and in TPLY, ch. 752, pp. 77 ff.
17. In Sect. 31 we shall try to analyse the meaning of these inventions, which certainly concerns the draw-loom for weaving patterns in the silk.
Mr Ma, being a Policy Review Adviser (Chi Shih Chung1) one day fell into a dispute at court with the Permanent Councillor Kaoting Lung2 and the Cavalry General Chhin Lung3 about the south-pointing carriage.4 They maintained that there had never been any such thing and that the records of it were nonexistent. Mr Ma said: 'Of old, there was. You have not thought the matter out. It is really not far from the truth.' But they laughed and said: 'Your name, Chhin, means a weight, and your zau, Té-Hêng, means the balance of virtue. But (if you go on talking like this) your name Chhin will be interpreted as a potter's wheel for moulding (empty) vessels, and Hêng will be taken to mean a decision on weight without weighing—in this way there is nothing you could not mould at will!' To this Mr Ma replied: 'Empty arguments with words cannot (in any way) compare with a test which will show practical results.5 All this was reported by Kaoting and Chhin to the emperor Ming Ti,6 whereupon Ma Chhin received an order to construct such a vehicle. And he duly made a south-pointing carriage.7 This was the first of his extraordinary accomplishments. But again it was almost impossible to describe (the principle of it) in words. However, theseforeth the world bowed to his technical skill.

Now in the capital there was some land which could be made into gardens but there was no water with which to irrigate them. Mr Ma (therefore) constructed square-pallet chain-pumps (fan chüeh).8 When the serving-lads (thung erh) were ordered to work them (by pedalling) the water rushed in and out, turning over and over automatically, and irrigating the gardens. The ingenuity (of the device) was a hundred times that of the ordinary methods. This was the second of his extraordinary accomplishments.

Fu Hsiao next goes on to describe the third and fourth accomplishments, i.e. the mechanical puppet theatre and the rotary ballista. The description of the former we reserve for Sect. 27c (p. 158) below. That of the latter will be given in Sect. 30b below. He then continues:

(At this time) there was at court a notable scholar, Master Phei (Phei-Tau).9 When he heard (of Ma's inventions) he laughed, and mocked him with difficult questions. Mr Ma said to Master Phei on one occasion: 'Your great merit is of course eloquence, but where you fall short is in technical skill. Now this is Mr Ma's strong point, but he is not a good talker. For you to attack his inability to express himself is really not fair. On the other hand when you argue with him about those technicalities in which he excels, there must be points which we cannot expect to understand. His special talent is a very rare one in the world. If you insist on raising difficulties about these matters which are so hard to expound, you will go far astray from the truth. For Mr Ma's gifts are all of the mind and not of the tongue. He will never be able to reply (to all you ask of him).'

This reply is strikingly reminiscent of that colloquy between the swordsmith and the sophists. The ingenuity (of the device) could not be surpassed.

I.e. Tuanmu Tzu,10 like all the other men mentioned in this place, one of the disciples of Confucius. O. s. m. a merchant, he was famed for his eloquence and charm.

Jan Yu was tested with politics and Tzu-Yu and Tzu-Hsia with learning. Why not apply such tests to lesser persons? What is the point of saying that the principles of things cannot be exhausted in words, and that there can be no end to discussions about the universe, when the truth can so easily be verified by experiment? (erh shih chih z chih yeh). Mr Ma is proposing to construct ingenious equipment (ching chih) for the country and the army. All you need to do is to give him ten measures of wood and a couple of workmen, and you will soon know who is right. Why should it be so difficult to (get permission) for (an official) test when the experiment is readily made? (nan shih h yen). To discredit extraordinary ability in other people with light words is like (some­one who would impose his own wisdom on the affairs of the universe instead of handling the endless difficulties in accordance with the Tao. This is the path to destruction. What Mr Ma has accomplished has been the result of many modifications, so that what he said in the beginning is not necessarily still true. Must you refuse to make use of Mr Ma because not everything that he has said has proved to be right? How do you expect less well-known technical men to come forward? Among the mass of the people jealousy among competitors and mischief among colleagues is unavoidable. Hence (wise) rulers pay no attention to such things and base their judgment on tests. To throw away (true) standards and refuse to employ (Mr Ma) is like that false assessment which took a piece of perfect jade for common stone from Ching-Shan. That was why (Pien) Ho6 was seen hugging an unpollished gem and weeping (at the crossroads)."11

After this the Marquis of An-Hsiang saw my point, and talked over the matter with the Marquis of Wu-An.6 Nevertheless, the (official) tests were never ordered. (Alas, when the government) neglects to arrange such simple trials for a man like Mr Ma whose skill was well known, how is there to expect lesser gems to be brought to light? (I hope) that the rulers in days to come will use this case as a mirror. The ingenuity of Mr Ma could not be surpassed even by Kungshu Phan and Mo Ti12 in ancient times, nor by Chang Hêng13 in the Han. As Kungshu Phan and Mo Ti held distinguished positions14 their talents benefitted the

This was perhaps somewhat overstatement the case. Kungshu Phan was the most famous artisan and engineer of antiquity, but his date (between -470 and -380) was so early that we have little detail about his works.
world. But although Chang Hêng was a President of the Imperial Chancellery, and Ma Ch’în got as far as Policy Review Adviser of a Department (Chi Shih Shêng Chüng)\(^1\), neither of them was ever an official of the Ministry of Works, and their ingenuity did not benefit the world. When (authorities) employ personnel with no regard to special talent, and having heard of genius neglect even to test it—is this not hateful and disastrous?\(^2\)

After this remarkably scientific and experimental cry from the +3rd century, further comment would be superfluous, and we leave the last word to Fu Hsüan.

(3) Traditions of the Artisanate

Only one thing more remains before we can get to the bench, the foundry and the field. Any picture of the eotechnic artisanate would be incomplete without some allusion to its own traditions. About these a good deal has already been said. In Section 3, arising out of our notes on bibliography in general, there was a discussion of the legendary inventors (some, no doubt, originally technic deities) and of the books about them.\(^3\) In Section 13a, arising out of a study of the I Ching (Book of Changes), an account was given of the primary inventors recounted in its Great Appendix, a text of about the —2nd century.\(^4\) These sages, introducers of the plough, the cart, the boat, the gate, and so on, were doubtless those to whom Confucius was referring in his famous but truncated aphorism: 'The great inventors were seven in number (Tzu yâeh: to chê chiî jen i).\(^5\) Here we need only add to the above the specifically Taoist traditions enshrined in the Liæ Hsien Chuan\(^6\) (Lives of the Famous Hsien).\(^7\) A book with this title certainly existed in the Later Han (+1st century) and was known to Pao Phu Tzû. Traditionally it was attributed to Liu Hsiao\(^8\) (-77 to -6) who was supposed to have based it on a set of pictures, the Liæ Hsien Tha,\(^9\) due to one Juan Tshang\(^10\) of the Chhin. Although the text as we now have it was fixed only as late as +1019, when the Taoist Pathology was first printed, internal evidence shows that some portions of it go back to dates such as —35 and +167. Quotations in encyclopaedias further show that a different text, written by Chiang Lu\(^11\) of the Liang (+6th century) concerning him and what he actually did. There is certainly no evidence that he ever occupied a high official position, in his own State of Lu or elsewhere. Mo Ti is of course the celebrated philosopher of universal love about whom much was said in Vol. 2 (Section 11). His school was certainly connected with a knighthly technology of military arts (cf. Sect. 30 below) especially concerning poliorcetics (cf. Sect. 19 and 26 on mathematics and optics), and he became assimilated into alchemical tradition (cf. Sect. 33); but it is doubtful whether he was really ever a minister in the State of Sung.

\(^{a}\) Tr. auct. with Lu Gwei-Djen. Fu Hsiian's c. 300 ends with a commentary (perhaps by himself, as it is printed as part of the text) which tells us that Master Phei was Phei Hsiu. This is strange, since Phei Hsiu was one of the greatest geographers and cartographers in Chinese history, the father of the rectangular grid (see Vol. 3, pp. 538ff.). The sceptical philosopher Phei Wei\(^12\) is a man whom the cap might fit better (if the commentary is astray), but his dates would make him too young for the role. The commentary also tells us that the Marquis of Wu-An was Tshao Shuang\(^13\) and the Marquis of An-Hsiang was his younger brother Tshao Hsi.\(^14\) In the ruling house of the Wei State, to which they both belonged, scepticism outraged by empirical facts seems to have been quite a tradition (cf. Vol. 3, p. 659).

\(^{c}\) See Vol. 2, p. 247.

\(^{d}\) Tr. Ralston (2).

\(^{e}\) Tr. Kaltenmark (2).

\(^{f}\) See Vol. 2, p. 327.

\(^{g}\) See Vol. 2, p. 327.

\(^{h}\) See Vol. 1, pp. 51ff.

\(^{i}\) See Vol. 2, p. 247.

\(^{j}\) See Vol. 2, p. 327.
also circulated for some time. Now many of the immortals in this book (as we should expect from the nature of ancient Taoism) have close connections with the mechanical trades. In the biographies of Chhih Sung Tzu and Ning Feng Tzu we find traditions of the mastery of fire involved in metallurgy and ceramics, cast iron has a patron in Thao An-Kung, and mirror-polishing with mercury in Mr Fu-Chü. The Taoist patron of makers of mechanical toys was certainly Ko Yu, who animated one and rode away on it, while Lu Phi Kung was the great magician of bridges, ladders and galleries. Even the reel or small windlass of the fishing-rod had its spirit in Tou Tzu-lViing.

In later sections dealing with chemical industry and pharmacy, dyes and cosmetics, we shall encounter many more of such Taoist patron saints.

Just now we read Fu Hsiian's reference to Kungshu Phan, the greatest of all the tutelary deities of artisans (Fig. 354). In spite of the fact that much of what was handed down about him is clearly legend, there is no reason to doubt his real existence in the State of Lu (hence his other name, Lu Pan) in the 5th century, and we shall meet him from time to time in connection with kites and other devices. He lives in proverbs, for instance 'brandishing one's adze at the door of Lu Pan (Lu Pan men chhien lung fu)' which is as much as to say, in our less elegant idiom, 'teaching one's grandmother to suck eggs'. And as so often in Chinese culture, where everything tends to be one of a pair, like parallel hanging scrolls, Kungshu Phan has a companion Wang Erh, who may well have been a master of wood-carving contemporary with him.

Here is the place to mention a curious little work called the Lu Pan Ching, which circulated widely in the recent past among China's craftsmen. As it seems not to have been studied by any sinologist, some description of it may be appropriate. Its author or compiler, Su-cheng Wu-Jung, is quite dateless, but much of the content is so archaic that one gains the impression of dealing with material some of which might well go back at least to the Sung. Anything so traditional will always be hard to date.

The book opens with a series of illustrations (e.g. Fig. 355) showing operations of constructional joinery, sawyers at work, and various kinds of houses, bridges and pavilions, partly built or completed. A comparison might be made here with the well-known Tunhuang fresco of a pavilion under construction (Fig. 356). Among the pictures is one of a kind of tower meant for an astronomical observatory (su thien thai).

Then there follows, after a legendary biography of Kungshu Phan, a mass of detail about the cutting of timber in forests, the erection of pillars and the characteristic king- and queen-post frameworks, the making of granaries, bell-towers, summer-houses, furniture, the wheelbarrow, the square-pallet chain-pump, the piston-bellows, the abacus and many other things. Precise specifications and dimensions are all interspersed with lore about lucky and unlucky days, samples of charms and appropriate sacrifices. As the book proceeds the magical element preponderates more and more over the technical, and thus at the end we find a 'physiognomy' of buildings, directions for exorcistic and luck-bringing incantations, and descriptions of permanent protective cantrips. The whole work, therefore, which deserves serious study, constitutes a unique piece of traditional technology and folklore.

One might find a close parallel to the Lu Pan Ching in the Mayumataya of Ceylon, a Sinhalese manual of craftsmanship for artisans and builders with an equally prominent admixture of divination and protective magic. But like the Chinese work it contains shrewd practical advice and throws much light upon the techniques of the past. Another parallel which might be cited as showing how long-enduring certain texts could be when they 'descended' to the common people and became accepted as part of traditional lore, is the Aristotle's Masterpiece of Western Europe. This book, which can still be purchased today, has probably formed the main source of instruction on sexual and embryological matters for working-class people during the past several centuries. Yet it originated in an epitome of the opinions of Albertus Magnus (+1206 to +1280) on generation, which bore the title De Secretis Mulierum and was still circulating in the +16th and +17th centuries. Another source of Aristotle's Masterpiece was the book of Fortunius Licetus (De Monstrorum Causis Natura et Differentiis, +1616), illustrations from which are still being published in this 'submerged' form. All in all, one may guess that the Lu Pan Ching, though not recognisable in any of the bibliographies of the dynastic histories, has a pretty long past.

a Cave no. 445, early Thang in date.

b Cf. Vol. 3, pp. 297ff. for a discussion of these towers.

c Full explanations will be found in Sect. 28d below.

d As Dr Lu Gwei-Djen has pointed out to us, the doctrine of lucky and unlucky days (cf. Vol. 2, p. 357), superstition though it was, had a useful social function in a culture which had not borrowed from Israel the institution of a weekly day of rest for the toilers.

e Entitled Hsiang Chai Pi Chiieh. On physiognomy in general see Vol. 2, pp. 363ff.

f Entitled Ling Chhii Chieh Fa Tung Ming Chen Yi Pi Shu. Here we find the famous stone slabs so nostalgically familiar to those who have lived in the Chinese countryside, with the inscription Thai Shan shih kan tang.

g Entitled Pi Chiieh Hsien Chi. Here the famous stone slabs are so nostalgically familiar to those who have lived in the Chinese countryside, with the inscription Thai Shan shih kan tang. (1)

h Fully described by Coomaraswamy (5), pp. 120ff. Its present text claims to have been translated from a Sanskrit work (not yet identified) in 1837. But again the material is so archaic that it must go back at least several centuries, indeed it is part of an age-old traditional lore.

The most outstanding characteristic of all Lu Pan's children down to modern times was perhaps the fact that they worked by knack, by rule of thumb, and by inherited slowly evolved tradition. This we saw already in considerable detail when discussing the artisanate of the ancient Chinese world. The Taoist philosophers, particularly interested in techniques not transmissible by words, were always giving examples of this incommunicable yet learnable skill—swordsmiths for instance, and bellstand-carvers, arrow-makers, buckle-makers and wheelwrights. Two immortal stories remain of them: Ting the butcher (Ting phao jen), who cleaved his bullock carcasses according to the structure and pattern of the Tao, and Pien the wheelwright (Pien lun chiang), who told Duke Huan of Chhi that he would be better employed in learning the trade of governing from the people than in poring over Confucian treatises on the subject.

The justified veneration of 'knack' and personal skill or flair was largely a phenomenon of those long ages when materials and processes were not really fully under control. In a time such as our own, when a whole chemical factory can operate almost automatically, variations in the reactants being sensed by receptor apparatus and continuously adjusted by feedback processes, it is hard even to imagine the lot of the technician who had to carry out empirical procedures of which there was no scientific understanding. Deviations from the normal which would spoil the results desired could only be detected by the man whose observational faculties were extremely alert. Courses of action once found to succeed could only be repeated by the man whose memory was good and whose sleight of hand could rise to the occasion time after time. Materials as variable as wood and potter's clay and the crude uncomprehended metals could only be worked by the man who learnt from decades of experience to know the signs, the 'smell', the physiognomy, of the materials suitable for his purpose. There was many a failure and disappointment, but some psychological help was forthcoming from myth and legend, and many of the ancient Taoist metallurgists engaged in rites of purification and ascesis before beginning their operations. This cultivation of intuitive and meditative skill was continued in Zen Buddhism, as in archery and similar arts still today. The craftsman could not express his procedures in logical terms. In fact he could not explain at all; he could only show.

Thus the transmission of the crafts from one generation to another naturally involved a total education of the body and spirit of the learner. Apprenticeship was subjective and personal, not a matter of the intellectual understanding, not at all the appreciation of mathematical functions describing the behaviour of deeply analysed physico-chemical entities. Yet to some extent the skill of the artisans was handed

\[a\] Cf. Vol. 2, pp. 131ff.
\[d\] In Sect. 30d below we shall give a striking example of this in a quotation concerning ancient iron-casting. The tradition of religious rite has lasted on in Japan until our own time, as may be seen from Fig. 357, which shows swordsmiths in strange ceremonial dress beginning their temperings after prayer and fasting.

Fig. 357. Japanese swordsmiths in ritual dress at work in their forge (Anon. 36).
down orally in the ubiquitous and invariable practice of 'learning by rote' mnemonic rhymes (ho chieh’). This is marked not only in engineering and building literature, which is relatively small, but also among the alchemists and the physicians, whose books are extremely numerous. For the tricky empirical procedures of the medieval chemist nothing was more natural. Even some scholars, despairing of being able to produce accurate maps of the heavens, recommended the learning of the stars by heart. Chêng Chhiao wrote, about +1100:

Astronomical records are collected in maps rather than in books. Now even if books and manuals are handed down for a hundred (generations) they do not repeat the mistakes and errors, and even those they have can easily be compared and corrected. But maps acquire mistakes at each transmission, and these are perpetuated until it is difficult to find (the stars). Hence reliable maps are rare, and scholars fail to recognise the stars and constellations. However keenly you search in books you cannot get a right picture, and however much you study the charts you cannot rely on what they show. So it is best to chant over every day the Pu Thien Kô (Song of the March of the Heavens). Start on a moonless night in the autumn when the heavens are clear like a stretch of water, and chanting a strophe look upwards to study this or that star—after several nights you will have the whole picture of the heavens within your heart.

Of course both this advice, and the mnemonic rhymes of the master-carpenter or the iron-founder, were part of a culture in which the normal method of approaching the study of the classics was learning by heart in school before any explanations were given. But it must be remembered that in ancient and medieval times (and indeed until the last century) most of the craftsmen remained illiterate. There was therefore not only the basic intellectual difficulty of coinage new technical terms, but also serious obstacles to writing them down when they were adopted. Shipbuilding is among the most complex of the mechanical arts, yet one of the deepest living students of this craft in China found in thirty years’ experience that hardly any of the best shipwrights whom he met could write. And as we shall see, there are many technical sea terms for which no characters exist at all. Of course all this does not mean that there were no technical manuals in Chinese tradition—in this Section we shall shortly describe an engineering literature of great interest. In the case of shipbuilding, it is true, we know of only one treatise with adequate diagrams, and that was never printed, nor is it very old. But plans, diagrams and models, even to scale, were frequently made.

Many examples will be found in Sects. 33 and 44.

Even as recently as twenty years ago the bee-like hum of schoolboys chanting the classics was one of the pleasant sounds of the Chinese countryside, as I do well remember.

Mr. G. R. G. Worcester, in private conversation.

Sect. 29 below.

It is interesting to remember that in modern engineering parlance 'a Chinese copy' means a copy of a machine or of some component part made by eye, measurement, or tradition, without any diagrams or drawings.

As an example let us take the traditional English four-wheeled farm wagon. The standard diameter of the front wheels (a dimension probably centuries old) was 4 ft. 2 in. There was need for a swivelling fore-carriage that would give a good 'lock' so that the wagon could turn around in a circle of as small radius as possible. Therefore (a) there was a gentle forward boat-like rise of the floor-timbers of the body, (b) a slight narrowing was effected at the waist, (c) iron shielding was put on the 'sweep' (the back bar of the fore-carriage), and (d) iron 'locking-cleats' protected the side-timbers at the waist. But why were the front wheels not made so small as to go right under the body? Because as it was the axle could clear the ground only by about 2 ft., and while any less clearance might do for a road, it would not do for rough farm tracks and fields. Why then was the body not built higher? Because this would have been very inconvenient for loading and unloading, as well as dangerously liable to overturn. And there was another very good reason why the wheels were made no higher. See Sects. 28d, 29, below.

On the other hand, when an inventive man did succeed in gathering the right workmen about him, as Ma Chhün or Yuwên Khai or Su Sung must have done, they were probably master-craftsmen indeed.

On the history of the bogie or turning-train see Boyer (4).
smaller; the difficulty of fitting the felloes on to the spokes. Naturally the spoke-holes had to be further apart at the periphery of the rim than at its inside circumference, yet this made them hard to put on, and the process was only achieved by the use of a tool called a 'spoke-dog' which strained the spokes together and allowed the felloe to be slipped over their ends.

The nature of this knowledge, says Sturt, should be noted. There was no conscious understanding of the why and the wherefore, only traditional good sense handed down through generations of Surrey wagon-builders. This knowledge was set out in no book. It was not scientific. I never met a man who professed any other than an empirical acquaintance with wagon-builder's lore. My own case was typical. I knew that the hind-wheels had to be 5 ft. 2 in. high and the fore-wheels 4 ft. 2 in.; that the 'sides' must be cut from the best four-inch heart of oak, and so on. This sort of thing I knew, and in vast detail in course of time; but I seldom knew why. And that is how most other men knew. The lore was a tangled network of country prejudices, whose reasons were known in some respects here, in others there, and so on... The whole body of knowledge was a mystery, a piece of folk knowledge, residing in the folk collectively, but never wholly in every individual. 'However much a man knows,' old Betteworth used to say, 'there's sure to be somebody as knows more.'

Such is the real background of medieval craftsmanship, in East as well as West. Out of it grew all those great inventions and innovations which preceded the break-through of the Renaissance, when the technique of invention and discovery was itself discovered. It is the scene on which the drama now opening was played.

(4) Tools and Materials

In entering upon the present subject it is first necessary to say something briefly about the tool-chest of the Chinese mechanic (Fig. 353). The task is rendered difficult by the fact that no one, either Chinese or European, has brought together a critical account of Asian tools of all ages, taking into account ethnological relationships and confronting archaeological objects with relevant texts. In fact this has not really been done for our own civilisation either, the literature consisting mainly of speculative books now rather old, with a few brilliant modern contributions on 'instrument typology', and certain borderline studies such as the work of Moles (1) on the history of constructional woodwork. For China, Hommel's account, already mentioned, suffers from total lack of acquaintance with the Chinese literature; but even more regrettable is the fact that he does not give us any of the current technical names (and characters) for the various instruments and devices, though he must have been familiar with all of them. Karlgren's description (13) of Shang dynasty tools and weapons is wholly archaeological in spirit, without any of the practical engineering approach.

a Sturt (1), p. 74.
b E.g. Noisé (1) and Kapp (1) with the controversies on the 'organ-projection' theory, for which see Howett (6).
c E.g. Flinders Petrie (1, 2); Curwen (1); Mercer (1). Mr R A Salaman's work is eagerly awaited.
d Other accounts of the arts and crafts in Japan as well as China, e.g. Kämmerecr (1); Yanagi (1); Waltz (1), are not much more informative though some of them reproduce old pictures which may be useful.
greatest and most helpful figure, Charles Frémont, is curiously little known, but he combined the historical method and use of sources with actual experiments in subjects such as the physiology of work and strength of materials in a way which has not been done before or since. We shall often refer to him. If these different interests could be combined with an ethnological competence such as Leroi-Gourhan's something valuable would begin to emerge, but the synthetic work has not yet been done, and all I can offer here is a few notes and references which may help to orient our minds.

The most useful viewpoint from which to start is that of Praus (1), who had no difficulty in showing that with the exception of shearing and possibly punching, neolithic man had already discovered all the mechanical principles embodied today in powerful machines for changing the volume and form of matter.

The difference between the far past and the present lies mainly in the application of sources of power far exceeding that of human muscle, but controlled to an ever-increasing extent by mechanical refinements. The few remarks which have to be made may conveniently be arranged according to the classification of mechanical operations in Table 55.

It is curious that in spite of the great social significance of tools and machines, only 10 out of the 214 radicals in the Chinese language represent them, with an additional three radicals for weapons. Possibly this reveals lack of technological interest on the part of Confucian codifiers and lexicographers.

The history of hammers has been considered by Frémont (13), Coghlan (2) and Fischer (3). Much information about the various kinds of hammers (chui), mallets (chhui), sledgehammers (ta chhui), etc., traditionally in use among Chinese artisans, will be found in Hommel. They made great use of the principle of flexible handles for heavy hammers, to add to the force of the impact and reduce the sting on the hands. When the handle of a hammer is attached to a fulcrum at some point along its length, and the head then raised and allowed to fall consecutively either by human power or water power, the instrument (tilt- or trip-hammer; tui) has reached the level of a machine, and as such we shall treat it a few pages further on. Frémont could adduce no evidence for the occurrence of this in Europe before the 15th century, yet it goes back well into the Han in China, as is shown by numerous models of tilt-hammers operated by the weight of a man, and found in tombs of the period (Fig. 358). These may be compared with the oldest drawing which we have of the Chinese man-power tilt-hammer, that from the Keng Chih Thu of +1210 (Fig. 359).
It is seen used for cutting rice. A parallel machine is the rope-suspended pile-driver (la chuang chi'). Fig. 356 shows a hand-operated type still common in China being used in repair of a wash-out on the Old Silk Road in Kansu province in 1943. Frémont and Poidrowen (1) figure closely similar tackle from the Renaissance time being used in repair of a wash-out on the Old Silk Road in Kansu province in 1943. The technique spread all over the culture-area of Chinese influence, e.g., Indo-China, and appeared also early in India (cf. Grierson (1), p. 192). The Chinese form had no hardy hole until modern times. Logically analogous is the pestle (chhu') and mortar (chhu'), which go back to the Shang time or earlier; Hopkins (11) has drawn attention to the fact that the verb chhung' (K 1912), to pound in a mortar, was originally a pictograph of the operation. The history of cutting edges in China, and their manifold uses, has yet to be written. Were space and time available, an analysis of all derivatives of the radical tao would be of real interest. Besides cutting-edge tools of the workers in wood and metal, there would be of course also the great classes of agricultural implements (such as the sickle, lien, the sharp-pointed spade, feng, the ploughshare, pi or chuan, the hinged chaff-cutter, cha, and so on) and of military weapons (such as the sword, chien, the crescent-bladed halberd, yuien, etc.). Though chin was the ancient term for axe, the word fu early replaced it, giving rise to further technical terms, such as shou fu for adze. The carpenter's plane was called paos, the form of the character perhaps indicating that a knife was enclosed in a box-shaped holder. Though des Noettes (3) considered that this tool was not known or used in Europe until the 14th century, Feldhaus (1) believed that it existed in Hellenistic times, and a special investigation as to the time of origin of the name and thing in China would be worth while; it may well be earlier. The word pao, however, does not occur in Han or pre-Han books, i.e., before about the +2nd century. Chinese planes (cf. Fig. 351) are always worked by pushing away from the worker's body. Outside its box and with the aid of a mallet, the plane knife becomes a chisel (tsou) or gouge (chhu to').

In the technique of sawing, cutting and scraping combined. The tool goes back to the neolithic and

<table>
<thead>
<tr>
<th>Percussion</th>
<th>Cutting</th>
<th>Scraping</th>
<th>Shearing</th>
<th>Moulding</th>
<th>Forging</th>
<th>Joining</th>
</tr>
</thead>
<tbody>
<tr>
<td>hammer (and anvil)</td>
<td>pestle (and mortar)</td>
<td>sleighhammer</td>
<td>trip-hammer</td>
<td>slashing knife sword</td>
<td>slashing + leverage sickle axe adze</td>
<td>pushing plane paring chisel gouge</td>
</tr>
<tr>
<td>sleighhammer</td>
<td>trip-hammer</td>
<td>slashing knife sword</td>
<td>slashing + leverage sickle axe adze</td>
<td>pushing plane paring chisel gouge</td>
<td>gouging turning gouge</td>
<td>filling file</td>
</tr>
<tr>
<td>detruding (Piercing)</td>
<td></td>
<td>needle and pin</td>
<td>spear</td>
<td>pick-axe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shearing (Punching)</td>
<td></td>
<td>scissors, shears</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moulding (Chipless</td>
<td>forging die-work swage-moulding</td>
<td>traction, e.g., wire-making extrusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>forming)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 55. Classification of mechanical operations for changing the volume and form of matter

1. This technique spread all over the culture-area of Chinese influence, e.g., Indo-China, and appeared also early in India (cf. Grierson (1), p. 192).
4. This word too occurs in the Khao Kung Chi of the Chow Li (ch. 11, p. 140).
was used in all ancient civilisations. In China, the saw (chü) achieved many subtle developments and a common form of it is the bow-saw or framed pit-saw for cutting tree-trunks into planks. In such saws the teeth are inclined starting from the middle of the blade in such a way that they point in opposite directions towards the ends; thus the two sawyers, one above the wood and one below, do equal amounts of work.

Sometimes logs are sawn horizontally, the sawyers walking slowly from end to end on each side (Fig. 363). Full stretching of the bow-saws is effected by tightening the cords on the other side of the central pole of the frame with a toggle stick (Fig. 362). For tree-felling there are crosscut saws. Frame-saws or bow-saws were of course used also in Hellenistic times (Neuburger, I) and represent an ingenious way of overcoming the dilemma between too thick a blade which would be strong but cut too coarse a kerf, and a blade finer but weaker. Chinese workmen use a great variety of saws and are familiar with many ways of filing and setting the teeth.

Since metals can be shaped and cut while in the hot plastic state, the saw plays a much smaller role in metalworking than in carpentry, and the file, which in a sense corresponds to the plane, a correspondingly greater one. Frémont (9, 23) has written the history of the file, which he derives from natural objects primitively available such as the bones of fish in general, and the rough skin of elasmobranch fishes such as the ray, in particular. Hommel gives a good description of the Chinese file (tsho), which differs somewhat from that commonly in use in the West. It has a tang on both ends, one to receive the wooden handle, and the other to carry a longer shaft of wood which fits through a ring-topped spike or eye-bolt (Fig. 364) within which it slides. This guide-rod gives a helpful down-leverage. While occidental artisans hold the article to be filed firmly in a vice and work all round it with the file, the Chinese system is to have the file oscillating in a more or less fixed path, and the article turned around under it as desired for filing (tsho). Fig. 365 shows files in use in a +17th-century workshop.

Fig. 362. Frame- or bow-saw with toggle stick, from Thu Shu Chi Chheng (1 shu tien), ch. 8, p. 27b. Cf. Mercer (1), p. 151.

Fig. 363. Sawyers in the Chungking shipyards in 1944 (Beston, 1).
Fig. 364. Apprentices using the Chinese double-tanged file.

Fig. 365. The double-tanged file in use in a coin-minting workshop of the 17th century (Thien Kang Chih Wu, ch. 8, p. 106).
All grindstones and whetstones (_chih_1, _li_2) belong in the same category as files. Grinding (_mo_3, _yen_4) must have reached a high level of skill among the early Chinese because of the importance of jade-working among them. Hommel found no evidence of the use of rotary grindstones, all those that he saw being rectangular blocks worn to a concave upper surface, but the complete absence of the former seems difficult to believe. As we have already seen, the use of rotary tools (the disc-knife, _cha tho_5) in jade-working seems to go back to the - 3rd century at least, and the edge-runner mill in both its forms can hardly be any younger. The mental connection between the disc-knife and the edge-runner mill (below, p. 195) is seen by the fact that the oldest term for the former which has come down to us is the same as that for the latter, with the addition of 'abrasive' as an adjective (_sha nien_6). A special case of a grindstone is that of the inkstone (cf. Vol. 3, pp. 645 ff. above).

Drilling must be considered a branch of scraping or grinding since material is actually removed from the hole made, and on drilling much has been written. This technique brings up the question of the origin of the driving-belt, and takes us therefore immediately into a fundamental engineering problem. Continuous rotary motion can only be attained by the aid of the crank (in one form or another) or the driving-belt, but for many purposes, of which drilling is one, a reciprocating rotary motion is sufficient. It has been said that the Chinese did not make use of continuous rotary motion, but this is a misstatement in view of the antiquity of the crank in China (p. 118 below) and machines such as the square-pallet chain-pump (p. 339 below). If they had not been masters of it, the continuous and carefully adjusted turning of armillary spheres (pp. 481 ff. below) with the aid of water-power would not have been possible. Nevertheless, it does not seem that the artisans themselves applied a continuous drive to their drills (_tsuan_7), for even at the present time the reciprocating drive remains in general use, as it is so widely in all eotechnic cultures and civilisations.

The simplest form of reciprocating rotary motion is seen in the shaft-drill, the shaft of which is merely rotated back and forth between the palms of the hands. The ancestor of the driving-belt comes in when a strap or thong is wound round the shaft and each end pulled alternately (similar to the single motion of spinning atop) by one man, while a second holds the drill steady (Fig. 366). Here the belt is not continuous, but it becomes so, in a sense, when its two ends are connected by a piece of wood, as is the case in a bow and its bowstring. If now the bowstring is wound once

* See his fig. 381. Cf. Vol. 4, pt. 1, p. 117 above.
* Apart from that in which the runner or roller describes a circular course, and that in which it moves back and forth in a rectilinear path.
* I.e. that in which the runner or roller describes a circular course, and that in which it moves back and forth in a rectilinear path.
* Apart of course from the 'Khun-Wu knife'; cf. above, Vol. 3, p. 667.
* Hommel (1), pp. 331, 332, 338, describing Chinese boat-builders' drills. McGuire (1), pp. 706ff., 726. The strap-drill or thong-drill is often applied to other uses, such as the lathe, or in India the churn. McGuire (1), p. 742, has detected it in certain Ancient Egyptian symbolic pictures, in which it is not obvious until pointed out.
round the drill axis a powerful reciprocating motion will be imparted to the drill each time the bow is swept back and forth—and this is the bow-drill. In passing, its possible relation to the bow of the musical instrument known as the fiddle may be noted. Probably palaeolithic, it is found among many eotechnic peoples still, and was a well-known tool in Ancient Egypt. It still exists in England in certain trades, such as those of piano-makers and clock-makers. Here we illustrate a Chinese carpenter’s bow-drill (Fig. 367). Somewhere very long ago, no one knows where or when, the idea originated of making a hole in the centre of the bow and having it rise and fall alternately at right angles to the drill axis with a pumping motion, hence the term pump-drill. Fig. 368 shows a modern Chinese brass-smith’s pump-drill.

Seventeenth-century workmen using it are seen in several contemporary illustrations.

As is well known, the drill figured prominently in the very ancient ceremony of obtaining ‘New Fire’. We saw above that in the Chou Li a special type of official, the Ssu Kuan (Director of Fire Ceremonies), was in charge of this. The Lun Yu attests its use for the 5th century, and shows that already there was a series of woods considered suitable for use at the different seasons. Unfortunately, no evidence has survived, in spite of discussions by scholars of many periods, which would inform us as to the exact type of instrument used as the fire-drill (tsuan sui). The most spectacular application of drilling in Chinese culture was the art of deep drilling, practised especially in Szechuan, where there are vast deposits of brine and natural gas. In Section 37 on the salt industry evidence will be adduced which shows that by the Early Han period the Chinese had developed very fully the technique of drilling boreholes two thousand feet deep, and consequently all the techniques associated with this art. The story forms perhaps the most important part of the prehistory of petroleum engineering, but we must not anticipate it here.

When the drill is mounted horizontally upon a frame, and is made to bear upon its working end not a boring tool but the article upon which a chisel or knife is designed to work, then the lathe has come into existence. Treadles operated by the feet can

8 Childe (11).
9 Klebs (3), fig. 73, p. 103.
11 Holzapfel & Holzapfel (1), vol. 4, p. 4; McGuire (1), pp. 733, 735; Hommel (1), pp. 27, 30, 199.
12 This type of drill persists in neotechnic Europe, especially among stone-masons and porcelain-menders. I remember my father teaching the use of it to me in his workshop. One should note that in its perfected forms it involves the flywheel.
13 TKKW, ch. 10, p. 78, for example.
14 Ethnography in Hough (1), pp. 87 ff. and elsewhere. At the Chhing Ming festival every April in Hangchow around +1350, the ‘New Fire’ ceremonies were as dramatic as those of liturgical Christendom; see Gernet (2), p. 208, based on Meng Lian Su, ch. 2 (p. 148).
15 Vol. 4, pt. 1, p. 87; cf. de Visser (1).
16 There are many other Han and pre-Han references, such as the Li Chi, ch. 12 (Legge (7), vol. I, p. 459); the Kuan Tzu, ch. 53, etc.
17 Notably by Sung Lien in the Ming in Ming Wu T'ai, ch. 37, and Chih Hsien in his Hsien Chi I Shu (Records of Ancient Arts and Techniques). KCKW, ch. 4, p. 319 is wrong in saying that the 16th-century Ch'ang Huo Ku Chu Chi discusses the fire-drill.
18 Lent-Geruzian (1), vol. 1, pp. 172, 184, 187; Fischer (2); Montandon (1), p. 488. The best general history of the lathe in late times is that of Wittmann (1), and now we have Woodbury (4, 5) for the earlier periods.

Fig. 367. The bow-drill in use (Hommel, 1), as by carpenters.

Fig. 368. The pump-drill (Hommel, 1), used by brass-smiths.
easily replace the two hands of the assistant operator, and this simple form of the machine (chêchhüang, 橫) is still common among Chinese artisans (Fig. 369).\(^a\)

By a simple improvement, one end of the drive belt can be attached to a springy pole above the lathe, thus releasing one of the worker's feet and permitting more concentration on the work—such pole-lathes persisted in general use well into the eighteenth century in Europe,\(^b\) and are known from many cultures, such as that of the Algerian Kabyles.\(^c\) The statement that this type of lathe never developed in China\(^d\) should be accepted with caution, since the use of springy bamboo laths was always very characteristic of Chinese technique, for example, in one of the two basic types of looms (below, Sect. 31). Little is known as to the antiquity of the lathe in China, but it is

\(^a\) Hommel (1), pp. 252, 347. For an Indian example, see Grierson (1), p. 85. Replacement of the belt by connecting-rod, crank or crankshaft, and flywheel gives the 'sewing-machine' drive. Leonardo used this for a lathe (cf. Burstall (1), pp. 122, 141) but it had been current earlier in China for silk-winding machines (Fig. 409) and probably for cotton-gins (Fig. 420). It was one of the steps on the way to the 'steam-engine' assembly for the interconversion of rotary and rectilinear motion (see pp. 380ff.).

\(^b\) Earliest European illustration is probably the MS. Lat. 11560 in the British Museum, f. 84a, of the +13th century.

\(^c\) Holtzapfel & Holtzapfel (1), vol. 4. The pole-lathe is still used in Wales for making wooden bowls and in Buckinghamshire for chair-legs.

\(^d\) Hommel (1), p. 253.
27. MECHANICAL ENGINEERING

not likely to be later than the Hellenistic time, when Egypt obtained it from the Greeks.a

Detrusion, or puncturing where there is no removal of material from the hole, has played an immense part in all man's dealings with matter, but is more typical of primitive than of developed technique. In woodworking there was the awl (chu'), in agriculture and construction the pickaxe (ting tsu fu'), in textiles the needle (chien 27), and pin, in warfare the dagger-axe (ko') and lance (mao'). The textile usages are more suitably considered in connection with the art of joining, as allied to nails and dews.

On shears (chia'), scissors (chien 13), and punches (chung 15) Fremont has written (22); they form a separate category since the material is attacked from both sides at once.5 Shears in which the tangs of the iron blades formed a continuous spring were common throughout the Roman empire, but there seems no reason at present to suppose that the Han people got them from their Western contemporaries.6 A pair of such shears is to be seen in the recently recovered Sung tomb frescoes from Yü-hsien 12 in Honan (exhibited at the Palace Museum, Peking, 1952). Sun Tzu-Chou (1) has devoted a special paper to the history of shears and scissors in China, arising out of the recovery of a pair of iron scissors from a Thang tomb.7 Chien,8 originally a verb, to cut, goes back to the Shih Ching (c. -7th cent.) and the Tso Chuan, but seems not to become a noun for a tool till the Han.9 The form of the Thang scissors suggests that they derived from the pivoting together of two knives of a shape common in the Han, hence also the rationale of the character chiao 10 (crossed' knives). There is an obvious intrinsic connection between scissors and all instruments for holding small objects, such as pickers and forceps; 11 and since the use of chopsticks (chu 11; mod. khoui 14) goes back so far in Chinese civilization (to the -4th century at least; Forke, 15), there would seem more probability that if any travel took place it was from east to west. This was indeed the conclusion of Hommel, 12 who cites evidence that scissors formed of two separate members movable about a central point were not known in Europe before the +10th century. This cannot be quite correct, as A. H. Smith illustrates a Roman pair in the British Museum from Priene, but probably they were uncommon before the late Middle Ages. They were certainly a Venetian import from the Middle East. 13

a Lucas (1), p. 510. Vitruvius (-36) frequently mentions it, as form (xi, 1, 2 and viii, 6; also xi, 1, 2, vii, 3, 3 and viii, 1).

b Traditional types of Chinese instruments in Hommel (1), pp. 17, 21, 38, 200, 217. Southern people, says the Erh Ta, called scissors chi sau, "trimming knives."

c As suggested by Leroi-Gourhan (1), vol. I, p. 276.

d A pair in copper, also Thang, had been recovered previously.

e Shih Ming dictionary, c. +100.

f The history of forceps (though without reference to Chinese material) has been compendiously written by Müller-Christensen (1). They go back to the first dynasty of ancient Egypt (c. -3300) as well as to Ur in Mesopotamia; the former seem to be surgical, the latter cosmetic. I am happy to possess a small bronze epilaory forceps of late Chou or Han date, 5.8 cm. long, with legs of equal breadth to the bit and engraved with cloud-scroll designs.

(1) p. 201.

The last basic type of technique is moulding. The means used to fill the mould (mo') will vary according to the viscosity of the material involved. Of the casting (chu') of bronze, iron and other metals, there will be much to say in the Sections on metallurgy (30 and 36), but obviously if the metal is brought to fusion (yung, or jung 14, hua') nothing has to be done in the foundry but pour it into the prepared mould. If, however, the material is viscous, as in the case of clay for ceramics, or in brick-making, 15 pressure with or without percussion has to be employed. Some tools, like the trowel (man'), themselves give shape to what they handle. An outstanding Chinese technique involving moulds is that of house-building with walls of stamped or rammed earth (terre pisé); 16 this goes back to the Shang time (-2nd millennium) and will be discussed in Section 28d on building technology. In wire-drawing the moulding is effected by traction of the ductile metal, and it is easily possible to show that no essential change has taken place in the technique since Hellenistic times. 17 Fig. 370 shows Chinese wire-drawing equipment. Hommel gives a good account of the technique as he saw it, 18 with reasons why he thinks that the Chinese were never able, till modern times, to apply it to iron wire. Yet the Thien Kung Khai Wu of +1537 gives a clear description of the process, 19 with an illustration of a wire-drawing workshop (see Fig. 332 in Vol. 4, pt. 1).

a As opposed to forging, or the making of wrought iron (man 18, thiéh).

b Hommel (1), pp. 239 ff.

c Cf. Böehling (1).

d Fremont (18); Feldhaus (16). The latter finds the first evidence of the making of iron wire at Nuremberg about +1100.

f The iron has to be annealed after every two or three reductions.

g Ch. 18, p. 48, for needle-making. A connection between the origins of iron-wire drawing and those of the magnetic compass needle is to be suspected; cf. our discussion of Sung needles in Vol. 4, pt. 1, pp. 282 ff. above.

Fig. 370. Apparatus for wire-drawing, Yuan tiïsk hien (Fremont, 18).
The joining of materials together is a branch of technique which may involve a number of the above-mentioned fundamental ones. Projecting structures play the largest part in woodwork—nails (ting), dowels (ho pan ting), the mortice and tenon (sun yen, sun), etc.—but there is also connecting with glue (chiao); a practice which has more importance in metal-working in the form of the analogous techniques of soldering (khaum, hain) and welding. The projecting structure separated from its base is the most important in the arts of sewing and tailoring, needles and pins deriving presumably from the thorns and fish-bones of primitive ages and peoples.

The history of the nail has been written by Frémont (4), who figures a Chinese nail-maker’s forge taken from a Chhing painting. Nails (patterns or templates for nails) and bamboo pins or dowels. Wrought-iron dowels, however, were considered necessary in Chinese shipbuilding.

The oldest and simplest were the stretched string or plumb-line (chêngh), the water-level (chêngh), the measuring-rule (chhiu), the compasses (hau), the carpenter’s square (ch’i), and the balance (chhiu-heng) or steel-yard (chhih-heng). We have mustered them already in the introduction to the subsection on mensuration (Vol. 4, pt. 1, pp. 15 ff. above). The square and compasses go back so far as to appear in the purest mythological material, for they form the traditional emblems of the organiser gods, Fu-Hai and his sister-wife Nü-Kua. A tomb-shrine relief showing this has already been reproduced (Vol. 1, Fig. 28). So familiar were the tools of measurement that even Confucian scholars drew upon them for metaphors. For example, the Hsîn Tzu says:

When the plumb-line with its ink (chêngh mo) is truly laid out, one cannot be deceived as to whether a thing is straight or crooked. When the steel-yard (chhih) is truly suspended, one cannot be cheated in weight. When the square and compasses are truly applied, one cannot be mistaken as to squareness and roundness. So when once the chên-tzu (the great-souled man) has investigated rightness of conduct (li), he cannot be deceived by what is false.

There are many other passages of this kind.

Examples of more complex measurements are frequent in illustrations and early descriptions, for instance, the testing of the strength of cross-bows, the testing of arrows by floating (Vol. 4, pt. 1, p. 39 above) or of specific gravities by the sinking of seeds (Vol. 4, pt. 1, p. 42 above), and several special proof procedures (e.g. wheel true-ness) described in the Chou Li (Kiao Kung Chi). The most striking measuring tool from old China, however, is perhaps the adjustable outside caliper gauge with slot and pin, which looks very like a modern adjustable spanner without the worm. Wu Chhén-Lo has described and figured a remarkable example dating from the first year of the Hsin dynasty, under Wang Mang, i.e. +9. This is shown in Fig. 371. One side of these sliding calipers is carefully graduated in six inches and tenths, while on the other side there is an inscription in seal characters saying: ‘Made on a kuei-yu day at new moon of the first month of the first year of the Shih-Chien-Kuo reign-period.’ No engineering tool of this kind appears to be known in Europe before the time of Leonardo da Vinci, who sketched something similar.

One cannot quit the subject of tools and their work without alluding to certain characteristic Chinese materials. If this were logically done it would involve a great many questions more suitable for later Sections, e.g. those devoted to building techniques, agricultural arts (chih-fa), and so on. In any case, the information on subjects such as the economic lumber trees of China has never been conveniently collected. But a few words may be said of one of the most universally used materials, bamboo, which was not so readily available for other civilisations.

A very large number of species are indigenous to China, probably the commonest being members of the genus Phyllostachys. One would have thought that much
Such constructions make slight use of pegs or lashings, but one bamboo pole is made to hold another tight by chamfering and bending at a right angle, or even doubled back. It is not at all fanciful to point out that furniture, scaffolding and other erections of tubular steel make use at a more neotechnic level of exactly the same principles of structural strength as the ancient applications of the bamboo tube. Yet delicate works of art in bamboo are often described; the Shuán Chú Hsin Huá of +1360 mentions fastenings in a model of a tortoise which remind one of bolts or rivets. The springiness of bamboo laths is also utilised to the full in all kinds of bow and bowstring devices. The remarkable tensile strength of bamboo was not fully realised until recent times, when experiments were made by the Chinese Air Force Research Organisation at Chhengtu; it was then found that ply-bamboo of formidable qualities could be made by uniting layers of woven laths with acroplane glue. But all through the centuries this

*In +1793 Dr. Dinsdell marvelled much at the dexterity of Chinese artisans erecting mat-sheds and hangars of bamboo, (1), p. 49. And so did I in my turn during the Second World War.

b P. 134; tr. H. Franke (2), no. 29.

c I remember being much struck by this when some of my staff rigged up automatic door-closing springs at a moment's notice on some of the doors of our building in Chungking during the Second World War.

Fig. 371. Adjustable outside caliper gauge with slot and pin, graduated in inches and tenths of an inch; bronze. Self-dated at +9 by the inscription, which reads, 'Made on a hsiu-yu day at new moon of the first month of the first year of the Shih-Chien-Kuo reign-period.' This remarkable metrological tool is thus of the short-lived Hain dynasty, intermediate between the Earlier and the Later Han. Wu Chheng-Lo (1); Ferguson (3).

I attention would have been devoted to the manifold methods of putting this wonderful material to use, yet the available literature seems very sparse.* By way of illustration of some of the techniques, Fig. 372 shows the detail of a litter chair (chiao tzu, hua-kan *).

* I can refer only to papers by Rundakov (1), and Sperry (1); and to the curious monograph of Sperry & Schööter, which deals only with Japan.

b From Mason (1).
property had been empirically utilised to the full in bamboo cables and ropes for many purposes. In another direction, the bamboo, with internal septae removed, forms a natural pipe, and this fact, as we shall see abundantly throughout the course of this work, exerted a cardinal influence on East Asian invention. In the earliest times it offered itself as a material for flutes and pipe-like instruments of music, instruments which already seen in...
27. MECHANICAL ENGINEERING

descent, and wind pressure. The conclusion of the third stage will bring us to the end of what may be regarded as mechanical engineering, but there will still remain the large realm of civil engineering (Sect. 28), so that hydraulics and water conservancy, fortifications, roads and bridges, will follow on. The present Section will reach its conclusion with a few notes on the prehistory of aeronautical engineering.

Let us now begin with a discursive account of the fundamental principles and components of all machines, illustrating it from time to time with examples which will serve to introduce the reader to the world of Chinese technology.

'Machines', said Cuvier in 1816, 'are geometry vivified.' In what follows it will be seen that Chinese civilization has great engineering achievements to its credit. All the more remarkable, therefore, is it that they came about in an intellectual milieu which included, as we have abundantly seen (in Sect. 19 below), little or no deductive geometry. The only possible conclusion is that the empirical approach was able to overcome the lack of theory, and the only surprise for us is how long it was before the inevitable limitations of this approach were encountered. Moreover, we must not forget the factors of the social environment. In that Chinese society which could never spontaneously generate a Galilean Renaissance there was something at work which encouraged mechanics and engineers to brilliant practical achievements, achievements which neither the men of the Hellenistic world, nor the inhabitants of medieval Europe before the time of Leonardo, fully in possession of their Euclid and their Apollonius, attempted or attained. Such a contrast challenges an explanation, but this is not yet the place for it.

The great difficulty in discussing this subject logically is that all the different devices are so interconnected. Moreover, although it is easy to perceive their possible genetic relations, it is not at all clear in what order they were invented and brought into use. In English there are two classical discussions of the principles and kinematics of simple machines, those of Robert Willis and F. Reuleaux; there are indispensable histories of technology and his reader (and the more so if one should lack personal engineering experience); nor are they any the worse for having been written about a hundred years ago. Reuleaux's definition is the more general: 'A machine is a combination of resistant bodies so arranged that by their means the mechanical forces of Nature can be compelled to do work accompanied by certain determinate motions.' That of Willis amplifies the first phrase: 'Every machine will be found to consist of a train of pieces connected together in various ways so that if one be made to move, they all receive a motion, the relation of which to that of the first is governed by the nature of the connection.'

One would not at first sight expect to find this thought in ancient China, but actually it is very old, and common to both the Chinese and the Greeks. The pre-Socratics and other naturalists frequently sought analogies for the world-machine from human machines; Vitruvius (−30) compares the polar axis around which all the stars revolve to a lathe, and Lucretius to a noria, while Wang Chihung (+86) compares it to an edge-runner mill or a potter's wheel. The whole Peripatetic philosophy of the 'unmoved mover' implied the idea of a cosmic rotating machine. And the Ho Kuang T'ou (Book of the Pheasant-Parl Master) says, in an interesting passage: 'When the embroidery of a State bier move and shake, they do not do so of themselves, but in accordance with the motions of the main carrying-poles; the source is but one.' This passage comes at the end of a paragraph in which good government is said to necessitate the integration (the 'engagement') of ruler and people. He must be their 'prime mover'. In later centuries, too, the machine-analogy played an enormous part in specific sciences such as biology no less than in cosmology; for example, William Harvey's appreciation of the valves of the heart as resembling the valves of a pump ('as by two clacks of a water-bellows to raise water'). Yet this again had a long Chinese ancestry, as we have already seen, in the Taoist conviction that the living body was a self-acting organic automaton, with sometimes one part in charge and sometimes another. But in China no Galilean revolution in mechanics came to awaken physiology from its mystical slumbers.

Heron of Alexandria was apparently the first to classify machine elements; in his view they numbered five: the wheel and axle, the lever, the pulley, the wedge, and
the endless screw or worm. This was unsatisfactory, but explainable because the treatise in which he did it—a was concerned only with the lifting of weights. Other early classifications were Indian. In the 7th century Daṇḍin enumerated six types, among which were mobile, stationary, water-works, heat-engines, and mixed devices.

Prince Bhoja, about +1050, in his Samarakṣaṇa-vātra-dhāra, distinguished between the principle (e.g. rotary or otherwise), the material, the purpose and the form of a machine (yantra). His list of merits of a machine is interesting; they included (a) proportionateness, (b) elegance, (c) efficiency for the effect intended, (d) lightness, firmness or hardness as the case might be, (e) noiselessness when noise was not wanted, (f) avoidance of looseness and stiffness, (g) smoothness and rhythm in motion, (h) controllability in starting and stopping, (i) durability. Other classifications could be collected from Arabic sources (though we have met with none in Chinese), but before the Renaissance there were no really analytical treatments of the subject.

Wills (i) divided all machines into classes according to whether the directional relation and the velocity ratio were constant or varying. In each of the three main classes he considered rolling contact, sliding contact, wrapping connection, link-work, and reduplication. Thus in the first class (where the directional relation and the velocity ratio are both constant), gear-wheels, bevel-wheels, worms, and the rack and pinion would be examples of rolling contact; cams and slots would show sliding contact; pulleys, belts and chain-drives would show wrapping connection; cranks, levers and rods would show link-work; and multiple pulleys or tackles would show reduplication. It is hardly necessary for our purpose to embark on an elaborate classification, and I propose to deal with the machine elements under the following heads: (a) levers, hinges and linkwork, (b) wheels, gear-wheels, pedals and paddles, (c) pulleys, driving-belts and chain-drives, (d) crank and eccentric motion, (e) screws, worms and helicoidal vanes, (f) springs and spring mechanisms, (g) conduits, pipes and siphons, (h) valves, bellows, pumps and fans.

Reuleaux (i) was probably right in his view that the chief criterion of gradual mechanical perfection was the completeness of the constraint of motion. Excessive play must have been the chief devil in all primitive machines, yet with the materials, tooling and lubricants available there was no other way of making them go round at all. Moreover, Reuleaux pointed out that a very important element in mechanical improvement lay in the substitution of ‘pair-closure’ or ‘chain-closure’ for ‘force-closure’.

An example of the latter would be the resting of a heavy rotary grindstone simply by gravity on bearings with no upper component to keep the axle in place under all possible circumstances, or the holding of a lathe-tool against the work by the muscular force of the operator. These are certainly the kinds of concepts which would have to be applied in the assessment of engineering achievement in any culture.

(1) LEVERS, HINGES AND LINKWORK

Of the lever and its great early application the balance something has already been said in the physics Section (Vol. 4, pt. 1, pp. 22 ff.). There we saw that the Mohist engineers in the 3rd century must have been acquainted with most if not all of the equilibrium principles stated by Archimedes. In the immediately following centuries, this understanding of the lever was put to good use in China in the making, almost on a mass-production scale, of crossbow triggers (tsu chi). These mechanisms, which involved intricate bent levers and catches, were beautiful and delicate bronze castings, and deserve the full description which they will receive below in Section 30 on military technology.

On a scale much larger, and with the use of timber, the lever had also been employed from an earlier date in the swape, shādīf, or counterweighted bailer bucket (chiēh hao3), which again will be discussed in connection with water-handling machinery (p. 331 below). Lever-presses (beam-presses) were not dominant in China, though the trip-hammer constituted an important application, and heavy loads tended to be hoisted by combinations of levers rather than by pulley tackle. But the most elaborate use of levers in early times in China was undoubtedly in textile machinery, where levers and connecting rods were united with treadles to form complicated linkworks. Evidence which will be presented in the appropriate place (Sect. 31 below) shows that the Chinese were far ahead of the West in loom construction—in the 1st century, for example, if not the 4th, they already had the essentials of the draw-loom (hsiau chi2) before Europe or perhaps any other civilisation had advanced from the primitive vertical-warp loom to the horizontal-warp loom with its harness of heddles. This precocity is perhaps symbolised by the fact that the Chinese word for loom, chi, implies that it is the machine par excellence.

The assembly of such a linkwork, however, involves the use of hinges or movable joints. Essentially the hinge (chiào1) is a pin (chiào ting2) and two hooks (kau3), and both these structures were readily available in all antique civilisations. For doors or windows the pin tended to be long and the ‘leaves’ (the Chinese used the same term ho yeh9) broad and flat; for links in rods the pin would be short and the hook-tails

a Tr. Carra de Vaux (i), from the Arabic version of Qusta ibn Luqa.

b The famous definition of Marx (pt. IV, xiii, 1; Paul ed. p. 392) was also partial, since it conceived of every machine as necessarily involving a tool for the production of commodities. This may be true in the broadest sense, if knowledge be included among them.

c Cf. Raghavan (i).

d He was the ruler of Dihit (Malwa) from +1010 to +1060; see V. Smith (i), p. 189.

e Directional relation is constant if while one mechanical component moves in a certain direction, the other also perseveres in its own direction (e.g. a pair of gear-wheels). It varies in such cases as the rocking motion of a saw, or the beam of an early steam-engine. The constancy of the velocity ratio is of course independent of any changes which the actual velocities of the two components may undergo during a given time, for they change at the same rate.

f “We have already had in the seismograph (Vol. 3, pp. 648 ff.) an instance of complex link and crank motion, at least if the reconstruction of Wang Chen-Tsü (i) is accepted. In any case his discussion of the level of this technique in ancient China is very relevant here.

g Cf. pp. 183, 300 below.

h Cf. p. 99 below.

j Sireno (i), vol. I, pl. 29, gives photographs of a number of Chou specimens.

k Modern traditional examples are described in Hommel (i), p. 309, 300. For ornamented flat bronze plate hinges of early Chou time see White (j), pl. XXXII, or Thang Lan (i), pl. 58, fig. 4. The latter album also illustrates some beautiful hollow-casting bronze hinges of the Warring States period.
Elongated. Relevant in this connection are the curious bronze hooks on the ends of poles which White (1) described from the Loyang tombs of the 6th century; these seem to have been used for setting up easily dismountable booths or tents. Yuan (1) and Ming (1) books discuss the ancient names for hinges, notably chih phu, saying that this was the pin, and that the cylindrical sockets were called huan nia (2). One ancient name for the whole hinge was the 'knee-bender', chi hui (1) or chi hui hai (2). There were prominent uses of links in agriculture and war as well as in textile technology: first the flail (cf. below, Sect. 4) called lien chia (3) (Fig. 374 a) and the war-flail (Fig. 374 b); and secondly the component parts of the efficient horse harness (the postillion or chest-trace harness), which though not connected at their junctions by pins (being of leather), nevertheless performed the office of a linkwork system (cf. below, p. 304). This harness was in full use at the beginning of the Han period, that is to say, some ten centuries at least before Europe possessed an efficient harness for horses.

Perhaps more characteristic of European ideas of Chinese civilisation was the collapsible umbrella or parasol (sun (1)), working by means of the sliding levers still familiar in everyday use. While sun-shades were common in Greek and Roman daily life, and certainly go back to Babylonian times, they were not generally collapsible.

We have, however, an indication that the principle of the later collapsible Chinese parasol was used in +21, for in that year Wang Mang had a very large one made as a magic baldachin (hua kai (1)) for a ceremonial four-wheeled carriage. The mechanism is said to have been a secret one (pi chi (2)), and the 2nd-century commentator, Fu (1) Thang Lan (1), Pl. 63, fig. 3, shows a bronze central canopy holder of Warring States time with free rings surrounding a central boss.

E.g. the Cho Keng Lu. E.g. the Shan Tang Su Kao and the Liu Chhing Jih Chai. Niu is a knot or button, and the point is that on Chinese garments the button-hole was never in the stuff, but formed by looping a silk cord which projected from the stuff. Alternatively, chia (1) and lien chieh (11). Aristophanes, however, has a reference in the Knights which might imply collapsibility (Feldhaus (1), col. 495). But it has been suggested that the familiar lever system we use now was a Chinese invention which came to the West later (Feldhaus (2), pp. 45, 46). Chien Han Shu, ch. 39, p. 158, tr. Du Bois (1), vol. 3, p. 413; TPYL, ch. 703, p. 70 (Pfizmaier (9), p. 288).
canopies (Thang Lan, 1); socketed couplers with holes for tenons and stanchion pins, some using the principle of the bayonet catch Loyang (White, I).

Cast bronze tubular connecting-joints for assembling the rods or canes of ancient Chinese carriage canopies (Thang Lan, 1); (a) bronze rebated socketed couplers with holes for tenons and stanchion pins, some using the principle of the bayonet catch Loyang (White, I).

Fig. 376. Bronze castings of complex design from the 6th century (Chou period) excavated at Loyang (White, I). (a) Bronze socket, hinge with locking slide-bolt (pl. 12); (b) bronze rebated socketed coupers with holes for tenons and stanchion pins, some using the principle of the bayonet catch Loyang (White, I).

Other pieces of bronze which White described are beautiful castings of very complex design (Fig. 376 b). He calls them 'socketed couplers', though at first sight they look like locks. Bulling (4, 7, 8) believes that some of the designs on the backs of Chou and Han bronze mirrors can only be understood as flattened representations of ceremonial umbrella tops, but her view has not won much support. In any case, after all this, one is hardly surprised, though the discovery is pleasing, to find collapsible umbrellas exactly like those of modern China in the woodcuts of a book printed about 1720 which deals with divination but contains many scenes of daily life.

The question of origins is more interesting than it might appear, for towards the end of the Later Han period, about + 160, the folding chair or stool became popular in China. As we shall see later on, it was known first as the hu chhuang (barbarian bed), and certainly came from the West, probably from Greek Bactria. But the evidence just given shows that it cannot have been responsible for the appearance of pivoted rods and linkwork in Chinese technology.

Mastery of the art of collapsibility achieved some remarkable successes in the Yuan period which are referred to in a curious entry in the Shan Chü Hsin Hua (New Discourses from the Mountain Cabin). Yang Yü tells us that

a lacquer worker of Suchow named Wang, in the Chih-Cheng reign-period (+ 1341 onwards) made a boat of ox-hide, covered inside and out with lacquer. It was dismountable into parts, and was brought to Shangtu (the Manchurian summer capital of the Yuan emperors), where

Chhien, adds that his umbrellas all had bendable joints enabling them to be extended or retracted. Collapsible umbrella stays of Wang Mang's time, or shortly after it, have actually been recovered from the tomb of Wang Kuan at Korean Lo-Lang, and are illustrated by Harada & Komai. But the system must go back much earlier, for similar objects of Chou date (+ 6th century) from Loyang are figured by White.

27. MECHANICAL ENGINEERING

Fig. 376. Bronze castings of complex design from the 6th century (Chou period) excavated at Loyang (White, I). (a) Bronze socket, hinge with locking slide-bolt (pl. 12); (b) bronze rebated socketed couplers with holes for tenons and stanchion pins, some using the principle of the bayonet catch Loyang (White, I).

As we shall see later on, it was known first as the hu chhuang (barbarian bed), and certainly came from the West, probably from Greek Bactria. But the evidence just given shows that it cannot have been responsible for the appearance of pivoted rods and linkwork in Chinese technology.

Mastery of the art of collapsibility achieved some remarkable successes in the Yuan period which are referred to in a curious entry in the Shan Chü Hsin Hua (New Discourses from the Mountain Cabin). Yang Yü tells us that

a lacquer worker of Suchow named Wang, in the Chih-Cheng reign-period (+ 1341 onwards) made a boat of ox-hide, covered inside and out with lacquer. It was dismountable into parts, and was brought to Shangtu (the Manchurian summer capital of the Yuan emperors), where

Chhien, adds that his umbrellas all had bendable joints enabling them to be extended or retracted. Collapsible umbrella stays of Wang Mang's time, or shortly after it, have actually been recovered from the tomb of Wang Kuan at Korean Lo-Lang, and are illustrated by Harada & Komai. But the system must go back much earlier, for similar objects of Chou date (+ 6th century) from Loyang are figured by White.

Other pieces of bronze which White described are beautiful castings of very complex design (Fig. 376 b). He calls them 'socketed couplers', though at first sight they look like locks. Bulling (4, 7, 8) believes that some of the designs on the backs of Chou and Han bronze mirrors can only be understood as flattened representations of ceremonial umbrella tops, but her view has not won much support. In any case, after all this, one is hardly surprised, though the discovery is pleasing, to find collapsible umbrellas exactly like those of modern China in the woodcuts of a book printed about 1720 which deals with divination but contains many scenes of daily life.

The question of origins is more interesting than it might appear, for towards the end of the Later Han period, about + 160, the folding chair or stool became popular in China. As we shall see later on, it was known first as the hu chhuang (barbarian bed), and certainly came from the West, probably from Greek Bactria. But the evidence just given shows that it cannot have been responsible for the appearance of pivoted rods and linkwork in Chinese technology.

Mastery of the art of collapsibility achieved some remarkable successes in the Yuan period which are referred to in a curious entry in the Shan Chü Hsin Hua (New Discourses from the Mountain Cabin). Yang Yü tells us that

a lacquer worker of Suchow named Wang, in the Chih-Cheng reign-period (+ 1341 onwards) made a boat of ox-hide, covered inside and out with lacquer. It was dismountable into parts, and was brought to Shangtu (the Manchurian summer capital of the Yuan emperors), where
Artisan Wang also constructed an armillary sphere by imperial command. This was collapsible, too, which was very convenient for storage. It was an instrument the skilful construction of which surpassed human imagination. One could really call this man talented. Now (+1350) he is Intendant in charge of one of the (Imperial) Workshops.\(^a\)

Collapsible boats (chê tiêh chhuân\(^1\)) are heard of again in the +17th century. Liu Hsien-Thing described about +1690 an artisan, Chu Ya-Ling,\(^b\) making such boats with masts and sails yet capable of being folded up and packed in bags for transport.\(^b\)

The subject may be followed further in the \textit{Thu Shu Chi Chhêng}.\(^c\)

However original the boats of Artisan Wang may have been, there had been successes considerably earlier in the invention of collapsible or dissectable astronomical apparatus.\(^d\)

In the \textit{Yu Hai} we read:\(^e\)

On the 8th day of the sixth month of the 7th year of the Shao-Hsing reign-period (+1137) the commanding general in Szechuan presented to the emperor a ‘New Pattern Quick-Method Hemispherical Sky-Dome Plan’ (Chieh fa hai-thien thu kien shih\(^1\)). This was the invention of Chang Ta-Chieh\(^f\) of T'eu-chow, the hermit of T'ahui-wei-tung (in the mountains), who had made use of old designs of the Thang. He also presented mysterious books from T'ahui-wei-tung (namely, the) \textit{Pao Chu Stien Yü Hsia Pi Shu} (Secret Jade-Box Astronomical Treatise of the Precious Axis), and a \textit{Chin Chun Yao Chieh} (Essential Principles of the Golden Key). The emperor ordered these things to be (transported) across the water and sent to the temporary court (at Hangchow).

\[\text{[Comm.] The Jih Li}^2\text{(Solar Calendar Treatise) records that (Chang) Ta-Chieh, using old Thang designs, invented a ‘New Pattern Quick-Method Hemispherical Sky-Dome Plan’, such that one could sit down and observe the Tao of the Heavens. It was prepared for the emperor’s study throughout one night, and for the (aides-de-)camp to check it over by observation. Thus there was no fatigue of looking upwards because the instrument was placed on a table. Yet if one looked upwards one could see all the heavenly phenomena, though so far away, looking exactly like (the representations) which were (immediately) in front of one’s eye. Now ‘Quick-Method Hemispherical Sky-Dome Maps’ (Chieh fa hai-thien thu kuan\(^1\)) and a ‘Four Cardinal Points Horizon Circle’ (Shu chêng ti kun\(^2\)), on wooden pieces, large and small, with four faces, have also been made. These too were presented to the emperor, who ordered them to be transported across the water to the temporary capital (at Hangchow), and to be handed over to the Bureau of Astronomy for presentation in due form.

The description is not very clear but it indicates in all probability the invention of some kind of hemispherical star maps which could be folded up and discarded;\(^f\)

\(^a\) pp. 398 ff., tr. H. Franke (2), no. 107, eng. auct.\(^b\) In the \textit{Kuang-Yung Tsa Chi}.\(^c\) \textit{Kuo hung tien}, ch. 165. Yang Yu’s passage is repeated in the \textit{Suchow Fu Chih}\(^d\) (Local History and Topography of Suchow), from which Liu Hsien-Chou (1) quotes it.

\(^d\) The introduction of ‘jigsaw maps’ in the +5th century will be remembered (Vol. 3, p. 368), \textit{Ch. 1}, pp. 354, 6, tr. auct. The abridged version in \textit{Chih Jen Chuan}, and addendum, ch. 5 (pp. 36ff.) seems rather garbled.

\(^e\) Chu Pho,\(^f\) whose probable floruit is +1150, was the author of the Jih Li here quoted by Wang Ying-Lin.

FIG. 377. Polar projection illustrating the distribution of the war-chariot in antiquity (Bishop, 2).
structures for 'riding' borne on two wheels, the platform chariot not appearing till after —2500. This was the form in which it spread both to Egypt and to Shang China, and we can guess something of its nature there from the characters for it on the oracle-bones (cf. below, p. 246). Our ideas about the first origin of the wheel, however, are bound to be somewhat disturbed by the discovery in Mexico of toys with wheels, though it seems quite certain that wheeled vehicles were not used in any Central American civilisation. If this could be further probed, it might lead to some striking conclusions about social barriers to the application of inventions.

The genetic origin of the wheel has given rise to much discussion and a variety of archaeological evidence has been brought forward, but the problem is not solved. One difficulty about the view that it developed from rollers used for moving heavy statues is that the earliest supposed representations of these in Mesopotamia are much later (— 8th century) than those of chariot-wheels. Nevertheless it has long been customary to suppose, with Otto Mison, that the roller must have been the earlier invention. But a still worse difficulty is that rollers were not used at all for moving heavy statues in antiquity; the idea originated largely from Layard's misinterpretation of the reliefs of Sennacherib's palace at Nineveh (—705 to —681). As Davison (3, 4, 7, 9) has shown, the apparently transverse 'rollers' under the sledges, both here and in parallel Egyptian representations, are really longitudinal sliders or skids on which lubricant was poured, the prototypes not of the wheel but of railway rails and oiled slide-beds in lathes and other machinery. Single rollers were doubtless used for handling heavy weights on quaysides and building-sites, but any attempt to use a number of them, especially on rough ground, could only have led to binding. They are no help towards understanding the origin of the wheel, which must be viewed as a specific invention on its own. Nor, incidentally, does the haulage of colossal statues by means of men, whether of slave status or not, appear in any kind of ancient Chinese representation—a fact which is worth meditating in itself.

Though Forester's book contains a wealth of information on the various types of wheels used in vehicles, it drew on no Chinese material. As we saw above, however, the Khao Kang Chi chapter of the Chou Li contains a good deal concerning the wheelwrights (lan jen') and their work. A new translation of the relevant section has recently been made by Lu, Salaman & Needham (1), taking into account the technical studies by Chingh scholars to which reference has already been made. By the Warring States period (—4th century) primitive solid wheels had long given place to very elegantly constructed wheels with hubs (the) spoke (fu) and rims composed of felloes (ya1, jiao3). The trueness of the wheel was to be such that it resembled a hanging curtain (mu1), curving downwards with a beautiful smoothness. In the Han time elm-wood (Ulmus spp., ya mu4) was used for the hubs, rose-wood (Dalbergia spp., than mu3) for the spokes, and oak (Quercus spp., chiang mu6) for the felloes. A curious process of unilateral drying (hao yang8) of the wood for the hubs is given. The hub was drilled through to form an empty space (sou16) into which the tapering axle was fitted, and between the two a tapering bronze bearing (chin11) was inserted, the exterior being covered by a leather cap (thao12) to retain lubricant. The thickness of the spokes and the depth of the holes and mortices (ting13) to receive their tongues (chui4) and tenons (tsu15) in hub and rim respectively were very carefully regulated, neither too much nor too little, and the legs (chiau16) of the spokes were made thinner towards the rim as a measure of 'streamlining' against deep mud. The number of spokes varied widely. A famous text of perhaps the —4th century speaks of chariot-wheels having thirty spokes, and excavations made in 1952 indeed unearthed remains of chariots of this period in which many of the wheels do have this number of spokes.

The testing of the completed wheels was elaborate, including the use of geometrical instruments, floatation, weighing, and the measuring of the empty spaces in the assembly by miller grains. The interest of these descriptions is perhaps increased when we reflect that though carriage-wheels were those which most interested the scholar-officials, and therefore those which found a prominent place in the Chou Li, the level of Chhi and Han craftsmanship revealed is such that gear-wheels (e.g. for water-mills) would clearly have presented little difficulty to the artisans.

— The more modern term for the rim of a wheel is hao17 (derivative from 'suburb'). Since the primary meaning of the word 'tooth', the term probably derived from the gripping or biting of the ground, as in ruts, by the wheel rims. Yet with such a term the transition in thought to actual peripheral teeth, as in gear-wheels, would have been particularly easy. As we shall see, the first traces of these appear during the second half of the Chou period.

— As in Europe. In the West it was also customary to use different woods for different wheel components.

— See the special study of Schafer (8), and for the Middle East Garbnevitch (1).

— It is curious that the more springy ash, used for felloes during the last 1500 years in Europe, was not so employed in China, though various kinds of ash-trees are not lacking.

— Bronze is assumed in the archaising Chou Li, but we know from the Chi Chu Phien of 40 (ch. 3, p. 44) that bearings of iron were then already long standard.

— Cf. p. 259 below concerning the wheels of wheelbarrows.

— The text is of course the Tao Ti Chiang, ch. 11. Duyvendak (18), p. 40, noted the correspondence at once from the photographs of Haia Nai (1). The use of this interesting statistical volumetric method in acoustics has already been described (Vol. 4, pt. 1, pp. 199 ff. above).

— They may be compared with what Ginzrot (1) collected from Greek and Roman sources, in a work of technological history quite extraneous for the purposes of the present study.

— For details of the wooden gear-wheels used in various kinds of traditional Chinese water-raising machinery see pp. 339 ff. below. Cf. also p. 11 above.
The final development of the wheelwright's art, writes Jope, was the construction of a wheel not in one plane but as a flat cone. This is the technique known as 'dishing'. Such wheels give strength against the sideways thrusts occasioned by the transport of heavy loads over erratic or rutted surfaces. They appear in European illustrations from the +15th century onwards, and one is shown under construction in Jost Amman's woodcut of a wheelwright's shop in +1568. A good sketch of traditional English dished cartwheels, the form of which is often unperceived because so familiar, occurs in Sturt (1) and is here reproduced (Fig. 378). Lu, Salaman & Needham (1), however, were able to establish that dishing, far from being a +16th-century accidental perfection, was systematically employed by the wheelwrights of the late Chou and Han. This is demonstrated by several passages in the Khao Kung Chi. The text itself speaks of the 'cake-like convexity' (píng) of the wheel. Chêng Chung's +18th-century commentary explains the origin of this expression and gives the contemporary technical term for dishing, lun pi. The later commentators expatiate on how this shape was brought about, and Fang Pao, the chief editor of the imperial edition of +1748, draws particular attention to the fact that the Han wheelwrights had the practice and the term. His commentary defines pi as shaped like a vessel (tiēng).

The commentators differed a good deal in their explanations. Some thought that the spokes tapered on one side only, others that they were inserted slanting into either hub or felloes. The standard European practice of modern times was to cut the slightly tapering spoke so that it formed a small angle both with its tongue entering the rim spoke-hole and with its tenon entering the hub mortice. Thus while these are right-angle insertions the spoke itself is seen in a cross-section of the entire wheel to connect centre and periphery obliquely. This may also have been done in some ancient Chinese wheels. But since the text of the Khao Kung Chi speaks of treating the spokes (as well as the felloes, p. 12a) with heat, or steam (jū 'steam'), they were almost certainly made to curve, so that both insertions could be at right angles. Cf. the reconstruction in Hayashi Minao (1), p. 217.

Fig. 378. The dishing of vehicle-wheels: drawings from traditional English examples (Sturt, 1).

Fig. 379. The park of vehicles of the Warring States period (-4th or -3rd century) discovered in 1950 during the excavations of the royal tombs at Hui-hsien in Shantung (Anon. (4), pl. 25, fig. 1).

Fig. 380. Detail of two chariots in the Hui-hsien park, showing how much was recoverable from the compacted soil (Anon. (4), pl. 26, fig. 4).
for steaming rice, the bottom of which was made of bamboo, with rounded tapering sides.\footnote{This definition may be found already in the \textit{Chi Chiu Phien} dictionary of about \(-40\) (ch. 3, p. 64). Wang Ying-Lin's Sung commentary compares the shape also to a flat conical fish-basket.}

In our own time archaeological excavations have brought abundant confirmation of this textual evidence, showing moreover that in Warring States and Han times there was more than one way of producing wheel dish. The investigations of the royal tombs at Hui-hsien in northern Honan, now fully published,\footnote{Anon. (4), pp. 47ff., pls. 24 to 31.} revealed a whole park of nineteen vehicles from the \(-4\text{th}\) or \(-3\text{rd}\) century.\footnote{Chariot-wheels of the \textit{Shang} period have not been recovered in a state sufficiently perfect to allow of a conclusion as to whether they were dished or not. But it is highly improbable that they were, for quite recently the excavations of the princely tombs of the State of Northern Kuo (Anon. 27) have brought to light three more parks of chariots. Kuo\footnote{Anon. (12), pp. 139ff., pls. 99 to 102. The essential illustrations from both these sources are reproduced in \textit{Lu, Salaman \\& Needham} (1, 2).} was extinguished by Chin in \(-654\) (cf. Vol. 1, p. 94, there spelt Kuai,\footnote{As the High Altai was not a very suitable region for the use of such carriages, Rudenko suspects that they may have been presents accompanying Chinese princesses married to nomad leaders.} so that these remains date from the first half of the \(-7\text{th}\) century. None of the wheels shows any sign of dishing, though it is interesting (cf. p. 249) that the hubs are already very elongated. We must surely conclude therefore that the invention of 'dish' was yet another of the technological advances of the Warring States period. Future discoveries may be expected to narrow its date.} Although the wooden parts had rotted away they had left impressions in the concreted soil so clearly that it was possible to dissect them out down to comparatively small details (Figs. 379 and 380). The reconstruction in this report (Fig. 381) by Hsia Nai, Kuo Pao-Chi\textit{n} et al. shows quite straight spokes, and the archaeologists believe that they were all inserted into the hubs in a slanting manner (cf. the models in Figs. 382 and 383). Very different wheels, however, were found in models of Former Han chariots excavated from \(-1\text{st}\)-century tombs at Changsha in Hunan (Fig. 384).\footnote{How and when the Chinese invention of dishing spread to the rest of the world remains a matter for further investigation.} Here the curvature of the spokes agrees with the description of the \textit{Chou Li}, but it is so arranged, in shape like a Chinese farmer's hat (\(\hat{\nu}^\prime\)), that the concavity of the dish is inward, not outward. The scale drawing in Fig. 386 shows this clearly. Still more remarkable, this inward dishing has been perpetuated in traditional Chinese vehicle wheels down to the present time (Fig. 385).\footnote{In fact it does not matter much whether the dishing is outwards or inwards. As the adjacent diagram shows, the post-Renaissance type of Western dished wheel, concave outwards and mounted on a downward-pointing axle-bearing on the right of a cart,}

![Diagram of wheels](image-url)
was particularly strong against jolts with force directed to the right, since these served only to drive the spokes more securely into the felloes. The same applies to wheels of the Hui-hsien type. But with a wheel of the Chhangsha type on the right of the vehicle, strength was provided against jolts with force directed to the left, for exactly the same reason. In each case, whichever the direction of the strain, the stronger wheel tends to protect the weaker. Of course, for an overhanging body the outward concavity of the Hui-hsien or European type was more convenient than the inward concavity of the Chhangsha type, and it also had the advantage of throwing mud clear.
Fig. 384. Repaired and assembled model chariot from a tomb of the Former Han period (c. 1st century) at Chhangsha (Anon. 11), pl. 99, fig. 2.

Fig. 385. Two nail-studded cart-wheels with outward dish doing duty as fly-wheels for a manually operated paternoster pump (orig. photo, Agricultural Machinery Exhibition, Peking, 1958).

Fig. 386. Reconstruction of the Chhangsha chariot type; a scale drawing (Anon. 11), showing the convex or outward dish. Scale 1 to 10 cm.

In all ancient and medieval Chinese vehicles, so far as we know, the axle-bearings were horizontal. This was also the case very late in Europe, as we find from the drawings of under-carriages in plates attached to the Encyclopedie of Diderot (a). Such wheels must have had a less enduring life under load than those in which the spokes meet the ground at right-angles, as in the later European types and the very elegant Chhangsha design. Indeed some of the Hui-hsien wheels seemed almost to admit a tendency to weakness, for they were equipped with a curious feature about which the Chou Li is quite silent, namely a pair of quasi-diametral struts (chia fu) running from rim to rim on each side of the hub (cf. Fig. 381 b). These were almost certainly inserted into separate felloes, thus adding much to the strength of the wheel, holding it in dish, and indeed offering a very early example of a kind of truss construction.

One finds no further evidence of these structures, either textual or epigraphic, in China itself, but they are to be met with today in the country carts of Cambodia (Fig. 387), if in somewhat degenerate form.°

° See the entry under 'charron' in vol. 3 of the Planches (vol. 20 of the whole set). Pl. 3 shows a timber-tug, pl. 5 a hay-cart, and pl. 6 a small dung-cart; all are on the same principle. Some find it hard to believe that the artist did not err in drawing these axle-bearings horizontal.

' One must remember that the Hui-hsien wheels are some three centuries earlier than the Chhangsha ones. Moreover, Hui-hsien was in the feudal State of Wei, not the advanced technical culture of Chhi, whence came in all probability the specifications of the Khao Kung Chi.

° Cf. Groslier (1), pp. 98ff. These parallel quasi-diametral struts would seem to be connected with the curious 'six-spoked' wheels (8) which still continued to be made in various places until modern times, and may well derive from extremely primitive wheel forms of the — and millennium. The 'six-spoked' wheels have one diametral component and two quasi-diametral ones. A fine example from Mercurago in Italy, belonging to the late bronze age (c. —1200, contemporary with the Shang period), has been figured by Munro (1), p. 208, and Childe (11), p. 214; another, rougher, type, used at any rate until recently by Chinese wheelwrights in Sinkiang, was photographed by
Two interesting Han reliefs showing scenes in a wheelwright's workshop have been discussed by Lu, Salaman & Needham (2). They may perhaps illustrate the story of Duke Huan of Chhi and the Taoist wheelwright Pien (Pien han chang) (1). One of them is here reproduced (Fig. 388). A wheelwright is working on a curved felloe, seemingly chiselling a hole in it. Other felloes, of which three or four seem to make up a whole rim, are lying about, and one is held in readiness by the wheelwright's wife. His mate is busied with an assembly of three vessels, in all probability filtering the lacquer, paint or glue required for the finishing of the wheel. But the partly constructed wheel itself is very curious, for it is not easily explicable in terms of the text of the Chou Li. Indeed it looks more like a heavy-duty wagon-wheel than the fine chariot-wheels there described. Its most curious feature is that at the end of each spoke there is a block of wood, and as some of the felloes of the rim are already fitted...
on without overlap, they would seem to be curving plates hiding the blocks from the side, indeed what might be called 'curtain-felloes'. With a counterpart on the other side, the whole would then be covered by the strakes of a wooden (or iron) tyre, the intervening spaces being filled in with other blocks, and every component thoroughly pinned together (Fig. 389). So far it has not been possible to find confirmatory textual evidence for the building of such highly composite wheels in early medieval China.\(^{a}\)

\(^a\) Two hints may be mentioned. In describing Han imperial vehicles, the "Hou Han Shu" (ch. 39, p. 70), says that the great hunting car has 'double felloes' (chhung wong). And a little earlier the same structure has been alleged, using a different word (chhung ya), to four other palace carts or wagons. This would refer to the + 1st and 2nd centuries. Secondly, descriptions of the four-wheeled wagons found in tumulus no. 5 of Pazirik in the Alai, which may have been gifts from 5th-century China, state that the felloes of the rims consisted of two halves fastened together longitudinally with wooden pins (Rudenko, 1). This is suspiciously near 'curtain-felloes'.

\(^1\) 簡体

\(^2\) 簡体
but the wheels of the traditional Shantung carts (Fig. 386) of modern times are so excessively studded with iron nails clinched at the back over iron washers that one may wonder whether this practice did not originate from the multiple pinning required by the composite wheels of these + or −1st-century relics.

In thinking of the wheel as a carrier, we have to remember, besides the two- and four-wheeled carriages, the single-wheel barrow. Long suspected to have been the wheel is a machine for carrying; but when the chief concern parted by a suitable framework for the bearings (the expedient excessively studded with iron nails clinched at the back over iron washers that may wonder whether this practice did not originate from the multiple pinning required by the composite wheels of these + or −1st-century reliiefs.

When man's interest is concentrated upon something which rests on an axle, supported by a suitable framework for the bearings (the usu'al of the old Chinese chariot), the wheel is a machine for carrying; but when the chief concern is with what lies below it, the wheel is a machine for crushing. This is evident for all stages between wheels and rollers. Before considering this second function, however, it will be convenient to study a third, namely the wheel as a machine for transmitting rotary energy. Mastery and control of torque has been one of the most fundamental features in the gradual development of machinery.

Let us have recourse to a simple diagram illustrating the variations and combinations of axles and wheels (Fig. 390). The simplest elements in the assembly are shown in (a), the wheel revolving on its axle or shaft, and the bearings, whatever they are, which secure that shaft in the position desired. Since adhesion is a principal factor in the passage of a wheel along road (or rail), it would be quite logical to pursue the line of development which by making further use of adhesion leads to all pulleys, lasses and driving belts, but let us take another path and see what happens when the wheel is furnished with projections of different kinds.

The simplest form which this may take is the appearance of lugs, often not more than four or six (as in Fig. 390 b), and often not on a wheel but spaced laterally on the shaft itself (Fig. 390 b'). When the axle is rotated by a sufficient source of power, the lugs will alternately depress or raise and then release a set of levers or rods conveniently placed— if their heads are weighted, this is the mechanical pestle, trip-hammer (tui2') or stamp-mill. Although there seems to be no evidence of this in Europe before the early +12th century (there is a good picture of a vertical stamp-mill in the MS. of the anonymous Hussite engineer),3 the trip-hammer was both widespread and ancient in China, and water-power was applied to it already in the Han. It seems clearly one

3 This was one of the devices known to the Alexandrian mechanics, as e.g. in the 'windmill' organo-blowing air-pump in Hero's Pneumatics; cf. Woodcroft (1), p. 168, Usher (1), 1st ed. p. 92; and ed. p. 140. It also occurs in the puppet-theatre of Heron to activate figures. Usher remarks that these devices were here used for producing motion only, not power; but in Chinese antiquity the trip-hammer was primarily used for practical purposes as a powered engine. Cf. pp. 381, 493.

3 Sarton (1), vol. 3, p. 1550; Feldhaus (1), col. 915; Berthelot (2); Usher (1), 1st ed. p. 93, and ed. p. 240. The Husiist shows it for human manual motive power (Fig. 616). See further, pp. 113, 394 ff. below.

3 **Fig. 390. Variations and combinations of shafts, wheels and cranks.**

3. wheel, shaft and bearing
b. lugs on wheel
c. lugs on shaft
d. handle mounted on lug, forming crank
e. vanes in vertical water-wheel
f. vanes in horizontal water-wheel
g. flat teeth on two enmeshing gear-wheels
h. right-angle gearing; pin-wheel and pin-drum or lantern-wheel
i. right-angle gearing; enmeshing peg teeth
j. right-angle gearing; belvel-wheels
k. shaped teeth on two enmeshing gear-wheels
l. ratchet-wheel and pawl
m. crown-wheel
n. vanes or pedals on spokes
o. blocks or bob-weights on spokes
p. discontinuous driving-belt; strap-drill or treadle-lathe
q. discontinuous driving-belt; bow-drill or pole-lathe
r. pulley or windlass
s. differential windlass
t. continuous or endless driving-belt (with mechanical advantage)
u. continuous or endless chain-drive (with mechanical advantage)
w. handle at wheel's edge, forming crank
x. handle at wheel's edge, fitted with connecting-rod
y. 'oblique' crank handle
z. wheel and crank arm
r. crank arm or eccentric lug
u. crank fitted with connecting-rod
v. crankshaft and connecting-rod
w. crank or eccentric lug, connecting-rod and piston-rod combination, for the interconversion of rotary and longitudinal rectilinear motion
x. cam or cam-follower

of the simplest methods of utilising rotary motion, easily adaptable to many uses other than its original purpose of deocarcitating rice.

Speaking in terms of an ideal technic morphology, the single trip-lug projection may swell or it may multiply. If it swells it will give rise to revolving plates like wheels but with an infinite number of irregular non-circular outlines—in other words cams. A bulbous one is shown as an example in Fig. 390a. Such devices have great use in machine construction, for a follower rod, pushed back and forth by the edge of the cam as it rotates, may be given almost any desired combination of motions, speeds, and dwell.

Traditional Chinese technology, so far as we know, made little use of cams continuously rotating, but at a very early date (the Han period, c. —2nd century) developed complex forms of cam-shaped rocking levers for the triggers of crossbows. In one case, however, the vertical water-wheel form of the metallurgical blowing-engine of the Sung and Yuan time (+13th and +14th centuries), it would seem almost certain (if the reconstruction is correct) that the trip-lugs must have been shaped into the form of cams. 'Three-dimensional' cams, such as swash-plates and helically grooved cylinders, appeared in Europe later on, not much before the time of Leonardo, the end of the +15th century.

When the lugs for tripping are multiplied into numerous projections, they may take the form either of vanes or of pegs which give rise to gear teeth. Since the length of these is generally short in comparison with the diameter of the wheel which bears them, they are either mounted upon its rim, or form the serrated edge of a solid disc.

With the first of these alternatives, the use of vanes, the water-wheel is born. In the diagram a vertically mounted water-wheel is first shown (Fig. 390c), but in the history of techniques the horizontally mounted or 'recumbent' water-wheel has been at least as common (Fig. 390c), and later on we shall have to compare the distribution of the two (p. 368 below). The latter seems to have been characteristic of Chinese civilisation from the Han to the Tang, after which the other appears also. We shall see further that there is very little difference in the date at which the water-wheel, or three' in mechanisms such as the hodometer (p. 281) and the jack-work of mechanical clocks (pp. 455, 462, 148ff.; vol. 3, pp. 86ff.) has pointed out, some of the oldest Chinese developments of the early Middle Ages.

Having failed to find any suitable terms in the literature, I propose to distinguish in what follows between 'ex-aqueous' and 'ad-aqueous' wheels. The difference is analogous in a certain sense to that already mentioned between wheels for carrying and wheels for grinding; the former could be termed 'ex-terrestrial' and the latter 'ad-terrestrial', though here in the first case the medium does not move and in the second the machine need not advance. Much closer is the analogy with air, for the windmill is precisely an 'ex-aerial' wheel, while the aeroplane propeller may be considered an 'ad-aerial' one, though its helical tracion and the sufficient forward motion of the aerofoil so given depend of course upon different principles from that of the paddle-wheel in water. In all these cases the prefix 'ad-' will be used when the energy is transmitted from the machine to the medium, and the prefix 'ex-' when the energy is transmitted from the medium to the machine.

Passing now from vanes to pegs and teeth (Fig. 390d and f), we have before us the history of gear-wheels (ya lun), which has frequently been considered. In the West they were essentially a Hellenistic development. The reference to them claimed in Aristotle in a mainly apocryphal work, the Problemata Mechanica, and will not be any earlier than Ctesibius (c. —250), Philon of Byzantium (c. —220) and Heron of Alexandria (c. +60), all of whom used them, or planned the use of them, in a great variety of machines. These men were the contemporaries of Meng Thien, Liu An and Wang Chhong, but for the Chin and former Han period we have little knowledge of the nature of machines constructed with trains of gears; we can only surmise that much must have been going on since a number of specimens of gear-wheels of that time have survived, and since we find so much textual evidence of the use of machinery with toothed wheels in the Later Han, San Kuo and Chin periods. They were needed in water-mills, hodometers, crossbow-arming mechanisms, south-pointing carriages, chain-pumps and mechanised armillary spheres. Tu Shih in +30 and Chang Hêng in +150 were no less familiar with them than Vitruvius in —30. Chang Hêng was famous as a man who could 'make three wheels rotate as if they were one' (neng ling

a In the case of the vertical stamp-mill, where the lug acts as a wiper or comma-shaped cam, it was also one of the simplest ways of converting rotary to longitudinal motion. On this subject see particularly pp. 386 ff. below.

b Before long we shall find abundant examples of the use of lugs, in the form of 'pinions of one, two, or three', in mechanisms such as the hodometer (p. 281) and the jack-work of mechanical clocks (pp. 455, 462, 485). Trip-mechanisms in modern machinery may be studied in Jones & Horton (1), vol. I, pp. 118ff., 148ff.; vol. 2, pp. 189ff.; vol. 3, pp. 86ff.

c The history of lugs and cams has been begun by Gille (7).

d To gain an idea of their application in contemporary mechanics one may study the first chapter in each of the three volumes of Jones & Horton (1). The range of versatility of cams may be still further increased by mounting them eccentrically, or in yokes (ibid. vol. 3, p. 187). See also Willia (1), p. 324-326.

e Cf. Sect. 308 below.

f See p. 377 below.

We shall return to these devices on pp. 384, 386 below, in connection with the fundamental conversion just referred to.

The close connection between the water-wheel and the gear-wheel is well emphasized by Schuh (1), p. 7. As Childe (10) has pointed out, some of the oldest Sumerian chariot-wheels are depicted as though they were copped, and this is seen also on models, the 'cogs' being the heads of the copper nails which studded the felloes. The way thus lay open for the engagement of wheels.

聆
3rd to roof (Wang Chen-To, 3); synonymic called 'co-operating san lun tu chuan yeh').\(^{a}\) Chang Heng's contemporary, Liu Hsi (d. + 120), in his synonymic dictionary, the Shih Ming, tells us\(^{b}\) that the human jaws (\(i\)) were familiarly called 'co-operating wheels' (\(fu\ chhd\)) or 'toothed wheels' (\(ya\ chhd\)), perhaps on the analogy of the intaking tendency of a mill in which two rollers, connected by gearing, revolve in opposite senses. Similarly, Tu Yu,\(^{3}\) in his commentary on a passage in the Tso Chuan,\(^{c}\) says that toothed wheels (lit. 'tooth carriers') are meant. The passage is metaphorical; someone is quoting a verse of the Chhin.

In mind, but that were used past the Chhin onwards through the Han, i.e. from about +86 onwards. More accessibly by Wang Tso Chuan passage, which refers to -654, had gear-wheels in mind, but that they were so common in the Later Han period as to be part of the mental background of commentators.

In recent decades there have been many finds of gear-wheels in tombs dating from the Chhin onwards through the Han, i.e. from about -230. Such discoveries have been multiplied by the great expansion of archaeological research in China during the past dozen years. At least one mould for a bronze toothed wheel has come down to us intact from the Former Han time.\(^{3}\) First described by Lo Chen-Yu (3), and now more accessibly by Wang Chen-To (3) and Liu Hsien-Chou (5, 6), this interesting object (Fig. 391 a) is made of earthenware, and stamped in three places with a pair of characters only the first of which can be certainly made out ('Eastern') but which are clearly in Han script. The shank into which the axle would fit is square, and the wheel is a ratchet with sixteen slanting teeth ready to receive a pawl.\(^{e}\) Such an arrangement (Fig. 390g) is a special case of gearing needed whenever it is desired that the wheel or roller shall turn only one way and not slip backwards; this particular mould must have been used about -100 for ratchet-wheels forming part of winches, cranes, or arcubalista-arming mechanisms.\(^{f}\) It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)

Another ratchet, this time an actual bronze wheel, was discovered by Chhong Wen-Chai (1) in a tomb full of bronze objects at Hsien-chia-yai village near Yung-chi in Shansi province.\(^{h}\) This burial may have occurred in the late Warring States period, 400-221.\(^{i}\) This interesting reference to a gear-train was quoted in the Shih Ming (Ch. 8, pp. 107ff.).

It is unlikely that the Alexandrians had not also thought of this form of gear, but the earliest Western description of it seems to occur in the work of Oribasius (+325 to +400) in connection with surgical instruments.\(^{g}\)
Fig. 392. Objects believed to be gear-wheels with chevron-teeth (double helical gear). (a, b) Bronze 24-tooth enmeshing gears with round and square shanks, diam. 1 cm., width 1 cm., c. +50 (Liu Hsien-Chou, 6), from a tomb in Shensi. (c) Nine further gear-wheels of the same kind, from Han tombs in Hunan (Shih Shu-Chhing, 1).

27. MECHANICAL ENGINEERING

but is perhaps more probably of Chhin or early Han, c. –200. Measuring hardly more than an inch in diameter (Fig. 391 b) it has forty teeth and the square shank hole is extremely large. The most likely purpose of this ratchet wheel would have been the arming mechanism of a crossbow. The same find also yielded two or three ordinary gear-wheels of bronze, also having forty teeth and almost equally large square shank holes (Fig. 391 d). In addition to these there was a small wheel with a round shank (Fig. 391 c) which, if not simply an ornament, may have been a pinion of five teeth. Since such parts needing one or more, but in any case very few, teeth would have been necessary in hodometers (cf. p. 281 below), it may be reasonable to assume that this was something of the kind. But these were not the only objects valuable for technological history in this rich discovery; there were also short tube-like shafts of bronze, bearing gear-teeth either at one end or at both. In addition there were lengths of bronze plate, one with small teeth along one side, another with small teeth on one side and large teeth on the other. Chhang interpreted these as saws, but since by this time iron and steel had long been known and worked, it may be worth suggesting that they were longitudinal racks needed for some piece of bronze machinery.

But the most remarkable and unexpected finds have been those of pairs of gear-wheels with 'chevron-teeth' (ten tsu chihs lun), quite analogous to the double helical gear of the twentieth century, as illustrated for instance in Davison (5). Specimens of these bronze objects were first found in 1933 in a tomb of the early Hou Han period at Hung-chching village near Sian in Shensi (Fig. 392 a, b), and are dated by Liu Hsien-Chou (6) in the neighbourhood of +50. It will be seen that in the pair photographed one has a square shank while the other’s is round. The same difference appeared again in a group figured by Shih Shu-Chhing (1) and found five years later in a tomb at Chiang-chia-shan near Hengyang in Hunan. He illustrates nine in various degrees of perfection (Fig. 392 c); made of bronze, they measure 1.5 cm. in diameter, and are 1 cm. wide, so that the working is rather delicate. According to Li Wen-Hsin (1), further finds of the same type of gear-wheels have come to light from Han tombs at Chhangsha, further north in the same province. So far their dating has not been given very closely, but they are all certainly Han if not Chhin.

* There were also fragments of gear-wheels. The even number of teeth may preclude a calendrical-astronomical employment.

b Cf. Sect. 30d below, and in the meantime, Needham (32).

c Or Matchess & Kutzbach (1), pp. 86 ff. According to Dickinson (5) the invention of single and double helical spur gearing was made by James White in Paris about +1793. He illustrates one of White’s own models (fig. 1 on pl. XXXVIII).

d See Yen Lei et al. (1), p. 666 and pl. 4, figs. 4 and 5.

* The discoveries themselves, however, prefer a date about –50; see Wu Ju-Tsu & Hu Chhien-Ying (1). Anon. (44). Cf. Anon. (44), p. 79.

f It must be said that some Western historians of technology are reluctant to accept these objects as double helical gear-wheels. Prof. R. S. Woodbury of Cambridge, Mass., even suggests (private communication) that they were 'merely rollers for impressing a formal design on clay, or for printing a pattern on paper or textiles'. But in this case it is rather hard to see why they should have been made so carefully of bronze. Experimental notes on their performance when set up on parallel shafts would certainly be of great interest; in the meantime it may be pointed out that they have been accepted as gear-wheels not only by the Chinese archaeologists but by engineers of high competence, notably Prof. Liu Hsien-Chhou.
27. MECHANICAL ENGINEERING

Still less well known is the fact that during recent years there have been a number of finds of iron gear-wheels in Han tombs, a whether or not of cast iron remains uncertain till full descriptions appear, but presumably so. One of these, a ratchet-wheel of sixteen teeth, about 2¾ in. in diameter, is illustrated in a recent survey of important archaeological finds. Thus during the three centuries and more preceding the time of Chang Hêng gear-wheels large and small were being made for a variety of practical purposes. This spread of date is instructive for comparisons with the Alexandrian engineers, who, broadly speaking, cover the same period, but we should also notice that the distribution of the finds in China is remarkably wide, excluding only the far south and the far north. Interest in gear-wheels and their practical utilisation was therefore not confined to any small region of Han culture. As for the shape of the teeth, all ancient Chinese examples so far seem (if not ratchet-slanted) to approximate to equilateral triangles, exactly as is found in the Anti-Kythera planetarium, probably of the -1st century. Rounded teeth occur first below), and as Hodometers and South-pointing carriages (2), p. 287. See Thang Yün-Ming (1); Meng Hao et al. (1); Anon. (35); Anon. (46). Anon. (41), p. 76, fig. 38. This work also gives on p. 73 a useful summary of all the discoveries of gear-wheels, either of bronze or iron, in Warring States, Ch'in and Han tombs or habitations, down to 1961. This remarkable mechanism is now under study by Prof. D. J. de Usher. We shall have much to say on this subject below, pp. 369, 392, 405 ff. about +120 by Chang Hêng, and his numerous later successors before the invention of the clock escapement early in the +8th century, to bring about the rotation of armillary spheres or celestial globes by water-power, a we should very probably have to include this among the earliest examples of power-transmitting gear-work. After the invention of the escapement in +725, there was a great flourish of gear-work in clockwork and jack-work, culminating in the bronze and iron of Su Sung's elaborate masterpiece in +1088, but it is interesting that (as in the +18th century) hard wood for gear-wheels also had its advocates, who appreciated its special lubrication properties and freedom from rust. The pin-drum or lantern-wheels of the Vitruvian water-mill are perhaps the most primitive forms of right-angle gearing among their predecessors were the two pin-wheels with enmeshed teeth (Fig. 390c), and bevelled gear-wheels (e). It is generally thought that these last were quite new when Leonardo drew them, b but four hundred years earlier oblique gears of some kind or other had been prominent in Su Sung's clockwork. c From one point of view gear-wheels are wheels which consist only of a hub and a number of short spokes, all rim having vanished. But such spokes can also carry objects of different kinds at their peripheral ends. So far we have thought only of vanes or paddles mounted upon the rims of wheels (as in the water-wheel), but they may also be borne on the ends of free spokes. From the trip-hammer lugs (Fig. 390 h, k), which were often on the shaft alone, there could be a transition to lugs carrying vanes (h) or weights (j). In the first case we have the radial pedal or radial treadle, f a device of enormous importance in the exploitation of human muscular power, and characteristicly Chinese. This was the main motor of the square-pallet chain-pump (shui chih1; long hu chih2; fan chih3), an invention probably of the Later Han. As Audricourt (1, 2) and Febvre (2) have strongly emphasized, this simple form of treadmill was almost unknown to Mediterranean antiquity, and indeed was never adopted by Western peoples. g The crank pedal so familiar on bicycles dates only from a See p. 487 ff. below. b The fullest discussion is given by Needham, Wang & Price (1), but the essentials are summarised on pp. 446 ff. below. c Notably Wang Fu in +1124 (see p. 499 below). d See Beck (1), p. 100; Mattchosa & Kuttbach (1), p. 18. e Cf. below, p. 456. f Not the crank pedal, but it is noted, see the simple lever fitted at the ends of the thongs of a strap-drill or lathe, which permits the operator's feet to take the place of the hands of a second person. This last is essentially similar to the pedal levers of looms (cf. Fig. 393). We shall shortly meet with a very curious form of treadle which brings about rotary movement without the intervention of a crank (pp. 103, 115, 218 below). g This statement must be qualified by the fact that in some cases Archimedean screws in Roman mines may have been worked by slaves walking on lugs set around their circumference (Bromehead, 7). A little evidence is available also from representations in art. Hudson (1); Treas (1), p. 37; and Forbes (17), p. 677, figure a Pompeian mural painting and a late Egyptian relief which show men treading on Archimedean screws in this way. A terra-cotta model from late Ptolemaic Egypt (Price, 1) confirms the interpretation. The MS of the Hsiu-tse engineer (+1430) also has pictures of men on the outside of stepped wheels applying power to mills (cf. e.g. Mattchosa & Kuttbach (1), p. 17). In the absence of the crank, which, as we shall see, makes no appearance before the early Middle Ages, it is rather difficult to see how wheels were rotated in the ancient West, if not by the feet. Yet on the whole a strong impression remains that pedal motions were more widespread and more versatile in their applications in Chinese than in Western culture.
of applications stronger and stranger than the pressure of human feet; they could turn into vanes or sails beaten by the wind—as they first did in early Islamic Persia, spreading thereafter both west and east (cf. pp. 556 ff. below). This was the ex-aerial development, analogous to that of the water-wheel, but the opposite was equally important for it led to all rotary fans and air-compressors, ad-aerial devices in which the Chinese culture-area took the lead (cf. pp. 150 ff. below). And besides these famous uses, we shall find as we go on certain more unusual functions of blocks fitted on the ends of spokes; they may occur as components of heavy-duty composite wagon-wheels, or as carriers for driving-belts where an integral rim is absent (pp. 80, 104).

When the radial lugs carry weights, a bob flywheel results. The most ancient flywheel was presumably the neolithic spinning-whorl (Frémont, 12), but it did not find great application before the paleotechnic period. Another example would be the potter’s wheel (chin‘1). Second in antiquity would be the heavy discs on bow-drills and pump-drills, attested from so many cultures, as also on the ancient Egyptian crank-drill. In the +11th century such flywheels were applied to pestles for grinding. Radial weights (Fig. 390d) found their chief application, perhaps, on the worms of screw-presses from Roman times to the period of printing, and it was doubtless this association with screws which prevented them from being much used in China. True flywheels appear in the +15th century (the Anonymous Hussite), and then steadily acquire their neotechnic importance.

The function of a flywheel can also be performed when the balls or bobs are placed, not directly at the ends of the spokes, but attached to them by short chains which centrifugal force tautens. This device may be oldest in Tibet, where it has been current practice for hand-turned prayer-wheels from time immemorial. About +1490 Francesco di Giorgio sketched such a flywheel, and he had been preceded by the Anonymous Hussite sixty years earlier, who attached swinging weights to the spoke ends. This was just the time when the engineers of the West were interested in ways

The middle of the +19th century. Treadmills in Greek and Roman culture there certainly were, but they were large drums into which one or more men could enter and exert force from within. A famous example is the drum-treadmill working a huge crane, shown on a relief in the Lateran Museum. Vitruvius describes these in connection with his tympanum and noria (c. –30). They must have persisted through the Middle Ages, for one is shown in the MS. of the anonymous Hussite engineer

fig. 393. Basic forms of pedals, treadles and treadmills.

Plates carried on lugs or mounted directly on shafts proved of course to be capable of applications stronger and stranger than the pressure of human feet; they could turn into vanes or sails beaten by the wind—as they first did in early Islamic Persia, spreading thereafter both west and east (cf. pp. 556 ff. below). This was the ex-aerial development, analogous to that of the water-wheel, but the opposite was equally important for it led to all rotary fans and air-compressors, ad-aerial devices in which the Chinese culture-area took the lead (cf. pp. 150 ff. below). And besides these famous uses, we shall find as we go on certain more unusual functions of blocks fitted on the ends of spokes; they may occur as components of heavy-duty composite wagon-wheels, or as carriers for driving-belts where an integral rim is absent (pp. 80, 104).

When the radial lugs carry weights, a bob flywheel results. The most ancient flywheel was presumably the neolithic spinning-whorl (Frémont, 12), but it did not find great application before the paleotechnic period. Another example would be the potter’s wheel (chin‘1). Second in antiquity would be the heavy discs on bow-drills and pump-drills, attested from so many cultures, as also on the ancient Egyptian crank-drill. In the +11th century such flywheels were applied to pestles for grinding. Radial weights (Fig. 390d) found their chief application, perhaps, on the worms of screw-presses from Roman times to the period of printing, and it was doubtless this association with screws which prevented them from being much used in China. True flywheels appear in the +15th century (the Anonymous Hussite), and then steadily acquire their neotechnic importance.

The function of a flywheel can also be performed when the balls or bobs are placed, not directly at the ends of the spokes, but attached to them by short chains which centrifugal force tautens. This device may be oldest in Tibet, where it has been current practice for hand-turned prayer-wheels from time immemorial. About +1490 Francesco di Giorgio sketched such a flywheel, and he had been preceded by the Anonymous Hussite sixty years earlier, who attached swinging weights to the spoke ends. This was just the time when the engineers of the West were interested in ways

See, e.g. Berthelot (4); Matchosa & Kurzbach (1), p. 17. One of the date, or earlier, is still in use at an inn between Winchester and West Meon, for raising water. Cf. Sandford (11), Salzman (1), pp. 333 ff. illustrates others.

Frédéric (9), pl. xii; and the relief of Gurk in Carinthia.

XIII; 15th century (the Anonymous Hussite), and then steadily acquire their neotechnic importance.

The function of a flywheel can also be performed when the balls or bobs are placed, not directly at the ends of the spokes, but attached to them by short chains which centrifugal force tautens. This device may be oldest in Tibet, where it has been current practice for hand-turned prayer-wheels from time immemorial. About +1490 Francesco di Giorgio sketched such a flywheel, and he had been preceded by the Anonymous Hussite sixty years earlier, who attached swinging weights to the spoke ends. This was just the time when the engineers of the West were interested in ways
of overcoming 'dead centre', doubtless because of the increasing use of cranks and crankshafts (cf. pp. 112, 113). It is by no means fanciful to connect this development with the Central Asian domestic slaves who were so numerous in +14th- and +15th-century Italy, and who may have been responsible for many transmissions of technological interest.

It may be remembered here that just as the simple lugs alone may be used for converting rotary to oscillatory motion by tripping, they may also be used, as hand-spikes, for applying the tractive power of men or animals to produce rotary motion. We then have the capstan (if the axle is vertical) or the windlass (if horizontal). But as these generally involve ropes, cords, or belts, they must be left to the next subsection.

Mention was made above of the use of wheels or rollers for crushing or grinding. In Chinese civilisation these techniques were widespread, and go back almost certainly to the Chou. Later we shall examine their various forms, the edge-runner mill with longitudinal travel (yen chhi), and the edge-runner mill with circular travel (niem). Parallel machines were the roller harrow (kun), the hand roller (kun niem) and the roller mill with circular travel (kun niem). By combining two rollers, with or without gearing, the cotton-gin (chiao chhi) and the sugar-cane mill (yen chhil) were obtained; the ancestors of all steel rolling-mills, mangles, and paper or textile machinery.

This discussion began with rollers, and with them it must also end. For all wheel-carrying shafts must be supported in bearings, and the end of the shaft constitutes a roller. If the bearing is stationary, heat, retardation and wear necessarily arise because of the sliding friction, so that from a time much earlier than is generally supposed, engineers have sought to interpose additional rolling objects between shaft and bearing, thus reducing to a minimum the undesirable effects of frictional drag. Bearings began, no doubt, with the bone or antler hand-holds used by neolithic drillers; in the -2nd millennium Egyptian craftsmen used bowls of soapstone with which to press on their bow-drills. The bearings of the potter's wheel are also of the highest antiquity (the -4th millennium in Mesopotamia); in China small cups of hard porcelain were used.

The point of the roller-capped pivot (tsuan) of the heavy tiers of jack-wheels is borne in an iron mortar-shaped end-bearing (thieh chiu chiu). The mounting of the main lever of the linkwork escapement is also lovingly described. At the fulcrum of the lever there is an 'iron shut-in axle' (thieh huan chiu) in the form of a horizontal cross-shaft (heng kung) rocking in 'camel-backs', i.e. upper bearing (thieh feng) caps, between end-plates (thieh hia). All this was not the creation of a day — there had been a tradition of three or four centuries already, to say nothing of the 'proto-clocks' going back to the time of Chang Heng.

Although in these remarkable machines we have not encountered the use of intermediary rolling objects taking off friction, China may be deeply involved in the prehistory of ball-bearings. After the stonemasons of high antiquity we meet first with a systematic use of rollers in the battering-ram and the gate-borer invented by Diades, one of the engineers of Alexander the Great, whom he accompanied in his campaigns (-334 to -233). But here the rollers are still in a straight line, not arranged peripherally around a shaft. True roller-bearing have been claimed for the hubs of the Celtic four-wheeled wagons discovered in a bog at Debjerg in Denmark in 1883 and described by Petersen (1) and Klindt-Jensen (1). Here the inside of each hub shows about 32 transverse grooves. Similar internally corrugated hubs have been described from a number of other places and are considered to date from the -1st century, being associated with the La Tène Age III, and supposed to derive from Etruscan origins by way of the Hallstatt culture. The question turns upon what was in the

The statement, however, that after the fall of the Roman empire there appear no more metal bearing-surfaces until the clockwork of the +15th century, may possibly be true of Europe but it is certainly wrong for China. The mechanised armillary spheres between the +2nd and the +6th centuries could not have worked at all, even though imperfectly, without metal bearings, and about +720 we even hear of steel bearings being used in the elliptically mounted observational armillary made by I-Hsing and Liang Ling-Tsan. When we come to the clock-tower of Su Sung in +1088 the details are particularly clear. The main driving-shaft (thieh shu chiu) of iron has 'cylindrical necks' or journals (yen hsiang) supported on iron crescent-shaped upward-facing bearings (thieh yang yueh). The Chinese historian, Su Sung, makes a very adequate description. When we come to the egg-shaped end-bearing (thieh chiu chiu) it is clear that the pinions and the crown-gears were in iron gears. For the Chinese armillary sphere was purely observational, whereas the Western astronomical clock was essentially a clockwork mechanism. The Chinese armillary sphere had four spindles with double wheels, the watchmaker's clock two and a single wheel.

The gradual disappearance of the rolling-gear, until the 18th century, may have been due to the replacement of the eccentrics by the linkwork escapement. At the same time the centres of the rolling-gear were brought closer and closer to the axis of revolution, and the space allowed for the sliding friction was reduced. This distinction recalls that between ad-aqueous and ex-aqueous wheels. The bearings of the potter's wheel are also of the highest antiquity (the -4th millennium in Mesopotamia); in China small cups of hard porcelain were used; the ancestors of all steel rolling-mills, mangles, and paper or textile machinery.

It may be remembered here that as the simple lugs alone may be used for converting rotary to oscillatory motion by tripping, they may also be used, as hand-spikes, for applying the tractive power of men or animals to produce rotary motion. A French farmer has his seeder planted by the ploughman. It may be remembered here that as the simple lugs alone may be used for converting rotary to oscillatory motion by tripping, they may also be used, as hand-spikes, for applying the tractive power of men or animals to produce rotary motion. A French farmer has his seeder planted by the ploughman.

This discussion began with rollers, and with them it must also end. For all wheel-carrying shafts must be supported in bearings, and the end of the shaft constitutes a roller. If the bearing is stationary, heat, retardation and wear necessarily arise because of the sliding friction, so that from a time much earlier than is generally supposed, engineers have sought to interpose additional rolling objects between shaft and bearing, thus reducing to a minimum the undesirable effects of frictional drag. Bearings began, no doubt, with the bone or antler hand-holds used by neolithic drillers; in the -2nd millennium Egyptian craftsmen used bowls of soapstone with which to press on their bow-drills. The bearings of the potter's wheel are also of the highest antiquity (the -4th millennium in Mesopotamia); in China small cups of hard porcelain were used; the ancestors of all steel rolling-mills, mangles, and paper or textile machinery.

This discussion began with rollers, and with them it must also end. For all wheel-carrying shafts must be supported in bearings, and the end of the shaft constitutes a roller. If the bearing is stationary, heat, retardation and wear necessarily arise because of the sliding friction, so that from a time much earlier than is generally supposed, engineers have sought to interpose additional rolling objects between shaft and bearing, thus reducing to a minimum the undesirable effects of frictional drag. Bearings began, no doubt, with the bone or antler hand-holds used by neolithic drillers; in the -2nd millennium Egyptian craftsmen used bowls of soapstone with which to press on their bow-drills. The bearings of the potter's wheel are also of the highest antiquity; in China small cups of hard porcelain were used; the ancestors of all steel rolling-mills, mangles, and paper or textile machinery.

This discussion began with rollers, and with them it must also end. For all wheel-carrying shafts must be supported in bearings, and the end of the shaft constitutes a roller. If the bearing is stationary, heat, retardation and wear necessarily arise because of the sliding friction, so that from a time much earlier than is generally supposed, engineers have sought to interpose additional rolling objects between shaft and bearing, thus reducing to a minimum the undesirable effects of frictional drag. Bearings began, no doubt, with the bone or antler hand-holds used by neolithic drillers; in the -2nd millennium Egyptian craftsmen used bowls of soapstone with which to press on their bow-drills. The bearings of the potter's wheel are also of the highest antiquity; in China small cups of hard porcelain were used; the ancestors of all steel rolling-mills, mangles, and paper or textile machinery.

This discussion began with rollers, and with them it must also end. For all wheel-carrying shafts must be supported in bearings, and the end of the shaft constitutes a roller. If the bearing is stationary, heat, retardation and wear necessarily arise because of the sliding friction, so that from a time much earlier than is generally supposed, engineers have sought to interpose additional rolling objects between shaft and bearing, thus reducing to a minimum the undesirable effects of frictional drag. Bearings began, no doubt, with the bone or antler hand-holds used by neolithic drillers; in the -2nd millennium Egyptian craftsmen used bowls of soapstone with which to press on their bow-drills. The bearings of the potter's wheel are also of the highest antiquity; in China small cups of hard porcelain were used; the ancestors of all steel rolling-mills, mangles, and paper or textile machinery.
grooves. Although the interpretation of roller-bearings has met with some acceptance among archaeologists, a reference to the original paper of Petersen in Danish shows that the pieces of wood which came out from the hub spaces when disinterred were narrow flat strips and not rollers at all. It is therefore quite impossible to regard these Celtic wagons as having been equipped with this invention.\(^a\)

For the earliest roller-bearings we may have to look to China. Among the finds at Hsiieh-chia-yai village in Shansi reported by Chhang Wen-Chai\(^b\) there were some remarkable annular bronze objects with internal grooves. These channels were divided into four or eight compartments by small transverse partitions, and each of these was filled with a mass of granular iron rust. Several of these possible ‘ball-races’ or roller bearings, of different sizes, were found. Since the objects of this tomb must be dated at least as early as the - 2nd century, it would seem that the Chinese if not the Celts were taking an interest in the free and smooth run of certain shafts or axles.\(^c\)

If the rust came from balls or rollers, these objects would certainly be the oldest ball-bearings known.\(^d\) If it did not, pride of place must still go to the strange trunnion bearings of the capstans of the Roman ships built between \(+44\) and \(+54\), and in our own time recovered from the Lake of Nemi south of Rome.\(^e\) These are balls each prolonged at two poles into short shafts which were retained in place by clamps so that they could roll round freely. Eight of them bore the undersurface of the capstan, or so it is assumed for only a fragment containing two remains. Strictly speaking this device was a roller-bearing and not a true ball-bearing, since the spheres could only rotate in one plane, but it has great ancestral interest. Trunnions recur in al-Jazari (\(+1206\)).\(^f\) If we follow further the development of roller-bearings we find that flat rollers similar to those sketched by Leonardo\(^g\) at the end of the \(+15th\) century were in use in the \(+16th\), as Agricola testifies.\(^h\) But as we shall later see,\(^i\) certain imperial

\(^{a}\) E.g. Jope (1), p. 531.

\(^{b}\) Discussions at the International Congress of the History of Science at Barcelona in 1959 with Dr A. G. Drachmann and Prof. R. S. Woodbury led to the suggestion that the real function of the semi-cylindrical depressions within the hubs was to hold greased leather or perhaps a packing of rags or wood. We are much indebted to Dr Drachmann for letting us know the results of his studies on the actual objects preserved in the National Museum at Copenhagen. I saw them only in 1962.

\(^{c}\) It was striking to compare this ancient evidence in 1958 with the great movement then being launched in China for establishing a ball-bearing factory in every hien city. Country people could be seen everywhere fitting them in the hubs of cart-wheels of the traditional type.

\(^{d}\) Continuing his useful role of advocatus diaboli, Prof. R. S. Woodbury counsels all due scepticism concerning these objects as ball- or roller-bearings. Even he, however, is willing to hazard a guess (private communication) that the outer bronze annulus was a bearing-case into which were fitted small blocks of iron—so the difficulty of boring accurately so large a hole in an iron plate. We must hope for more light from further discoveries.

\(^{e}\) See Uccelli di Nemi (I, 2); Dionisi (I); Moretti (I). I had the pleasure of visiting the naval museum on the shores of Lake Nemi in 1955.

\(^{f}\) Coomaraswamy (2), p. 19.

\(^{g}\) Cf. Feldhaus (I), col. 600; Beck (I), pp. 324 ff.

\(^{h}\) Hoover & Hoover ed., p. 173. A form of roller-bearing was embodied in clockwork by Eberhardt Baldwin in \(+1561\) (see Lloyd (5), pp. 658, 660).

\(^{i}\) P. 254 below.
vehicles constructed in China between the +7th and the +11th centuries showed a steadiness hard to account for otherwise. By the +17th century in Europe roller-bearings were a commonplace, freely depicted by Ramelli, and soon fitted under Dutch windmills. Some considerable time after the Nemi capstans, roller-bearings were actually patented by John Garnett in +1787. As for ball-bearings proper, we are told that Cellini used ball mountings for rotating statues in the +16th century and that about +1770 the engineers of the Empress of Russia conveyed heavy blocks of stone considerable distances upon cannon-balls rolling between bars of iron. Probably this was one of the stimuli which led Varlo in 1772 to invent and test true annular ball-races on road vehicles. Thus it had taken nearly two thousand years to attain permanently, after so many brilliant but isolated inventions, those friction-reducing garlands in which our shafts and axles rotate today.

(3) PULLEYS, DRIVING-BELTS AND CHAIN-DRIVES

We now return to a point of departure already mentioned, namely the investigation of what happens when fibrous bodies (sinews, cords, thongs, ropes, etc.), or chains, are wrapped round rotating axles and wheels. Fig. 390 (j) shows the simple arrangement of the strap-drill (p. 55 above) or treadle-lathe, and (k) that of the bow-drill or pole-lathe (p. 57 above)—all such methods produce only alternating rotary motion. To have it continuous, the endless driving-belt is necessary (n), and this was therefore an invention of first-rate importance. Before considering it, however, a few words must be said about the simple pulley (l), i.e. the wheel with furrowed rim able to retain a rope or cord running over it. It has not been possible to identify the people who first realised that friction of a rope passing over a projection would be enormously reduced if a wheel was interposed, but the practice was well known both in Babylonia and ancient Egypt.

Pulleys (lu-lu or lo-lu) would therefore be expected in China from very early times, and there indeed they were. Fig. 394 shows a famous relief from the Wu Liang tomb-shrines (+147) depicting the attempted recovery of the Chou cauldrons from the river, where two crane pulleys are inferable. A draw-well jar model of Han time a

a Cf. Matchoss & Kurtbach (1), p. 24; Feldhaus (1), col. 601. The device was a well-head on rollers rotated by man-power and geared so as to raise the well-bucket.

b Van Natrlls, pry., van Vuuren & Linperch (1).

c See Davison (3). Later on we shall find an even more extraordinary example of patenting age-old devices. Cf. Vol. 3, p. 315(b), and p. 386 below.

d Davison (3).

e Varlo (1), p. 3; Schmithals & Klemm (1), fig. 99.

f He was thus the real pioneer rather than Philip Vaughan in 1794 who usually gets the credit. Vincian wheel-shaped rollers had been applied to vehicle axles, however, by Rowe in +1734.

g Unless, of course, direct gearing is used.

h Heat rather than light has been generated by the arguments of anthropologists about it. Cf. Lechler (1); Harrison (1).

i There are several pictures of it from the Assyrian period between -880 and -850.

j We give the restoration of W. Fairbank (1); cf. CSS, ch. 4, (pp. 6, 7). These arms or cauldrons were the same as those already mentioned (Vol. 3, p. 503) in the geographical Section. The Chou dynasty was supposed to have inherited them from the remote antiquity of the Hsia, but according to tradition...
with its pulley in place is shown in Fig. 395 (Laufer, 3). The Li Chi has interesting hints concerning the tackle used for lowering the heavy coffin-lids at important burials, and reports a story about Kungshu Phan (—5th century) on the subject. The term (*fengpei*) seems to have meant a kind of four-posted derrick with four pulleys, according to the commentators and to Liu Hsi’s *Shih Ming*; in this connection it is interesting that the earliest (Han) pictures of the derricks over the Szechuanese brine wells (cf. Fig. 396 and Sect. 37 below) also show four-membered structures, not pyramidal. Pulleys were so common in the Han that other things were named after them, such as swords with pulley-wheel-shaped hand-guards (*lu-lu chien*), and a variety of date constricted in the middle (*lu-lu tsao*). A pulley hoist is mentioned which enabled the famous calligrapher Wei Chung-Chiang to complete about +230 an inscription high on a tower, and another arrangement of pulleys, powered by a hundred oxen, for fishing a great bell out of a river in +336. Pulleys were in constant demand for palace entertainments—for example, about +915 a whole corps de ballet of two hundred and twenty girls was hauled up a sloping way from a lake in boats. But it is unnecessary to multiply instances.

These heavier uses approximate the pulley to the winch, windlass or capstan. The ordinary well-windlass is shown in nearly all the Chinese books which illustrate machines, beginning with +1313. The main interest in so ancient an instrument is the extent to which it incorporated the crank principle, and to this we shall shortly return (p. 111). The great horizontal winding-drums of the Szechuanese salt industry we shall illustrate later on. The winch was of course also used for tautening when mounted with a ratchet. The following example, taken from the *Thang Yu Lin*, may afford a little light relief. The year is +736.

On the 5th day of the eighth month of the 24th year of the Khai-Yuan reign-period, the (Thang) emperor commanded a rope-walking performance at the imperial tower. First a long they were lost in the S River in —335. It was the first emperor, Chhin Shih Huang Ti, who tried to recover them, while on one of his magical perambulations, with the aid of a thousand men, in —249, but he failed (Shih Chi, ch. 6, p. 188; Chavannes (1), vol. 2, p. 143). On the whole subject see Chiang Shao-Yuan (1), pp. 150ff., esp. p. 136.

Fig. 395. Han pottery jar representing a well-head with pulley and bucket (Laufer (3), pl. 14).
Fig. 396. Moulded brick from Chhiang-lai in Szechuan showing the salt industry; Later Han period. Now in the Hai-ching Museum, Chhengtu (Rudolph & Wen (1), pl. 91). The derrick over one of the brine bore-holes is seen on the left, with its winding gear at the top. To the right of its uppermost storey there is a tank to receive the brine, which flows down through a winding bamboo-pipe-line to the row of evaporating pans seen under a shed on the right. A companion brick (pl. 92), defective in a different place, shows the descending pipe-line still more clearly, and also three or four other pipes conveying natural gas to burners under the pans. The best examples of this (see Anon. (22), no. 1, pp. 6, 7) show an inverted siphon in the pipe-line (cf. p. 138 below). Hunting scenes with cross-bows occupy the upper right-hand quarter of both pictures. Cf. Figs. 432 and 452 below. The salt industry was already well developed in Szechuan in -130 and may go back to the -3rd century; cf. Rudolph (4).

Fig. 397. Pulley tackle, gearing, and a Hellenistic drum-treadmill, shown in the Chhi Chi Thu Shuo (+1627).
rope was stretched out so that both ends were at ground level, winding gear was buried there to keep it taut, and there were columns near by from which it was suspended as tight as a lute string. Performing girls then mounted upon it barefoot and paraded to and fro. Looking up, they appeared like flying hsien (immortals). Some of them met midway, but just leant sideways a little and passed (without difficulty), a others wore shoes yet bowed and extended their bodies with ease; some had painted stilts 6 ft. long, others climbed upon heads and shoulders till there were three or four layers of them, after which they turned somersaults down on to the rope. All moved about, never falling, in accordance with the strict time of drums—it was indeed a wonderful sight.

That form of the principle of mechanical advantage which may be obtained by combining many pulley wheels together in complex tackle was well understood by the Alexandrians, and much of Heron's book, the Elevator, is concerned with such devices. b They are not described in the books of the main Chinese tradition until the +17th century is reached (cf. Fig. 397), c but it would be quite unsafe to assume that they were not known or used by artisans and stonemasons in China before that time. d Evidence, whether positive or negative, is lacking.

The history of the related machine known as the 'Chinese windlass' is also obscure. Old textbooks of physics sometimes give it as an example of differential motion, for the axle carries two drums of different diameters (Fig. 398) on which the rope winds and unwinds continuously, thus giving useful work and amplification of effort. e Hart (2) mentions one of these in the Codex Atlanticus of Leonardo, but no one has yet succeeded in finding any Chinese text which would justify the name which the device bears in the West. Davis certainly speaks f as though he had seen it in use in China, but Hommel g suspects the possibility of a misunderstanding, since Chinese windlasses (e.g. in coal-mines, gem-mines or wells) commonly have two coils of rope on the same drum, one bucket or seat being lowered as the other comes up, and are operated in the same manner as that of the medieval trebuchet. g

There were, it would seem, two tightropes across the stage passing over three pulleys, with the main mooring and the winch adjacent to each other on one side. h

A remarkable glimpse of the traditional methods used by Chinese builders for lifting very heavy weights (Tissandier, 4). A slip-knot hoists the main cable in successive pulls by means of a lever and radiating man-handled ropes like those of pile-drivers and trebuchets. A monk directs the operations. The caption, copied uncertainly by the European draughtsman, seems to say 'Drawn by Shih Seng-Shih'.

pound drum might of course have been derived from this, and the invention may well have been a local one in China which was never described in literature. e Moseley, b writing about 1840, says that 'a figure of the capstan with a double axle was seen by a A point of interest here is that a differential drum, in the shape of two gear-wheels of unequal diameter fused together, does occur in one Chinese machine, namely the south-pointing carriage as constructed in +1167 (see below, p. 292). It was called a 'tieh-wheel' (tieh hsien). It is very unlikely that this instance was unique.

27. MECHANICAL ENGINEERING

Fig. 398. The differential, or ' Chinese' windlass (Davis, 1).

Fig. 399. A traditional method used by Chinese builders for raising heavy weights (Tissandier, 4).
Dr O. Gregory among some Chinese drawings more than a century old. In any case, the 'Chinese windlass', whatever its origin, is the ancestor of the well-known Weston Differential Purchase, widely used in engineering workshops today.

A minor invention of the windlass type which is in all probability Chinese is that of the reel on the fishing-rod (see Fig. 400). Lodge noticed that such a reel was shown in a painting by Wu Chen (+1280 to +1354) still conserved at the Freer Gallery in Washington, and Sarton drew attention to his discovery. But it is not the oldest example, for the painter Ma Yuan, who flourished towards the end of the +12th century (c. +1195), also shows one (Fig. 401), in a picture reproduced forty years ago. We even have from this same period printed illustrations in Chinese culture. The Thien Chu Ling Chien (Holy Lections from Indian Sources), printed between +1208 and +1224, prefaces each of its Buddhist moral stories with a wood-block picture, and in at least two of these (nos. 34 and 54) we may see fishermen using rods with reels. An Armenian parchment Gospel of the +13th century also seems to show a reel, though less clearly; and these five, together with the early 17th-century encyclopaedia from which the first figure is taken, are not only the oldest, but also the only representations so far known before +1651. The advanced character of the Chinese textile industry, with its numerous bobbins and reels, may be connected with the invention. We shall pass over any assembly of textual evidence, and draw attention only to what may be a very ancient reference, the story of Lingyang Tsu-Ming in the Lieh Hsien Chuan. In this text, which may be dated as of the +3rd or +4th century, Tsu-Tsu-Ming (to give him his real name), a Taoist fisherman, who once caught a white dragon with his fishing-rod, was rapt away by it to live the life of an immortal on the holy Lingyang mountain. Years later, a Taoist disciple came and asked the country people whether the tiao chhe of Tsu-Tsu-Ming still existed—intending, no doubt, to try his fisherman’s luck in turn. All that matters for us is the expression itself, and it can hardly mean anything other than the reel of the rod.

Far more important is the continuous driving-belt, Fig. 390 n. Here at the outset it is necessary to make a distinction between belts or cords transmitting power, and similar endless bands conveying material. In the West, the second of these uses seems to have preceded the first. A parallel distinction has to be made for the more sophisticated and more efficient chain-drive worked by sprocket-wheels and thus overcoming the demon of slip. It will be convenient to deal first with belts and then with chains.

Fig. 400. Another use of the windlass pulley, the reel on the fishing-rod. Fishing for turtles (tiao pih), from San Tsai Thu Hsi (+1609), Chi Yung sect., ch. 5, p. 33b.
Feldhaus could adduce no evidence for the driving-belt in Graeco-Roman antiquity, though it seems strange that it should not have occurred to minds such as Heron and Ctesibius. In its purely conveyor form, it may have been present in some of the earliest examples of the 'chain of pots', the water-raising device known as the sāpiya, if any of these were ever made with a wheel at the lower end of the band's excursion. But this was no power-transmitter. It is true that in their reconstruction of the military engines described by Biton, Rehm & Schramm (1) showed a driving-belt within the heavy wooden automobile tower (helepoleos, δελμόσως) invented by Poseidonius. The tower, more than 60 ft. high, and mounted on four wheels, was intended for approaching fortified walls and laying an assault drawbridge upon them; so as it was natural that the motive power should be protected, a man-handled driving-wheel within was made to work upon the wheels. But neither the text nor the Byzantine MS. illustrations say anything of a driving-belt, and from the point of view of engineering probability one might guess that if a chain-drive were not used, directly geared connection with the road-wheels would have been the only alternative. Apart from the early +14th-century textile machinery which we shall discuss in a moment, the earliest picture of a driving-belt which European historians of engineering have so far been able to bring forward is that of a rotary horizontal grindstone in the MS. of the anonymous Hussite engineer (+1430). Even in the 17th and 18th centuries, representations of driving-belts remain rare.

If Asia is to be accorded greater credit for the development of the driving-belt, this may well turn out to be due to the origin there of the only really long-staple textile fibre of antiquity, silk. Now the spinning-wheel (fāng chèhâ), in its various forms, was a machine for which the continuous rotary motion assured by a driving-belt was indispensable. But this was (at first sight) an integral part of the technology of short-staple fibres. Naturally enough, its prominence in our own Western culture has long obscured the fact that it had precursors or predecessors in quite another part of the world, designed to handle a quite different type of fibre, for which continuous rotary motion was more important still.

About the origins of the spinning-wheel there has been great uncertainty. We ourselves were long inclined to agree with a widespread view that they should be sought in India, since that culture-area was no doubt the home of cotton culture and cotton
Fig. 402. The Chinese multiple-spindle spinning machine, an illustration of +1313 (Nung Shu, ch. 21, p. 298). The three spindles are all rotated by one continuous driving-belt.

Fig. 403. Contemporary photograph (Hommel, r) of a three-spindle spinning machine similar to that in the preceding figure. The treadle in these traditional devices is not a crank, but has a direct connection with the wheel at one end and is pivoted on a rough kind of universal joint at the other.
The oldest representation of the spinning-wheel yet known from any culture; a painting attributed to Chhien Hsian and in any case datable about +1270 (from Waley, 10). A son is saying farewell to his mother, who turns the crank handle with her right hand and spins the yarn with her left.
technology. Lynn White (5), however, who has most recently raised the question
again in challenging form, believes that this is a false clue and that the spinning-wheel
was invented in Europe. The evidence at our disposal inclines us to support his view
on India but at the same time impels us to describe the much stronger indications
which point to Chinese textile technology as the focus of origin of all such belt-drive
machinery. The matter is of great moment, for the spinning-wheel embodied not only
power-transmission by 'wrapping connection' but also one of the earliest uses of the
flywheel principle as well as a form of mechanical advantage embodied in differential
speeds of rotation.

That the spinning-wheel appears in Europe very late has long been known. While
+15th-century drawings of it are numerous, the oldest datable Western illustration
is usually taken to be that in the Luttrell Psalter (6) of c. +1338, though other well-
known ones have come down to us from about the same time. But Chinese icono-
graphy has precedence. The multiple-spindle cord-making machine of Leonardo (6)
is an almost exact copy of the Chinese multiple-spindle spinning machines illustrated
from +1313 onwards. These are usually shown with driving-wheels having integral
rims (cf. Fig. 402). This may be understood by comparing it with Fig. 403,
a contemporary photograph, where again we see the remarkable direct treadle drive, b
The presence of three and even five spindles, all driven by one belt in these machines,
early in the +14th century, seems to give them a stamp of maturity, and suggests that
at that time they had already long been developed. Rimless driving-wheels are also
common in Chinese textile technology. In one type the outwardly diverging spokes
are connected by thin cords so as to form a bed or 'cat's cradle' (as in the 'spoke-reel')
which carries the driving-belt, while in others it passes over grooved blocks set at the
end of the spokes. An apparatus of the former type is being used by the old soldier in
Fig. 404, sitting outside a Shan Shansi cave-dwelling during the Second World War.
The visitor would have been even more impressed if she had been aware that this machine

8 Lynn White (5) sees significance in the flywheels which occur in the Diversarum Artium Schedula of
Theophilus (early +12th century), who used them on pestles for grinding gold illumination paint (cf.
Theobald (1), pp. 14, 19, 174, 191). This does not seem to us so relevant as the potter's wheel is so
ancient a thing, and no driving-belts are mentioned by Theophilus. For hemp, Nung Shu, ch. +23, p. 6a,
followed e.g. by SSTK, ch. 78, p. 112. For cotton, Nung Shu, ch. 21, p. 29b, followed e.g. by SSTK,
ch. 77, p. 6a. For doubling cotton, cf. Nung Shu, ch. 21, p. 32b, followed e.g. by SSTK, ch. 77, p. 19a.
Gille (14), p. 64b, fig. 577, gives one from Gaston Phoebus' Livre de Chasse. The flyer is present by
+1280, as we know from the Mittelalterliche Hausbuch (Anon. (1), Eissenwein ed. pl. 34a, Bossert
Sturck ed. pl. 35); cf. Patterson (1), fig. 168, Feldhaus (1), fig. 710. For Leonardo's automatic flyer
worked by a half-gear device (cf. p. 385), see Uceli di Neni (3), no. 71; Feldhaus (1), col. 1063,

9 Patterson (1), fig. 167; Schwarz (1).

10 Carrus-Wilson (2) illustrates two (pl. 11b, c) from a British Museum MS. of the Decretals of Greg-
ory IX (10 E IV) which she dates about +1320. See also Usher (1), 1st ed. p. 230, and ed. p. 267.
Usher took his example to represent a quilling-wheel (see immediately below), I do not know why.
Was it not a bad redrawing from the Decretals?

11 See Beck (1), p. 454; Feldhaus (1), col. 1022. There is no reason for insisting that everything
Leonardo sketched must have been original. Later (Sect. 31) we shall find evidence which suggests that
Chinese textile-machine designs reached Europe in the time of Marco Polo.

12 For hemp, Nung Shu, ch. +23, p. 6a, followed e.g. by SSTK, ch. 78, p. 112. For cotton, Nung Shu,
ch. 21, p. 29b, followed e.g. by SSTK, ch. 77, p. 6a. For doubling cotton, cf. Nung Shu, ch. 21, p. 32b,
followed e.g. by SSTK, ch. 77, p. 19a.

13 Hommel (1), p. 175.

14 This dispenses, strictly speaking, with any crank connection; we shall return to the matter on pp. 115,
236 below.
was identical in every particular with that in the picture which qualifies as the oldest representation of a spinning-wheel yet known from any culture. We see it in Fig. 405, part of a painting attributed to Chi-hian and in any case datable about +1270; a dutiful son is taking leave of his mother, who turns the crank handle with her right hand and spins the yarn with her left. The second arrangement is seen in Fig. 406, a photograph which I took at Tun-huang in Kansu in 1943, where this kind of spinning-wheel was used for the twisting of threads of hemp or heavy flax, or for making thick grain-sack yarn from the scrapings of hides. The construction here invites comparison with the curious type of composite wheel built in the Han period (p. 81 above), and again raises the problem of a connection between vehicular and stationary wheel build. In comparing these pictures it is interesting to find a prominent semi-lunar spindle mounting in Figs. 405 and 406, as in the silk-spinning-wheel of which Fig. 407 is a scale drawing.

Fig. 407. Scale drawing of a Szechuanese spinning- or quilling-wheel with four spindles each rotated by a separate driving-cord from the main wheel (Than Tan-Chhiung, 1). With multiple driving-cords no semi-lunar mounting for the spindles is necessary. Scale 14 in. to 1 metre.

Thus, to sum up, the Chinese illustrations of the spinning-wheel have a clear priority over those of Europe. The literary sources have not yet been fully explored on either side. It is generally agreed that the first European mention occurs in the statutes of a guild at Speyer, where about +1280 it is laid down that 'wheel-spun' yarn could be used for the web but not for the warp. The presence of the fully developed machine in Chinese paintings and drawings of this time is clear, but we cannot as yet give earlier textual references. During the +15th century, cotton culture was spreading over China for the second time, probably from Sinkiang, but this may not have been any limiting factor for from quite ancient times the Chinese had been using fibres other than silk which needed spinning, notably hemp and ramie. The spinning-wheel may thus have originated at any time after the Han.

Actually, it is not necessary to go outside silk technology at all to look for the birth of the spinning-wheel. The Chinese never wasted anything, and thus they early developed means of dealing with waste silk on cocoons from which the moths had escaped, and coarse silk which could not be wound off from cocoons in the classical way. In fact, if the very beginnings of sericulture were concerned with 'wild' silk-worms, as we must surely assume, this problem would have been the oldest of all. In +1313 Wang Chen shows us the making of floss silk for wadding, etc., from waste cocoons agitated in boiling water; the best of this goes, he says, to make miên, the coarsest to make hisi. On the following page, he shows us a woman combining together the longer strands end to end by hand with the aid of a 'twisting spindle' (miên miên chu)—in fact spinning: the production of yarn for rough silk fabric. Although he does not depict any kind of spinning-wheel in use for this purpose, he says that what she is doing is a substitute for it. And then when we turn to recent and contemporary descriptions of the Chinese silk industry we find at once that true spinning-wheels were and are in fact traditionally used for making silk yarn from short lengths directly from the wild cocoons themselves. Thus we may well have here the real point of origin of all spinning-wheels.

Lynn White (5) believes that the immediate precursor of the Western spinning-wheel, from which quite small adjustments would have generated it, was the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel, from which quite small adjustments would have generated it, the quilling-wheel.
wheel for winding yarn on to the bobbins of the weavers' shuttles (shu, nio). This also had its driving-wheel, and a small pulley, mounted on bearings in a framework and connected by an endless belt. But though he could find no evidence for its existence outside Europe, in fact the Chinese pictures and references again long antedate the European. A fairly clear representation is in the Ypres Book of Trades, c. +1310, and it is almost certain that the textile wheels in the famous windows of Chartres cathedral (+1240 to +1245) must be interpreted as winding-machines. There is no earlier sign. At the other end of the Old World we may start with the Nung Shu of +1313 which gives a description and two illustrations of the 'weft-machine' or quilling-wheel (su chhe or sei chhe). Hence we may go back to the King Chih Thu (Pictures of Tilling and Weaving), put together by Lou Shou about +1145. The later editions do not show a quilling-wheel under the rubric 'Weft' (weif), but by good fortune that of +1237 clearly does (Fig. 408). Since five reels are placed beside it on the ground, however, it must be in use for twisting and doubling, i.e. 'throwing', the silk on to a small reel, rather than for quilling on to a shuttle bobbin; unless indeed the operations were at that time combined. A modern engraving of a

*Gutmann (1); Patterson (1), fig. 183.† Delaporte (1), vol. 2, pl. xxxix, vol. 3, pl. cdxxi.

*Ch. 21, pp. 139, 140, b. † Copied verbally, and iconographically closely, by all the later agricultural encyclopaedias, e.g. NCCS, ch. 34, pp. 171, 8; SSTK, ch. 75, pp. 13a, b. ‡ Of +1462 (La Chine) and +1739 (Chhing), reproduced by Franke (11).

*The series is reproduced by Pelliot (24), and this is his pl. 171.† Lynn White (7), p. 578, courageously trying to draw upon Chinese evidence, found that what he could get of it was rather puzzling. The commentary of Franke (11), p. 177, which reproduced the SSTK quilling-wheel with crank handle of +1712, is not on any of Lou Shou's poems but on one of the prose passages (p. 174) provided by the committee of literati which embellished the +1739 edition of the King Chih Thu. In their elucidation of the picture entitled 'Weft' they mention only the throwing of the silk on to a drum. Thus Franke himself was puzzled too. The trouble is that in the different editions of the 'Pictures of Tilling and Weaving', a number of different operations are shown under a single rubric 'Weft' (Preparing the Weft'). The Sung series (+1145 to +1277) shows as its no. 21 a quilling-wheel in use for doubling and twisting, as we have just noted. No. 21 of the Ming series (+1462), reproduced by Franke (11), pl. lxxix, shows something quite different, the winding of silk from the big reels of the reeling-machine (so chhe) on to smaller reels for further use (li chhe). This is often described in the agricultural treatises, cf. Nung Shu, ch. 21, pp. 158, 15a, b. † or later SSTK, ch. 75, pp. 13a, b. Then no. 16 of the second Chhing series (+1739), reproduced by Franke (11), pl. xc, on which the literati were commenting, shows twisting and doubling (throwing) being done from four small reels on the ground, not to a reel or bobbin on a quilling-wheel but to a large drum on a special stand. Finally, no. 20 of the Ming series (Franke (11), pl. xxvi) shows, we believe, a similar apparatus for doubling and twisting, essentially like that of no. 16 of the second Chhing series. Either its title Chhing ("Warp") is a +17th-century mistake, or else more probably the machine was used at that time for warp yarn as well as for weft. The Weif illustration in the 6th Chhing edition of +1696 is the same as that of the second save that it still conserves Lou Shou's original poem. In his important later book, Lynn White (7), esp. pp. 111, 114, unfortunately mishandled the evidence of the King Chih Thu, not realizing that Franke (11) can only be used in conjunction with the subsequent discoveries of Pelliot (24). We are by no means limited, as he believed, to the witness of a +1145 painting of Chhing Chhi (see p. 167 below) made a series of illustrations based on those of the printed edition of Wang Kang & Lou Shao in +1237, illustrations which cannot have diverged far from those of +1145, and no doubt resembled fairly closely the original paintings of Lou Shou himself (+1145). Chhing's scroll was rediscovered in the +18th century and presented to the Chhien-Lung emperor, who caused its contents to be engraved on stone in the Imperial Palace, himself adding a historical introduction (+1796). Although the stones may now have disappeared, rubbings from them have been preserved in the Semall Scroll, which Pelliot (24) most
very similar machine in use for doubling is given by de Bavier in his eye-wit­ness description of the Japanese rural silk industry (1874). At the right-hand side of the King Chih Thu picture of +1237 we find the original poem of Lou Shou, which runs as follows.¹

Steeping the weft, again,² is part of the mystery, And with hands as cool as the bamboo shoots of spring, The country maidens marry two fibres of silk And twist them together to one inseparable thread Fitted to play its part in a myriad patterns. And now, at last, in the late slanting radiance, The big wheel’s shadow looks like the toad in the moon.³ Yet still, here below, sweet Ah Hsiang speeds her turning, And under a deep blue vault the rumbling goes on.⁴

Thus we need have no hesitation in accepting the use of the quilling-wheel for the middle of the +12th century in China, nearly a hundred years before the first European appearance. More remarkable still, texts and reliefs dating from the -1st to the +3rd centuries, consideration of which we must postpone for another part of our discussion (p. 266 below), take the story of the quilling-wheel fully back to the beginning of our era. Such a priority can only be explained by the stimulus of an industry which had to deal with extremely long continuous fibres.

Indeed, if the belt-drive was developed so long ago for winding shuttle-bobbins and for silk-throwing, it is highly probable that it was applied quite early to the most fundamental of all sericultural operations, the reeling or winding-off of the silk filaments from the unbroken cocoons. As we explain elsewhere (p. 2 above and Section 31 below), one can reconstruct completely the classical silk-reeling machine (sao chhd¹,²) with its oscillating ‘proto-flyer’, from a text of approximately +1090, the Tshan Shu (Book of Sericulture) of Chhin Kuan,⁵ by the aid of +17th-century illustrations⁶ (Fig. 409). In this apparatus the main reel on which the silk is wound is powered by a treadle motion, and the ramping-arm of the flyer activated simultaneously by a subsidiary belt-drive.⁷ The machine is clearly recognisable in the +1237

carefully described and edited. We thus have an authentic record of Sung technology, and if throughout the present work we do not always press for a dating of +1145 as would be not at all unreasonable, we believe that this earliest extant version of the ‘Pictures of Tilling and Weaving’ does authorise firm conclusions for the beginning of the +13th century (+1210 and +1237). In all our references to it, the implication of the earlier +12th-century date is to be borne in mind.

¹ (1), p. 134 and pl. 11, fig. 1. The quilling-wheel is shown in pl. 101, figs. 2 and 3. ¹² Tr. auct. with Lu Gwei-Djen. The text agrees with that in the separately transmitted King Chih Thu Shih, p. 8a.

³ This refers to one of the de-gumming processes. ¹³ The wheel in this line is clearly the driving-wheel of the quilling or throwing machine. Its outstretched spokes without a solid rim make it look like a spread-eagled toad (chhan⁶). Later on we shall see that another term with the same meaning (hsia-ma⁷) was often used for the sprocket-wheel of the square-pallet chain-pump; cf. pp. 345 ff.

⁴ There is a significance in this noise (see p. 269 below.) ¹⁴ Notably TKKP, Ming ed. ch. 2, p. 334; less well drawn in the later editio princeps, ch. 2, p. 20a.

⁵ We note elsewhere (p. 404) the historical significance of this duplicity of function.

¹⁶ 落落 卿 恩 恩 以 余 定 的 时
27. MECHANICAL ENGINEERING

drawing in the Kēng Chīh Thu. The construction is so important for the history of the driving-belt that readers may already at this stage like to have the actual words of the Tahan Shu. It says:

The pulley (bearing the eccentric lug) is provided with a groove for the reception of the driving-belt, an endless band which responds to the movement of the machine by continuously rotating the pulley (ku sheng chhi yin i thu huan sheng, sheng ying chhi yin ju huan tu huan, ku yin i kuan \(^{1}\)).

Although in this apparatus the belt-drive (thus attested for the +11th century) is subsidiary to the main motion, while in the quilting-wheel or spinning-wheel it is essential to it, the machine itself is perhaps more fundamental than either of them.

It may be, therefore, that the most ancient use of the power-transmitting endless belt was for the purpose of laying down the fresh silk filaments evenly on the real. The fact that in the reeling-machine the transmission of power involves no mechanical advantage might also perhaps invite us to think it older. In any case it would be rather surprising if the reeling-machine were not at least as old as the quilting-wheel.

Textile technology is not the only field which gives us driving-belts in medieval China. Our estimate of the date of the first use of an endless rope or cord in that culture may also depend on what exactly the machine was which operated metalurgical bellows by water-power in the early 19th century. Thus far we have been considering ‘wrapping connection’ as applied to smooth-wheels, but there were two endless chains, one on each side of the stock, moving backwards and forwards round pentagonal cog-wheels, the hind one of which was operated by winch handspikes on the same axle. The string of the torsion catapult could thus be drawn back by a claw attachment fixable at any point to the endless chains, and as this was done, a new arrow fell into the groove from a magazine above. This machine was very ingenious, but there is great doubt as to whether it was ever used on any extensive scale, or even constructed at all. There is certainly no evidence for its use, either textual or archaeological. Moreover, Philon himself minimises its value, saying that there is no point in shooting off so many arrows in the same direction, where they will only be picked up by the enemy and shot back again. In any case the principle is what matters here, and it is interesting to note that while these endless chains transmitted power which was applied to twisting the catapult silews, they did not transmit power from shaft to shaft, and hence they were not in the direct line of ancestry of the chain-drive proper.

Philon of Byzantium is also associated with another use of the endless chain, namely in his remarkable magazine or repeating catapult. According to the reconstructions based on the text, there were two endless chains, one on each side of the stock, moving backwards and forwards round pentagonal cog-wheels, the hind one of which was operated by winch handspikes on the same axle. The string of the torsion catapult could thus be drawn back by a claw attachment fixable at any point to the endless chains, and as this was done, a new arrow fell into the groove from a magazine above. This machine was very ingenious, but there is great doubt as to whether it was ever used on any extensive scale, or even constructed at all. There is certainly no evidence for its use, either textual or archaeological. Moreover, Philon himself minimises its value, saying that there is no point in shooting off so many arrows in the same direction, where they will only be picked up by the enemy and shot back again. In any case the principle is what matters here, and it is interesting to note that while these endless chains transmitted power which was applied to twisting the catapult silews, they did not transmit power from shaft to shaft, and hence they were not in the direct line of ancestry of the chain-drive proper.

Philon's text is translated by Carra de Vaux (2), pp. 324ff.; cf. Usher (1), 1st ed. p. 121, 2nd ed. p. 120; see also Ewbank (1), pp. 122ff. See pp. 332ff below.

In the interpretation of Drahmann (4), p. 66, the motion of the upper wheel of the bucket-chain was derived from a separate undershot water-wheel by a true chain-drive, but we prefer the reconstruction of Beck, which assumes that the lower wheel of the bucket-chain was a water-wheel itself (as perhaps in some of the later Chinese types, cf. p. 155 below).

Beck (3), Schramm (1), Diels & Schramm (4).

As we shall see later (Sect. 50), the Chinese crossbow tradition also generated magazine or repeating weapons. These, however, were armed (made ready for action) by lever mechanism only. Contrasting (as so often) with Greek proposals, the Chinese magazine crossbow was a very practical instrument for certain services.

1. As is translated by Carra de Vaux (2), pp. 324ff.; cf. Usher (1), 1st ed. p. 121, 2nd ed. p. 120; see also Ewbank (1), pp. 122ff. See pp. 332ff below.

2. In the interpretation of Drahmann (4), p. 66, the motion of the upper wheel of the bucket-chain was derived from a separate undershot water-wheel by a true chain-drive, but we prefer the reconstruction of Beck, which assumes that the lower wheel of the bucket-chain was a water-wheel itself (as perhaps in some of the later Chinese types, cf. p. 155 below).

3. As is translated by Carra de Vaux (2), pp. 324ff.; cf. Usher (1), 1st ed. p. 121, 2nd ed. p. 120; see also Ewbank (1), pp. 122ff. See pp. 332ff below.

4. In the interpretation of Drahmann (4), p. 66, the motion of the upper wheel of the bucket-chain was derived from a separate undershot water-wheel by a true chain-drive, but we prefer the reconstruction of Beck, which assumes that the lower wheel of the bucket-chain was a water-wheel itself (as perhaps in some of the later Chinese types, cf. p. 155 below).

5. As is translated by Carra de Vaux (2), pp. 324ff.; cf. Usher (1), 1st ed. p. 121, 2nd ed. p. 120; see also Ewbank (1), pp. 122ff. See pp. 332ff below.
This seems to have come with much delay in Europe. Historians of occidental engineering have generally been unable to find any chain-drive in the true sense until the 18th or 19th century. About +1438 Jacopo Mariano Taccola figured an endless hanging chain for manual use like those employed for small hoists in engineering workshops today. About +1490 Leonardo da Vinci made elaborate sketches of hinged-link chains, and used them for purposes such as turning the wheel-lock of a gun. This transmitted the power of a spring-pistol, but the chain was not endless.

In +1538 Ramelli depicted a chain (again not endless) in oscillatory motion over the driving-wheel of a double-barrel pump (cf. Fig. 613), but he did also describe in three places a true continuous chain-drive, though the wheels so enveloped seem often to be pulleys rather than sprocket-wheels. Not until about +1770 did de Vaucanson develop an industrially practical chain-drive. This he used for his silk reeling and throwing mills, and towards the end of his life was much occupied with a machine for making its standard links. Hinged links of female shape to fit the male sprockets on the wheels came with Galle in 1832 after which the chain-drive was applied to cars by Aveling in 1863 and to bicycles by J. F. Trefz in 1869.

In China development took place quite otherwise. The most characteristic Chinese water-raising machine, the radial-treadle square-pallet chain-pump, must necessarily have a sprocket-wheel at each end of the flume. This machine, the fan chhêi, is shown in the oldest of the Chinese books on agricultural machinery which have come down to us (+1145 onwards), and in all later ones.

As will in due course be demonstrated, its invention may be securely placed in the Han (c. +1st century), so that it is little later than the Hellenistic sârgyâ. It was an extremely practical machine, and from the Han period downwards hundreds of thousands of square-pallet chain-pumps dotted the Chinese countryside. Nevertheless, it was not a power-transmitting machine any more than the chain-pumps of the Roman Empire.

But it probably inspired the true invention. When we study later on the work of the builders of mechanical clocks in China from the beginning of the +8th century, we shall find that considerable use was made of real chain-drives—"celestial ladders" (thien thiê). In the great astronomical clock-tower of +1090 the main vertical transmission-shaft proved to be too long, and was soon replaced by modifications in which the power for the armillary sphere on the upper platform was provided by endless chain-drives, successively shorter and therefore more efficient in the various rebuildings. In this masterpiece of Su Sung's, the uppermost shaft rotated a series of three small pinions in a gear-box underneath the armillary (Fig. 410).

But it was by no means the earliest, for there is some reason to believe that the mercury-operated clock built by Chang Su-Hsun in +978 also contained a chain-drive. Thus at present it would seem that China rather than Europe is responsible for both of the fundamental inventions of the driving-belt and the chain-drive.

Fig. 410. The oldest known illustration of an endless power-transmitting chain-drive, from Su Sung's Hsin I Hung Fa Yao (+1090), ch. 3, p. 257. This "celestial ladder" (thien thiê) was used in the first and second modifications of the great astronomical clock-tower at Khialfing for coupling the main driving-shaft to the armillary-sphere gear-box. See Fig. 652a and p. 457 below.

(4) Crank and Eccentric Motion

Of all mechanical discoveries that of the crank (chhiâ hau) is perhaps highest in importance, since it permits the simplest interconversion of rotary and reciprocating (rectilinear) motion.

"Continuous rotary motion," writes Lynn White in an admirable passage, "is typical of inorganic machinery, while reciprocating motion is the sole form of movement found in living things. The crank connects these two kinds of motion; therefore we who are organic find that crank motion does not come easily to us... To use a crank, our muscles and tendons must relate themselves to the motion of galaxies.
and electrons. From this inhuman adventure our race long recoiled.\(^6\) The principal
forms of the device are shown in Fig. 390.\(^7\) The simplest, and perhaps the oldest (or
more probably the second oldest), manifestation of the device was born when it
occurred to someone that a wheel could be turned by hand more easily if a handle
at right angles to its plane were fixed in it at a point near its circumference (Fig. 390.p).\(^7\)
In due course direct contact of the worker’s arm was replaced by a connecting-rod
(shown in p’).\(^8\) Greater leverage was obtained when the handle was mounted on a lug
or spoke extending from the wheel’s rim, as at (b’), and of course this system may itself
have been a modification of the capstan or windlass handspeaks (b’).\(^7\) As a substitute
(whether primitive or degenerative one can hardly say), a piece of wood inserted
in the axle at an angle (p”) was found to be capable of performing the office of a crank.
Then the crank proper, invisible in (p) and rudimentary in (b’), could manifest itself
fully in the developed crank arm or handle as at (q).\(^7\) Conversely, the wheel could also be
invisible (cf. p. 89 above), leaving only the crank arm (or eccentric lug, r) which
could carry a connecting-rod (r’).\(^7\) Much greater rigidity was acquired by the machine
when this was doubled to form a crankshaft (I), and the conversion of rotary to
perfectly rectilinear motion, as of a piston, was obtained when the connecting-rod was
joined by a link to a second rod as in (l).

According to an impression widely current among historians of technology, the
appearance of the crank occurred rather late. Usher says\(^7\) that there is no pre-
medieval evidence for any form of crank-handle, and this has been the general view
(cf. Haudricourt, 2).\(^7\) Crank-handles (chii ping?)\(^7\) indeed appear in many reconstruc-
tions of apparatus described by Heron, and others of the Alexandrians,\(^8\) but there is
little in their texts to support this, and what little there is may well have been inserted
in the +10th century, the time of Qusti ibn Lūqā al-Ba’labakki, when they were being
translated into Arabic.\(^4\) Gille (2) and Forbes (2)\(^9\) find the first evidence of the crank-
handle in the Utrecht Psalter, written about +830, where is seen being used with
a rotary grindstone.\(^1\) Trepanation drills with crank-handles have been said to appear in
the work of the great +1oth-century Spanish Muslim surgeon Abū al-Qāsim al-
Zahrāwī (Albucasis).\(^4\) In the first half of the +11th, Theophilus describes the crank-

\(^{a}\) (f), p. 115. I am not sure that the statement is strictly true, as the rotifers may bear witness, but it
is broadly so.

\(^{c}\) Carra de Vaux (1), p. 462; Beck (4), p. 86. Heron’s diepra was given a crank handle by Usher (1),
and ed. p. 149, but Drachmann (3), p. 127, had already drawn it rightly with little handspeaks. Siger (a),
p. 87, however, judiciously corrected Singer (s), p. 82. Gille (1a), p. 635, seems to err in accepting
the genuineness of ‘Alexandrian’ crank movements. On the archaeological side the criticise of Lynn White
(2), pp. 110ff., has disposed of the claim that cranks were fitted to the bilge-clearing-chain-pumps of the
Lake Nemi ships (p. 49).

\(^{d}\) My friend Dr A. G. Drachmann, however, feels that certain passages in Grabian (f. +162) and
even Archimedes, seem to require the assumption of a crank. I hope he will set forth the evidence for
this before long.

\(^{e}\) Pl. 2 and p. 113. Also Lynn White (7), p. 110.

\(^{f}\) Another MS. illustration, closely similar to the pair in the Psalter of Eadwln of Canterbury (Cambridge,
written c. +1150; this is figured by Feldhaus (a), pl. viti, in colour. Cf. Gille (1a), p. 631.

\(^{g}\) Horwitz (4), but Lynn White (7), p. 170, casts doubt on this. The Shô¼ may qualify instead.
first to appreciate this, he was of the first generation. But there is more to say about
the origin of the crank simple.

Egyptologists have long been acquainted with what may have been a crank drill of
primitive brace-and-bit type, which goes back to the Old Kingdom. Fig. 411 (a),
taken from Borchart, shows one such drill, from a relief; including the drilling tool,
apparently often of crescent-shaped flint, held in the brace, and the bags of stone above
which served as weight and perhaps as flywheel. Fig. 411 (b), from de Morgan, and
Fig. 411 (c) from Newberry, illustrate the use of the drill for boring holes in stone vessels
or hollowing them out, and these drawings are of particular interest since the handle
at the top (perhaps a gazelle horn) is oblique (cf. Fig. 390 f). Klebs reproduced a
similar carved relief from a tomb at Saqara dating from about - 2500. He described bored jars of many kinds of hard stones
from the Middle Kingdom (basalt, syenite, porphyry, serpentine, etc.). There was
even a special hieroglyph for the tool g (Fig. 411, d) which seems to depict the brace and bit with a handle more crank-like
than it really was. The tool seems to have spread very slowly out of Egypt; Petrie,
for example, knew of no Graeco-Roman examples. The earliest European illustrations
of the crank-drill or carpenter's brace occur in German, French and Flemish paintings
dating from the neighbourhood of +1420 onwards. It is seen also in the +1438 altar
panel by the Master of Flemalle in the Mérode Gallery at Brussels. Although the tool
was now a crankshaft rather than a crank, the connecting-rod component was of
course still the worker's arm, but so also had it been in the case of the ordinary hand-

a Leroi-Gourhan (1), vol. 1, p. 186; Lucas (1), p. 84; Zuber (1).
b (2), pp. 142, 143.
c Vol. 1, p. 123.
d Vol. 1, pl. xi.
e (1), p. 84, fig. 66. Copied more accessibly by Childe (1), p. 193.
g Firth & Quibell (1), pp. 124, 126.
h Assuming that no development had taken place during previous centuries.
j Gille (2, 14); Thomson (1); many examples. Discussion in Lynn White (7), pp. 112 ff.
k Mercer (1), p. 206; Heidrich (1), fig. 20.
turned grain mill or quern. The first origin of the crank may still have to be sought long before the beginning of our era.

The obliquely pointing position which the handles of some of the ancient Egyptian crank-drills seem to have had is interesting. Assuming for the sake of argument that this almost diagonal substitute for two right angles was a primitive feature, it is striking that it has persisted to the present day in some of the rough windlasses of Chinese miners and farmers (see Fig. 412). It occurs also on well-windlasses in tomb-paintings, notably some of the Jurchen Chin dynasty (+12th century) at Chiang-hsien in Shansi, recently studied by Chang Tê-Kuang (1) and exhibited in 1958 at the Imperial Palace Museum. The oblique 'crank' is also found on some early European hand-querns of about the 1st century (Curwen, 3). The double, or crankshaft, form of this, corresponding to the modern brace-and-bit drill, is the fire-making drill of the South American gauchos; nothing more than an elastic piece of wood bent lightly and twisted like a crank. This, however, though made famous by Darwin and Tylor, is now regarded as of European rather than Amerindian origin.

The most extraordinary kind of oblique crank known to me is the treadle crank found on some Chinese spinning-wheels (Fig. 403) and peculiar to them. In this the treadle is attached to one of the spokes of the wheel nearer the hub than the rim, while its other end is held loosely in the framework; upon being set in motion by the feet as shown in the photograph, one can see that if it were to be copied in an accurate medium such as metal, at least one universal joint would be required. This remarkable

* Many consider this the first certain appearance of crank motion, e.g. Lynn White (7), p. 107. But when did it appear? The dating of early European rotary hand-querns is still very uncertain, and the view of Curwen (3) that querns with single vertical peg-handles cannot be placed much before +400 still holds good though nearly three decades of archaeological research have passed since it was formulated. Lynn White discusses the matter in detail. Such a date corresponds to the late Chin period, but as we shall see (p. 189) rotary querns go back in China to the Chin (-3rd century). A special study of their typology would be necessary to determine the approximate date of appearance of the single vertical peg-handle 'crank' form among them. On the evidence at present available, querns with holes for single vertical peg handles seem to be older in China than in the West by two or three hundred years.

* Some reluctance is felt by certain archaeologists in accepting this interpretation, partly perhaps because the crank principle was unappreciated for so many centuries after the first appearance of the ancient Egyptian types. Mr André Hausdorff, for example, would prefer to see in the hieroglyph a representation of the bow-drill (opinion privately communicated). Childe (1) tends to agree with Kleibs and von Bissing that the gazelle horn at the top remained stationary, forming a socket or bearing in which the drill could turn. However, as he points out, even if the tool was not one which involved the principle of the crank, it could well mean that the Egyptians had found a new application of rotary motion by +2500. For the potter's wheel had been in use in Mesopotamia for a whole millennium by that time, and in Egypt itself for probably a couple of centuries. Lynn White (7), p. 104, follows Childe; I still think that there is weight in the Egyptian material.

* Homsnel (1), pp. 2, 3. Possibly querns also (Giglioli, 1). In view of this oblique 'crank-substitute', certain Chinese terms for crank are suggestive—most chu, the 'curved axe'; chhi chhi, the 'bent and curved piece'. Cf. 'Kurbel' in German.

* Also in Chang Tê-Tuan's painting of +1126, the 'Ch'ing Ming Shang Ho Thu' ('Ch'ing Chen-To') (3), pl. 5, and in the frescoes of the Yung Lo Kung temple in Shensi (Teng Pai (1), pl. 13).

* Cf. pp. 83 above and 236 below.
device seems to be purely Chinese. But it has a certain analogy in the long crank­
handles of some medieval European hand-mills. Historians of occidental technology have had difficulty in dating the common cranked well-hoist, and the most critical recent discussion addsuce nothing earlier than the neighbourhood of +1425, a miniature in the Hausbuch of the Mendel Foundation in Nuremberg. Chinese medieval well-windlasses therefore take precedence, not only for the oblique crank but also for the regular right-angled variety. The oldest illustration of the latter is in the Nung Shu, implying therefore the +13th century, and there can be no doubt about it because the construction is clearly described in the accompanying text.

It has frequently been recognised that the simple quern (mo, see Fig. 443), with its upstanding handle near the circumference of the mill-stone, embodies the principle of the crank (cf. Fig. 390 p). Elsewhere (pp. 187, 189) we discuss the relative antiquity of this in east and west, but priority cannot yet be determined. In hand-mills throughout the Chinese culture area, a connecting-rod of varying length (besides the worker's arm) was early added to it, certainly by the Sung. Another type (Fig. 444), giving greater mechanical advantage or leverage by increasing the eccentricity, demonstrates Fig. 390 (b). This constitutes, as we saw, a transitional form between the capstan or winch handspikes and the crank. Finally, this type also acquired a connecting-rod of varying length (Fig. 443). In so doing, it gave birth to the eccentric lug system, which was so great a favourite with the medieval Chinese engineers. One finds it, for example, in the +14th-century version of the water-driven metallurgical bellows of the +1st (see on, p. 371), where it turned at higher speed on a small pulley connected with the large driving-wheel by a belt. One finds it also on the silk-reeling machine of the +11th century (above, pp. 2, 108; below, pp. 382, 404), where it operated

* Lynn White (7), p. 167. It is particularly strange that this seemingly obvious application took so long in coming, since the crank had by no means been confined earlier to rotary grindstones. The 'hurdy-gurdy', a fretted stringed instrument, was sounded by a cranked mechanism as early as the beginning of the +10th century (ibid. p. 120).
* The Foundation is described in some detail by Feldhaus (20), pp. 223ff. The 'Twelve Brothers of Conrad Mendel's Hospital' were founded by him in +1388; they were lay religious, as if of an order, and continued to work each at his industrial trade. By +1799 when the Hospital was abolished, 799 brothers had enjoyed its shelter. Before +1799 each brother's portrait showed him at his working bench, hence the value of the collection for the history of technology. Feldhaus reproduces a dozen of them.

Fig. 413. Crank in the form of an eccentric lug, fitted with connecting-rod and hand-bar to allow of the simultaneous labour of several persons at a grain-hulling mill (lung, cf. p. 188 below). Nung Shu (+1313), ch. 16, p. 58.
an early type of flyer for laying down the silk in equal layers on the reel, and again was rotated by a belt-drive. This textile apparatus may well have been a direct precursor of the hydraulic blowing-engine, the two being safely referable to the +9th and the +12th centuries respectively, and the latter is a machine of great importance in the history of technology for it embodied, so far as we can see (cf. p. 386 below), the first appearance of that fundamental combination of eccentric, connecting-rod and piston-rod (Fig. 390) used afterwards in all steam and internal combustion engines. We do not know, however, of any indigenous Chinese machine which involved the crankshaft principle (Fig. 390), and this seems not to be pictured in a Chinese book before the Jesuit period (+1627).

Crank-handles were, of course, far from being confined to querns in China. Hommel illustrates late forms for rope-making, wire-drawing, silk-winding, etc. The question is how far these go back. From Han tomb models in pottery, studied by Laufer (3) and others, it is likely that the third type of quern described above (Fig. 390b) was then common. But much more important evidence is available, though it has not yet been assembled and seriously studied. Certain museums possess tomb models of pottery which show, besides the usual quern and foot tilt-hammer, a winnowing-fan with a crank-handle. Fig. 415 should be compared with Fig. 414. Now there is no doubt that the rotary winnowing-fan (fěng chǎn), which will be discussed further below (p. 151 and Sect. 41), is a machine of considerable antiquity in China, and that the West received it from there no earlier than the middle of the +18th century. There is no reasonable room for doubt that the model in Fig. 415 is of the Han period. That is to say, it must date from before the end of the +2nd century. It is to be saluted as embodying the most ancient indubitable crank-handle.

Fig. 415. Farmyard model in iridescent green glazed pottery from a tomb of the Han period (-2nd to +2nd centuries) in the Nelson Art Gallery, Atkins Museum, Kansas City. On the right a rotary grain-mill and a man working a foot tilt-hammer grain-pounder; on the left a built-in winnowing-machine with hopper and two lower apertures. The crank-handle for working the rotary fan of the winnowing-machine is the oldest representation of the true crank-handle from any civilization. Model dimensions 81 in. x 6 in. x 3 in.
It has been authoritatively said that although 'in China the crank was known, it remained dormant for at least nineteen centuries, its explosive potential for applied mechanics being unrecognised and unexploited'. This is a misapprehension. It is true that Chinese culture did not spontaneously generate modern science and technology, with all the industrialisation that developing capitalism in the West drew forth from it, but within the limits of feudal-bureaucratic society the powers of the crank were widely used and appreciated throughout the Chinese Middle Ages. For three or four hundred years before the time of Marco Polo it was employed in textile machinery for silk-reeling and hemp-spinning, in agriculture for the rotary winnowing-fan and the water-powered flour-sifter, and in humbler uses such as the well-windlass. It seems more and more likely that whatever the factors inhibitory to the rise of mechanical and industrial society in China were, technological inventiveness and application was not one of them. Western slowness in developing crank motion offers no less a challenge to historical analysis.

Screws, Worms and Helicoidal Vanes

The continuously winding screw-thread, male and female (as in bolt and nut), and the cylindrical worm capable of engaging with an ordinary gear-wheel so that motion may be transmitted between two shafts at right angles, are the most outstanding examples of mechanical systems apparently unknown to Chinese engineers and artisans until the 17th century. On the history of the screw much has been written, and it is quite clear that the principle was very familiar in Hellenistic times. The reputed inventor was Archytas of Tarentum (fl. -365), and all the Alexandrians discuss apparatus involving worms and worm-gearing.

Particularly common were the worm- or screw-presses used in the wine and oil industries, shown, for instance, in the wall-
paintings of Pompeii. Many medieval examples still exist in Europe, but China always used wedge presses. The Archimedean screw for raising water was also well known, and continued in use in most Mediterranean lands after the Arab conquests. It entered its way to India, where it was described by Bhūja (c. 1050) under the name pāṭasama-uchihrāyā. Worms were utilised, too, in surgical apparatus, as witness the speculum of Roman physicians, and are mentioned by Paul of Aegina in the +7th century, as well as by most of the great Arabic medical writers. The tapering wood-screw appears in Gallo-Roman times; fibulae and arm-rings of the +3rd to the +6th centuries have screw attachments. There was clearly no break in the European knowledge of screws; in the +13th century Villard de Honnecourt used them for raising weights, and the +15th German engineering MSS. frequently show them. About +1450 metal screws suddenly became common for the fastenings of armour.

A curious problem is raised by the fact that the only people other than Europeans to possess the continuous helical screw were the Eskimos. There has been much discussion as to whether this was an independent invention or due to culture contact with Europeans, but the question is not yet solved. As Horwitz (6) pointed out, the first picture of a screw (6 mm) in Chinese literature occurs in the San Thai Thu Hai encyclopedia of +1609 (Fig. 416), where it is shown used for the cap of a gun. He himself rightly left open the possibility that the knowledge of the screw in China went back beyond the Jesuits to Arab contacts in the Yuan period or earlier, but for this we are not able to adduce any evidence.

Fig. 416. The first Chinese diagram of a continuous screw or worm and its male and female threads, part of a set of diagrams of the match- or flint-lock musket (niao chhung, or "bird-beaked gun"). During the first half of the +17th century there was a rich proliferation of Chinese literature on firearms; this will be discussed in Sect. 30. The screw-cap of the musket is seen on the right of the page. Its upper legend reads 'Diagram of the shapes of the parts of the bird-beaked gun'. Below, on the right: 'The shape of the "silk coil" [i.e. the screw]; if you turn it to the right it comes out, if you turn it to the left it goes in.' In the centre of the page is a diagram of the muzzle above, and of the touch-hole underneath. On the left, stock and ramrod. For a brief account of +16th- and +17th-century firearms see Hall (3).
There can be little doubt, however, that the Archimedean water-raising worm (the lung wei châi) was introduced to China at the beginning of the 17th century, when it was repeatedly illustrated in books. But again there is little evidence that it ever spread there, or replaced to any appreciable extent the traditional square-pallet chain-pump. Nevertheless a small book about the Archimedean screw appeared during the latter half of the 17th century, Tai Chen's Lo Tsu Chê Chê (Record of the Class of Helical Machines). Early in the 19th century Chhi Yen-Huai improved it and again tried to popularise it by his writings. It seems to have had much more of a success in Japanese mines from about 1630 onwards, as is shown by a number of well-known scroll-paintings, but before long it was replaced, according to Netto, by piston-pumps.

At what time worm gearing reached the frontiers of the Chinese culture-area is at first sight difficult to determine. It seems almost certain, however, that it came with cotton. For in the cotton-gin of the Indian culture-area, a simple machine for separating the seeds from the cotton itself, two oppositely rotating rollers are made to engage not by ordinary gear-wheels but by elongated worms placed side by side. The whole can thus be worked by one crank-handle. Indian examples in museums have often been figured, so I reproduce here (Figs. 417, 418) two Sinhalese cotton-gins in the National Museum at Kandy. In this machine we must surely recognise the most ancient form of rolling-mill, a mechanism destined to have such importance later on in metal technology. Moreover, since cotton technology is indigenous to India and very ancient there, the remarkable gearing in these instruments raises the question whether the worm (and hence the screw) did not originate in the first place in India rather than Greece. Unfortunately, as in so many other cases (cf. e.g. p. 361 below) the question can only be put, not answered, because of our ignorance of ancient Indian technology. It is curious that the principle of parallel worms found no use in Europe until the early 19th century, and the modern use of worms is also in general quite different, namely for right-angle gear with great speed reduction.

Now Horwitz described two of these reversed worm-gear cotton-gins, one from Cambodia, the other from Sinkiang. The screw principle was thus knocking at the door of the Chinese culture-area. But all its equipment for cotton ginning (kan mien),

Fig. 417. A cotton-gin, probably the most ancient form of rolling-mill. In this Sinhalese example the rollers are coupled by means of two enmeshing worms, as generally in the Indian culture-area. National Museum, Kandy (photo. Amerasekara, 1958).

Fig. 418. Another traditional cotton-gin with two enmeshing worms; the single crank has lost its handle. National Museum, Kandy (photo. Amerasekara, 1958).

a E.g. the Tai Hai Shui Fa, incorporated as ch. 19 of Nung Chêng Chhuán Shu, as also the Chi Chi Thu Shou, ch. 3, pp. 186, 199. Again in Shou Shih Tsung Hsiao, ch. 38.

b We have already referred to this in Vol. 2, p. 516 above.

c See Shih Shu-Chêng (1), and p. 528 below.

d See Brownehead (2); Trew (1), p. 22.

e The worms are often rather long, and always cut at a very oblique angle. It has been suggested that their original employment arose because they were less susceptible to irregularities in tooth-cutting, and less easily disengaged, than ordinary gear-wheels.

f As by Matchco & Kutzbach (1), p. 7; Leroi-Gourhan (1), vol. 1, pp. 104, 110.

g For these photographs my grateful thanks are due to the Director Dr P. E. P. Deraniyagala, the Assistant Curator Mr S. T. T. Rajakaruana, and to Mr V. A. Amerasekara. On the Sinhalese cotton-gin (kapu kapana yantra) see also Coomaraswamy (1), p. 235, pl. xxix, 3.

h Of uncertain but comparatively recent date, they are in the Berlin Museum f. Volkerkunde.
so far as we know, was made without any gearing, as may be seen from Fig. 419, taken from the *Nung Shu* of +1313, its earliest Chinese illustration, which shows a crank-handle for each roller. This was known as the chiao chih. As it required two operators an improvement took place in the course of time whereby only the lower roller was worked by a hand-crank, while the upper one (smaller and of iron) was worked by a treadle motion assisted by a radial bob flywheel (Fig. 420). This traditional type, the ya chih, may also be seen in Japan, where the flywheel tended to take the form of a single club-shaped weight attached to the shaft. It probably corresponds to what Hsi Kuang-Chhi early in the +17th century referred to as the Chi-yung type, named from a city in Chiangsu but more characteristic of the northern provinces.
From this it would seem therefore that in entering China the cotton-gin left its foreign to indigenous practices; there may have been machinery been known almost since the Han as *silk-cotton or kapok tree* (mu mien) that had been used for textile purposes in China from an early date, principally by the tribal Man peoples of the south. In the Sung and Yuan, when Wang Chen was writing, the phrase *mu mien* was carried over as a name for true cotton, as may be seen indeed in an agricultural encyclopedia earlier than his, the *Nung Sang Chi Yao* of +1275. During this and the following century true cotton was spreading through China northwards and eastwards. It seems to have been introduced in the first place by two routes: through Burma and Indo-China from about the +6th century, and through Sinkiang in the +13th. Thus worm-gear would have been offered before. But it may well be that the double-powered rollers of the Chinese machines were already at work from the Han onwards for *mu mien*, and naturally continued in use when true cotton (later generally called *mien hua*) largely supplanted it, becoming indeed one of China's chief textile fibres. In any case the whole story shows once again that the screw principle was not characteristic of Chinese technology.

Perhaps the most interesting point remains to be made. The absence of the continuous screw and worm in traditional China must not be taken to mean that no helicoidal forms were known there; on the contrary, some of these were quite venerable inhabitants. For example, there was the zoetrope or vane-wheel rotated by an ascending air-current, and the helicopter top or horizontal air-screw which itself ascended when rapidly rotated by a cord. The skew-set vanes of all such devices were (like the oblique paddle-boards of horizontal water-mills or the sails of early vertical windmills) essentially separate flat surfaces tangent to the continuously curving helix of a complete screw or worm. It is thus possible to define rather precisely the different achievements of the Hellenistic and the Chinese worlds, for while the former made abundant applications of elongated screw and worm shapes, the latter early developed tangent-plane helicoidal structures.

In late +15th-century Europe engineers were placing vane-wheels in kitchen chimneys with shafts and gearing suitable for turning spits—"an elegant automation", as Lynn White puts it, 'since the hotter the fire the faster the roast spins'. Leonardo himself designed one of these. It seems extremely likely that this use of ascending hot-air currents derived from the earlier zoetropes of China (which go back to the Tang if not the Han) and the prayer-wheels of Mongolia and Tibet (cf. p. 566). The transmission could have occurred very easily through the domestic slaves from Central Asia who were brought to Italy in great numbers during the +14th and +15th centuries. As the zoeto-spirits became so common in the great houses of Europe it seems equally likely that they played a part alongside Hellenistic antecedents in stimulating Branca's combinations of air or steam jets and rotor wheels in +1629, a device which soon found its way back to China as we shall presently see (p. 225). Here however the water-mill would have been the dominant influence in his mind, for whether his jet was the hot air rising through a cowl and tube from a furnace or the steam blown from a *sufflator* head (cf. p. 226) it was always in line with the plane of rotation of the wheel and not at right angles to it. The zoeto-spirit was more closely allied to the Chinese helicopter top (p. 583) and the Western vertical windmill (p. 555), whence surely descended the screw propeller and the aircraft propeller.

For these reasons it is not impossible that some Chinese inventor may have played a part in the introduction of screw propulsion for ships. In discussing the history of paddle-wheel boats McGregor (1) reported a very peculiar story that a model of a Chinese screw-propeller was brought to Europe and seen by a Col. Beaufoy about +1780, i.e. at a time when screw-propulsion was very much in the air, if not yet in the water. Mark Beaufoy was in fact one of the pioneers of the experimental investigation of ship-model hydrodynamics, and he would certainly have been interested in this. It is not too difficult to track down his own statement. In 1818 Dick (1) proposed the use of a "spiral oar" or treadmill-operated Archimedean screw for impelling warships through the water, as suggested by his friend Scott of Ormiston, and later in the same year Beaufoy wrote:

A contrivance of this kind I saw between thirty and forty years past, in Switzerland, in the model of a flat-bottomed vessel, brought by Mons. Bosset from the East Indies, but made in China. This model had underneath its bottom a spiral, which was turned when wanted with considerable rapidity by clockwork put in motion by a spring similar to that of a watch. The vessel being placed in a tub of water, the spring wound up and the helm put over, more or less, according as the tub was large or small, the boat continued running in a circle until the clockwork went down.

5. We are indebted to Mr Rex Waine and Dr Christopher Zeeman for valuable discussion on this subject. The toy windmill of Heron (cf. p. 566 below) is the only representative of the flat discontinuous tangent-plane helicoids which, in the Middle Ages, when boards of horizontal water-mills began to be set at an angle to their shafts. But we have seen how many uses there were for continuous screws and worms in Roman times. Conversely, various kinds of vane-wheels were ancient in China but no unbroken winding helices. Of course, the mill-wheels gave no helical action relative to the fluid and parallel with their axes.
7. Le Machine, fig. 25; Uccelli (1), p. 15, fig. 40; Feldhaus (1), fig. 42; Schnitthals & Klemm (1), fig. 46. Intended for a vertical stamp-mill, through reduction gearing.
8. See his elaborate reports on the behaviour of models (1).
9. He also suggested the use of steam, and even opined that the screw might be useful for aerial navigation ("an art hitherto much neglected") if used in some way as a non-flapping wing (cf. pp. 288 ff. below).
The name of the Swiss gentleman gives a clue which might yield more about this curious episode on further investigation; meanwhile we have only to note that the Chinese sculling-oar (the yubok) has affinities with the screw, and that tangent-plane helicoidal structures were very much at home in Chinese culture. It is not inconceivable, therefore, that some Chinese artisan thought of making a toy boat move by powering a set of helicopter vanes underneath it. Such a contribution to the main stream of descent of the screw-propeller from Archimedes through Leonardo would not be unworthy of recognition.

6 Springs and Spring Mechanisms

The elastic properties of bamboo laths have already been mentioned, and it is sure that the Chinese made good use of them from an early time. Springs (than chi¹, than thiao²) were certainly employed in the numerous mechanical toys and automata of which a brief account will shortly be given (p. 156). Other substances, such as horn and sinews, were used in the construction of bows and crossbows, of which we shall treat in the Section on military technology. Springs appear, too, in varieties of the pole lathe, in simple devices such as door-closers, and the traps for wild animals described by Hommel.⁶

Though compound springs made of many leaves had been familiar from late Chou times onwards in the form of crossbows, their application to vehicles as cart-springs never became general, though there are indications that such an invention was made in the +7th century (cf. p. 254 below). In any case, Europe was much more backward in the use of springs with leaves. The crossbow had been known only in the early locomotives, the wheels themselves took on an ad-terrestrial function, and means to have been placed at an oblique angle with the main axis. On the other hand, the bamboo buckets of the noria do occupy a tangent-vane helicoidal position (cf. pp. 356ff.), though not vanes. Spring clocks and watches start about +1480. Of course, springs on vehicles did not become essential until, with the early locomotives, the wheels themselves took on an ad-terrestrial function, and means for ensuring the permanent and simultaneous contact of all four wheels with the substratum became indispensable.

Torsion springs must have been known in China from early times, since they were used in the frame-saw (p. 54 above). Metal springs occur in forceps and padlocks.

⁶ Cf. Sect. 204 below.

² To the zoetrope and helicopter-top here one would be tempted to add the horizontal water-wheel, which is given in the Tabu Yuan entry under kun than. We are not sure whether it is the comment of the editors of this encyclopaedia, or part of the quotation from the Shih-erh Yen Ch’ien Su Yi (Miscellaneous Notes from the Twelve-Inkstone Studio), written about 885 by Wang Ch’in, with which the entry opens. See further on this Needham, Wang & Price (1), p. 163.

⁷ There are valuable papers on this subject by Bromehead (6), Garrison (1), and Grahame Clark (1). Of modern monographs that of Buffet & Evrard (1) is to be preferred to that of Forbes (10).

² There are valuable papers on this subject by Bromehead (6), Garrison (1), and Grahame Clark (1). Of modern monographs that of Buffet & Evrard (1) is to be preferred to that of Forbes (10).

27. MECHANICAL ENGINEERING

Closely related to the spring is the vibrating wire, put to such good use in the cotton bow (mien than⁴), for loosening and separating the fibres of the plant material instead of carding; but this was probably an Indian technique which came into China with cotton itself (Frémont, 13).

One of the most remarkable employments of springs in medieval China was for tripping the jack-work of clocks. In a later subsection (pp. 445 ff.) we shall describe the great astronomical clocks erected between the +8th and the +14th centuries, in which time-keeping wheels made figures appear and sounded bells, drums and gongs at the passing hours and quarters. Although it does not appear in the great descriptions, such as that of Su Sung (+1092), the technical term for the springs involved seems to have been kun than: ‘revolving and snapping springs’. This is found in a statement by Hsüeh Chi-Hsüan,² written about +1150 and quoted in the Hsiao Hsiueh Kan Chu (cf. note 2 of the entry opens). Hsiao Ch’ien lists these as one of four different kinds of time-keeper, the others being clepsydras, burning incense sticks, and sundials. A comment says that these springs worked in conjunction with wheels, and when the right hour arrives, the clock ‘automatically strikes and sounds the time (than hou wei sheng)’.

Springs worked in conjunction with wheels, and when the right hour arrives, the clock ‘automatically strikes and sounds the time (than hou wei sheng)’

7 Conduits, Pipe and Siphons

In all the foregoing subsections we have been concerned with the utilisation and transmission of mechanical energy. But one of the things which man most desires to do, from the earliest stages of technology, is to transmit liquids and gases from place to place. How was this conduction of fluids accomplished? The whole subject of water supplies and the engineering of artificial canals dug cross-country through earth and rock logically belongs here, but in China (as before in Egypt and Mesopotamia) it was so important that we must reserve it for a special discussion (Section 28f below). Conduits or flumes of a more modest nature contrived in wood or split bamboo (chia tahan) were always abundantly used in China for small-scale farm irrigation systems (cf. Fig. 421) but also for mining alluvial tin.⁷ According to the Thang Yü Lin,² ‘everyone says how good the people of Lungmén are in making hanging channels for water; they lead it up and down as if by magic’.

The history of piping may be followed in numerous writings. Its connection with the important aqueducts so characteristic of civil engineering in European antiquity...
is that although the principle of the inverted siphon was well known there was usually no hope of constructing large-diameter pipes capable of withstanding sufficient pressures.\(^a\) The many remarkable aqueducts of Hellenistic times, carried across the landscape on viaducts of stone or brick,\(^b\) have no close parallels in the technique

\(^a\) It was also known in China, as Rickett (1) shows from *Kuan Tzu*, ch. 57, pp. 7b, 8a, but equally hard to achieve on a large scale. For short lifts bamboo piping could be used however, as Han bricks witness (e.g. *Anon.* (2), no. 1, pp. 6, 7).

\(^b\) On this subject see Leger (1); Merckel (1); Bromehead (6); Straub (1); Buffet & Evrard (1); Forbes (10); Winslow (1), etc.
The bamboo pipe-lines were joined and caulked in a similar way. It may well be that the earliest large-scale use of this took place in the Szechuanese salt-fields, for brine, unlike fresh water, will not permit the growth of algae and consequent rotting of the tubes. Figure 422 shows the appearance of some of these brine ‘mains’ at Tzu-liu-ching today, and Fig. 423, taken from the Thien Kung Khai Wu of +1637, gives an idea of their preparation. The joints are sealed with a mixture of tung-oil and lime. From rubbings of Han bricks which show the salt industry it seems certain enough that the bamboo pipe-lines were already in full use at that time. For agricultural purposes also bamboo piping was used, but it needed frequent replacement. References to piped water-supplies for palaces, houses, farms and villages are not uncommon. But the largest systems of this kind seem to have been due to the great poet-official Su Tung-Pho, who as a Szechuanese knew of the brine pipe-lines in his own province. Under his inspiration, water­mains made of large bamboo trunks were installed at Hangchow in +1089 and at Canton in +1096, caulked with the usual composition and lacquered on the outside. In the latter system there were five parallel mains. Holes were provided at intervals for freeing blockages, and ventilator taps for the removal of trapped air. Significantly, Su Tung-Pho had the help of a Taoist, Teng Shou-An, in planning and executing these works. Machines for boring them out of tree-trunks are pictured in the German technical MSS. of the 15th cent. (Gille, 3), and interested Leonardo as we know from his notebooks.

27. MECHANICAL ENGINEERING

of the Chinese. Generally speaking, pipes of hollowed wood were used in the West from the 1st millennium in Egypt, through the times of Pliny and Conrad of Megenburg (+14th century) to 19th-century London. But copper tubing has been found in Egypt at least as early, and lead pipes, longitudinally soldered, were quite common in Roman cities (cf. Vitruvius). The outstanding case of the use of bronze piping, capable of supporting as much as twenty atmospheres pressure, was the water-supply of Pergamon built by Eumenes II in –180, which involved two inverted siphons of some 60 ft. depth carrying the line across two valleys. But other important works of this type were made in Roman times, notably at Smyrna and Lyons.

We are not able to find any instance of the use of metal piping in truly eotechnic China, but Nature offered there a material which was admirably adapted for the same purpose, and unexpectedly strong, though perishable, namely the stems of bamboo. It may well be that the earliest large-scale use of this took place in the Szechuanese salt-fields, for brine, unlike fresh water, will not permit the growth of algae and consequent rotting of the tubes. Figure 422 shows the appearance of some of these brine ‘mains’ at Tzu-hu-ching today, and Fig. 423, taken from the Thien Kung Khai Wu of +1637, gives an idea of their preparation. The joints are sealed with a mixture of tung-oil and lime. From rubbings of Han bricks which show the salt industry it seems certain enough that the bamboo pipe-lines were already in full use at that time. For agricultural purposes also bamboo piping was used (cf. a drawing which has been noticed by several Western historians of technology), but it needed frequent replacement. References to piped water-supplies for palaces, houses, farms and villages are not uncommon. But the largest systems of this kind seem to have been due to the great poet-official Su Tung-Pho, who as a Szechuanese knew of the brine pipe-lines in his own province. Under his inspiration, water­mains made of large bamboo trunks were installed at Hangchow in +1089 and at Canton in +1096, caulked with the usual composition and lacquered on the outside. In the latter system there were five parallel mains. Holes were provided at intervals for freeing blockages, and ventilator taps for the removal of trapped air. Significantly, Su Tung-Pho had the help of a Taoist, Teng Shou-An, in planning and executing these workings. Machines for boring them out of tree-trunks are pictured in the German technical MSS. of the 15th cent. (Gille, 3), and interested Leonardo as we know from his notebooks.

* * *

Of the Chinese. Generally speaking, pipes of hollowed wood were used in the West from the 1st millennium in Egypt, through the times of Pliny and Conrad of Megenburg (+14th century) to 19th-century London. But copper tubing has been found in Egypt at least as early, and lead pipes, longitudinally soldered, were quite common in Roman cities (cf. Vitruvius). The outstanding case of the use of bronze piping, capable of supporting as much as twenty atmospheres pressure, was the water-supply of Pergamon built by Eumenes II in –180, which involved two inverted siphons of some 60 ft. depth carrying the line across two valleys. But other important works of this type were made in Roman times, notably at Smyrna and Lyons.

We are not able to find any instance of the use of metal piping in truly eotechnic China, but Nature offered there a material which was admirably adapted for the same purpose, and unexpectedly strong, though perishable, namely the stems of bamboo. It may well be that the earliest large-scale use of this took place in the Szechuanese salt-fields, for brine, unlike fresh water, will not permit the growth of algae and consequent rotting of the tubes. Figure 422 shows the appearance of some of these brine ‘mains’ at Tzu-hu-ching today, and Fig. 423, taken from the Thien Kung Khai Wu of +1637, gives an idea of their preparation. The joints are sealed with a mixture of tung-oil and lime. From rubbings of Han bricks which show the salt industry it seems certain enough that the bamboo pipe-lines were already in full use at that time. For agricultural purposes also bamboo piping was used (cf. a drawing which has been noticed by several Western historians of technology), but it needed frequent replacement. References to piped water-supplies for palaces, houses, farms and villages are not uncommon. But the largest systems of this kind seem to have been due to the great poet-official Su Tung-Pho, who as a Szechuanese knew of the brine pipe-lines in his own province. Under his inspiration, water­mains made of large bamboo trunks were installed at Hangchow in +1089 and at Canton in +1096, caulked with the usual composition and lacquered on the outside. In the latter system there were five parallel mains. Holes were provided at intervals for freeing blockages, and ventilator taps for the removal of trapped air. Significantly, Su Tung-Pho had the help of a Taoist, Teng Shou-An, in planning and executing these workings. Machines for boring them out of tree-trunks are pictured in the German technical MSS. of the 15th cent. (Gille, 3), and interested Leonardo as we know from his notebooks.
27. MECHANICAL ENGINEERING

Kung Miao behind the site of the Ling Kuang Tien, a famous temple of Han times, the abundant pottery piping recently discovered gives life to the mention of 'limpid water from mysterious pipes' forces through underground channels'. In a +4th-century poem, again, the San Fu Huang Thu (Illustrated Description of the Three Districts in the Capital, Sian), a text of the +3rd century if not the Later Han itself, says that underneath the Shih Chhii Ko palace stones were cut and fitted to make conduits 'to lead the water in, like the imperial mains (yii hou) of today'. This system was made by Hsiao Ho, and must therefore have dated from about 200 at the very beginning of the Former Han. Probably some of these were actual tubes of stone such as the Romans used at Apamea and elsewhere. Such were the different kinds of piping used in ancient China for water-supply and drainage, further light on which may be expected from archaeological discoveries. Occasionally too pipes were made for air. A rock-cut Taoist temple above the Lintung gardens is kept perpetually cool in summer by a tube bringing cold air from some mountain cleft.

Of the siphon, something has already been said in our discussion on water-clocks (Sec. 209), where we met with two ancient names for it (yii chhii and hou wu). A slightly later term used in the San Kuo period was yin chhieh. Many were the subsequent ways of referring to it, introduced at various dates, for instance hch chii, the 'loquacious joker', hou houan, the 'rainbow-shaped sucking pipe', hch hch, and hou lio. Some of these terms deserve much more investigation than we have been able to give them, for as we shall shortly see, they may sometimes have meant much more than the simple siphon, perhaps certain types of syringes or pumps. The siphon was of course widely used in traditional Chinese technique and certainly played as much part in its automata as in those of the Alexandrians, Philon and his successors.

...
In the middle of the 13th century, a thousand miles removed from the great centres of technology in that period, east and west, conduits, pipes and siphons were very much in the minds of certain mechanicians at the Mongolian capital of Karakoron. For there, on an island of culture, as it were, surrounded by the vast steppes and rolling hills of Central Asia, the Mongol Khans Kuyuk and Mangü had in their service a number of west European artisans captured in the wars. Most of what we know about them comes from the account of the Franciscan missionary envoy William of Rubruck. The most eminent was the French artist-craftsman William Boucher, a Parisian goldsmith who had been taken prisoner at Belgrade and who worked at Karakoron from +1246 to +1259. Boucher's most famous achievement was the construction of a great silver fountain in the form of a tree which dispensed four kinds of alcoholic drinks such as kumiss 'automatically' to the imperial guests through the mouths of lions or dragons among its leaves. At the top there was an angel with a trumpet which it could apply to its lips by means of a mechanical arm. All this was accomplished in +1254. But though the silver-work was doubtless of high quality, Boucher's skill as an engineer fell far behind it, for the trumpeting angel had to be moved manually by a hidden slave who blew hard into a long tube at the right moment, and the liquors were not raised up mechanically but poured into long tubes by slaves presumably hidden in the roof of the palace hall. Olshcki has much to say of the superiority of medieval European engineering over Chinese 'technical competence' or 'manual craftsmanship', but in fact Boucher's accomplishment (no doubt inhibited by his isolation) was quite inferior, and the mechanicians of China would have had nothing to learn from it.

A series of beautiful Chinese +16th-century vases and jugs bearing representations of fountains upon them has been studied by David (4), who suggests that the motif derived from the magnificent beer-engine constructed by William Boucher three hundred years earlier. This hypothesis is seductive, though not accounting for the disappearance of the tree and the angelic trumpeter, nor for the distinctly Renaissance, even somewhat Italian, character of the designs on the jugs. It raises however a wider issue—the question of the existence of fountains in traditional China. Though David tended to assume that they were unknown there before the time of the Jesuits, it is in fact not difficult to show that evidences of their use may be found from almost every century after the Han. 'The Jesuit works at the 'Versailles of Peking', the Yuan Ming

\(b\) Cf. Vol. I, pp. 38, 84, 244.
\(c\) We owe an elaborate study of him to Olshcki (4).
\(d\) It is interesting that William Boucher was an exact contemporary of Villard de Honnecourt, the French engineer so often mentioned in these pages (pp. 220, 404). The latter's apparatus, it will be remembered, included an angel which moved so as to keep pointing at the sun, and an eagle which turned its head mechanically so as to face the deacon when he read the Gospel during the liturgy. They probably worked better than Boucher's devices, but they did not include, as has sometimes been thought, the first mechanical clock escapement (cf. p. 443 below). Though Olshcki (4), p. 85, emphasizes the Christian symbolism of the trumpeting angel, the Mongols were closely involved with the Alexander-legend about trumpets blown by the wind, on which see Simor (2).
\(e\) (4), p. 62.
\(f\) See Olshcki (4), pp. 64, 88, 93. Boucher was working half a century after al-Jazari (cf. p. 381) and two and a half after the Chinese naphtha-projector experts (cf. p. 145).
Yuan, from about +1750 onwards, are too well known to need description, and a reference to Pelliot (27) may suffice. Their predecessors are more important. But first a word on the practical possibilities. Piping being given, a sufficient pressure-head of water was always easy to achieve if the site selected was near a steep declivity, as for example in the case of the Thang water-gardens, the Huá Chhing Chhih, at Lintung, just east of Sian and backed against a lofty outlying foothill of the Chhin-ling Shan. At the same time everything that we shall see later on (pp. 339 ff.) in the realm of water-raising appliances goes to show that already in the Han it would have been easy to supply elevated cisterns with fountain-water. But let us turn to some of the descriptions.

Four hundred years before the building of the Yuan Ming Yuan, the last emperor of the Yuan dynasty, Toghan Timur, had surrounded himself with mechanical toys of all kinds, clocks with elaborate jackwork, and fountains of several different sorts. We know about them from the description of Hsiao Hsün, who left a vivid record of the architecture and contents of these Yuan palaces which it had been his duty, as an official, to destroy upon the orders of the first Ming emperor in +1368. This was the Kung I Lu. Hsiao Hsün was a Divisional Director of the Ministry of Works, and thus had the opportunity to see in detail the beauty of the buildings which had housed more than a thousand concubines, as well as the arrangements of the workshops in which so many ingenious mechanisms had been made by the emperor himself and his artisans for their delectation. Hsiao Hsün describes dragon-fountains with balls kept dancing on the jets, tiger robots, dragons spouting perfumed mist, and several dragon-headed boats full of mechanical figures—the sort of shui shih on which we shall shortly have more to say. It was indeed a shame to destroy them, to 'break down the carved work with axes and hammers', but the demands of a demagogic asceticism were in the ascendant.

Some two hundred years before, Meng Yuan-Lao, describing in +1148 the glories of Khaifeng, the capital lost to the Chin Tartars, tells us that at a certain temple there were two statues of the Buddhas Mañjuśrī and Samantabhadra riding on white lions. From the five fingers of each of their outstretched hands, which quivered all the time, streams of water poured in all directions. For this purpose wheels were used to hoist the water up to the

\[Fig. 426. The bathing pavilion or Lodge of Artificial Rain in the Royal Gardens at Anuradhapura, Ceylon (orig. photo. 1958). Sheets of water descended through sprays contrived in the entablature of the building, splashing into the pool in the foreground. These gardens were in full use in the 8th century, about the same time as the cool summer retreats of Thang palaces, some descriptions of which are translated in the text. \]
top of a high hill behind, where there was a wooden cistern. At the appointed times this was released (through pipes) so that it sprayed like a waterfall.

This must have been quite worth seeing.

Four hundred years earlier still, the great worthies of the Thang had been equally interested in fountains and similar means of cooling halls and pavilions in summer. The Thang Yü Lin says:

After the empress Wu Hou died, the mansions of the princes, princesses and notables in the capital grew daily more magnificent.

During the Thien-Pao reign-period (+742 to +755) the Grand Censor Wang Hung was found guilty of crimes and sentenced to death, so his mansion in That-ping-fang was confiscated by the district officials. Several days were not enough for this. In the grounds there was a pavilion called the Lodge of Artificial Rain (Tsou Yü Thing), from the roof of which cascades of water ran down in all directions. If one was there at midsummer one felt as cool as if it were mid-autumn.

This passage does not in itself imply upward-shooting fountains but something perhaps rather more like those lodges or bathing pavilions in Indian lands in which the bathers could sit surrounded by sheets of water descending on all sides. One such remains to this day in the royal gardens at Anuradhapura in Ceylon (Fig. 426). But another text which refers to about the same date indicates true fountains rather clearly. The Thang Yü Lin again says:

When the emperor Ming Huang (Huian Tsung) built the Cool Hall (Liang Tien) (about +747), the Remonstrator Chhen Chih-Chieh, submitting a memorial to the throne, admonished most severely against it (on grounds of extravagance). At the request of the emperor, (Kao) Li-Shih summoned him to court. It was when the heat was really extreme. The emperor was in the Cool Hall, and behind his seat the water struck the fan-wheels while cool air played around one's neck and clothes. Chhen Chih-Chieh arrived and was given a seat on a stone chair. A low thunder growled. The sun was hidden from sight. Water rose in the four corners and forming screens fell again with a splash. The seats were cooled with ice, and Chhen was served with marrow-chilling drinks, so that he began to shiver and his belly filled with rumblings. Again and again he begged permission to leave, but the emperor never stopped perspiring, and at last Chhen could hardly get as far as the gate before stopping to relieve nature in the most embarrassing way. Next day he recovered his equanimity. But people said that 'when one discusses affairs one should admonish most severely against it (on grounds of extravagance). At the request of the emperor, (Kao) Li-Shih summoned him to court.'

The cross-section is usually rectangular, allowing for easy construction from wood, pottery or wood; the piston working in a cylinder; and the rotary fan (or ad­versal windmill). But the common feature in all machines of this kind except the last was the presence of clack-valves, which needed to be no more than small hinged doors covering the exits and entrances of pipes in the walls of the propulsion chamber.

The progress of these inventions in east and west still presents unsolved problems, but we may approach them in the following way. Universal in China today for all ar­tisinal purposes, and even on a larger scale for minor industries, is the box-bellows (feng huang) shown in Fig. 427c. Hommel says rightly that it surpasses in efficiency any other air-pump made before the advent of modern machinery. From the longitudi­nal section (Fig. 427d) it can be seen that the box-bellows is a double-acting force and suction pump; at each stroke, while expelling the air on one side of the piston, it draws in an equal amount of air on the other side. Whenever this bellows first came into general use it provided that fundamental metallurgical necessity, a continuous blast. No less than twelve of the illustrations of the Thien Fang Wu (+1672) show its use by metal-workers (cf. Fig. 428, a bronze foundry). In the ordinary Chinese box-bellows, intake valves (huo mén) for air are provided at each end of the box, and a single double-acting valve underneath at the junction of the two outlet channels. The cross-section is usually rectangular, allowing for easy construction from wood, and the piston (huo sai) is packed with feathers (the ancestors of piston-rings).

Some are shown in Fig. 429.
common Japanese bellows, though similar, is less ingenious, since the piston carries a valve, and the blast takes place only on the push and not on the pull.\(^a\)

Ewbank much admired the Chinese box-bellows.\(^b\) He pointed out that it was essentially equivalent to the Ctesibian double-barrel force-pump for liquids, with the two cylinders elegantly combined into one.\(^c\) If pipes were connected to the intakes it would become the pump of de la Hire (\(+ 1716\)),\(^d\) and its connection with the principle of the later steam-engine cylinder of James Watt (where steam enters \(\sim t\) each end so as to create a vacuum on each side of the piston alternately) is obviously one of close formal resemblance.\(^e\) It could also have served, in principle, as a Boylian air-pump if both the intakes were derived from a sealed chamber. ‘The most perfect example from Kuling, Chiangsi.

\(^a\) Hommel (I), p. 20. For Japanese metallurgical piston-bellows see Gowland (I), p. 17, and many other illustrations in his papers.

\(^b\) (I), pp. 247ff., 251.

\(^c\) Ewbank hinted that the Chinese form might have been the origin of the Alexandrian one, but what we know of the possibilities of transmission at that time does not encourage such an idea. On the latter, see further, p. 141 below. The Alexandrian single-barrel piston-bellows associated with musical organs we have already mentioned (Vol. 4, pt. I, p. 211) and shall consider again, p. 150 below.

\(^d\) Ewbank (I), p. 271. See on, p. 149.

\(^e\) See on, p. 387, and Needham (48).
blowing-machine, and the chef d'œuvre of modern modifications of the pump, wrote Ewbank, are the 'facsimiles' of the medieval Chinese piston-bellows.

It is difficult, unfortunately, to bring forward much evidence as to the precise antiquity of this machine, for little research has been devoted to it, and the obvious sources—encyclopaedias such as the Thai-Phing Yü-Lan—are of no direct help. But pending the appearance of a history of the Chinese bellows something like the following may be said. Bellows for metal-working played a very important part in ancient Chinese thought and mythology, as we have already noted in the Section on Taoism. One of the legendary rebels, it will be remembered, was named Huan-Tou. Peaceable Bellows. The oldest name for bellows was tho, the character for which is closely related to nang, a skin bag. The most ancient type of bellows in China was therefore no doubt a whole skin with a delivery tuyère fastened in it, working perhaps in pairs. The next development would have been to make the walls of the bellows partly of pottery or wood, with holes in the skin coverings of the pots upon which the feet of the operators took the place of valves—such pots are seen in well-known ancient Egyptian representations, and used by contemporary African peoples. The later terms ko pai probably refer to this type. Since these skin-covered pots resemble drums it is not surprising that one of the earliest verbs for the act of plying bellows was hu, 'to drum', and this is very often found in Chou and Han texts. Reference has already been made to the iron cauldrons which were cast with legal statutes upon them in 512; here the Tso Chuan text has the expression 'i ku thieh'. While some commentators took this to mean a measure of weight which the inhabitants were taxed, others have interpreted it as 'iron blown by the bellows', i.e. cast iron.

Some light on the bellows of the Warring States period is forthcoming from an unexpected source, namely the chapters in the 11, Tzu book on military technology. From these it is clear that in the late 4th century it was customary to use toxic smokes made by burning balls of dried mustard and other plants in stoves, the smoke...
being directed by bellows against troops attacking cities, or blown into the openings of enemy sap tunnels. We learn that 'the bellows are made of ox-hide, with two pots to each furnace, and they are worked by a swape lever tens and hundreds of times (up and down) (tho i tia phi, lu yu hang fou, tu chhiao hoo chhia pai shih)'. Or 'each stove has four bellows, and when the enemy's tunnel is about to be penetrated, then the oscillating swape levers are furiously worked to blow the bellows fast and fumigate chih'.

There is one curious hint that this may have occurred as early as the -4th century. The Tao Tê Ching (conservatively of this date) says:

- Heaven and Earth and all that lies between,
- Is like a bellows with its tuyère (tho yu);
- Although it is empty it does not collapse (hui erh pu chhia).
- And the more it is worked the more it gives forth (tung erh yi chu).\(^3\)

The statement in the third line could hardly have been made of any skin bellows, but would clearly apply to the piston variety whether the latter was hinged or straightforward. Commentators from Wang Fü\(^\text{b}\) to Huang I-Chou\(^\text{c}\) say that what Lao Tzu was referring to was the phai tho, i.e. the 'push-and-pull' bellows. One of them\(^d\) explains further that the tho is the outer box or case (tsu) into which the tuyère (yu) is fitted, and that the latter is a tube through which passes the air forced by the 'drumming'. An interesting point is that in the Han period the bellows were worked by hand, if we may judge from the word han (or chhien),\(^e\) also written han (or chhiu),\(^e\) which the Shao Wen defines as 'the handle of the bellows' but which originally meant the ears of a jar.\(^e\) Nevertheless, some foot-operated types long persisted, such as the large hinged-fan bellows used in the Japanese tataki method of iron-smelting.\(^f\) In later literature we find many echoes of the Tao Tê Ching passage, as in Chang Hêng's Hsüan Thu\(^g\) of +107.\(^h\) and Lu Chi's Wen Fu\(^i\) of +302.\(^i\)

Evidence for the existence of the piston air-pump in the Han may perhaps be derived from an interesting passage in the Hua Nan Tzu book.\(^j\) Complaining about the decline of primitive simplicity,\(^j\) the writer says that the demands of the metal-workers for charcoal have even led to the destruction of forests. Among the extravagances of the age, 'bellows are violently worked to send the blast through the tuyères in order to melt the bronze and the iron (ku tho chhui tuo i chhsio thuang thi chhia)\(^k\); \text{Cu tho} could be taken as 'drum-bellows' but the commentator, Kao Yu,\(^l\) who lived about

\(\text{Fig. 429. Annamese single-acting double-cylinder metallurgical bellows (after Schroeder, in Frémont, 14). Here the continuity of the blast is obtained by alternation of excursion of the two manned piston-rods. Copper smelting.}\)
and Madagascar was one of the pieces of evidence which decisively showed the Malay origin of the indigenous Madagascans. Just how far back in time this application of the piston goes is an extremely difficult question to answer, for there is no way of telling to what extent the primitive populations of such regions have been technologically static over the centuries, but there is certainly every reason for thinking that the invention was autochthonous in south-east Asia. It is indigenous in Yunnan.

Most of these clearly show the piston-rod operating a hinged-fan type of bellows like that of the *taotara* (p. 375 below), which might be considered a piston working in a curved cylinder. Perhaps our oldest representation of this is the Hsi-Hsia fresco at Wan-fo-hsia (Yu-lin-khu) published by Tuan Wen-Chieh (1). This must date from between +900 and +1220 (see Fig. 430). Indeed the +10th is a safe enough estimate (cf. Wang Su, Hsing Lin & Wang Liu, 1). Initiation of explosion by mechanical means is due to the formation of minute hot spots, either because of the adiabatic compression of microscopic pockets of trapped vapour, or, more rarely, friction and viscous heating. Thus the physical chemists became interested in the ancient device of the fire-piston.

Hough (1), pp. 109ff.; Leroi-Gourhan (1), vol. I, p. 68. We may well believe that it was associated with that other ancestor of all piston-engines and projectile-guns, the blowpipe gun, which also belongs to the culture of the area. Was the piston a tethered projectile, or the projectile a liberated piston? Some Madagascan forms are double-acting, with two valved pistons on a single piston-rod, and a diaphragm by the central outlet pipe; cf. Ewbank (1), p. 252; and p. 128 below.

It was actually patented in early 19th-century Europe, but this development is considered to have been derivative from south-east Asia.

PLATE CLXIV

Fig. 430. Forge bellows from a Hsi-Hsia fresco at Wan-fo-hsia (Yu-lin-khu), Kansu, dating from the +10th to +13th centuries (Tuan Wen-Chieh, 1). The oldest representation so far known of the fan-piston working in a curved cylinder (cf. p. 375 below), the *taotara* type. For later representations of this see Figs. 602, 604, 605 below.

Fig. 431. The fire-piston, an indigenous form of lighter common to South-east Asia and Madagascar, the Malayan culture-area (Hough, 1). Examples from (1) Siam, (2) Lower Siam, (3, 4) the Philippines, (5) Java.
If then it could be considered part of the stock-in-trade of the ancient Malay-Indonesian-Oceanian component of Chinese culture (cf. Sect. 5 above), the Chinese piston-bellows might well be regarded, at any rate on a working hypothesis, as derived from it. For piston-bellows are rather widespread in the more primitive cultures of East Asia, e.g. the paired form used by the Khās of Laos (Sarraut & Robequin) and the Moi in Annam (cf. Fig. 429). If this were accepted, we might have to suppose that the invention of clack-valves occurred twice: once in the Chinese area, and once in the Mediterranean region when the Hellenistic water-pumps were derived, perhaps, from the ancient Egyptian syringe.

In the fullness of time the fire-piston proved capable of exerting a seminal influence far away from its south-east Asian home. About 1877 Carl Linde, the pioneer of artificial refrigeration, gave a lecture at Munich in the course of which he demonstrated a cigar-lighter made on the fire-piston principle. Among his hearers was Rudolph Diesel, who said in later years that this experience was one of those which had most stimulated him to the invention of the high-compression internal combustion engine now universally known by his name.

The history of piston-bellows is closely related to the history of piston water-pumps. Here the limiting factors were primarily the pressures which any eotechnic system might be likely to withstand. That the Alexandrians developed, and the Romans used, simple bucket suction pumps in which the water is lifted by the piston during its upward stroke, passing through it by a valve from below during its downward stroke, was supposed by Ewbank (particularly for clearing ships' bilges), but Usher regards this as very doubtful. By the time of Agricola, however (mid 16th century), these pumps were in wide use. The force pump (in which the liquid does not pass through the piston, but is driven out by an exit pipe) was, on the other hand, well understood in Hellenistic times, as is shown by the discussion in Vitruvius, who speaks of the cylinder and the piston as modiolus and embolus respectively. The invention was attributed to Ctesibius, and must have been used quite widely, for a number of such pumps have been found, from the Roman example contrived in a solid wood block and brought to light in a famous excavation at Sichester by Hope & Fox, to the remarkable bronze pumps of Bolsena. Westcott believes that this type of pump
was little used in subsequent centuries, presumably owing to its greater complexity, and it hardly appears again until the time of Cardan (1530) and Ramelli (1588). Generally speaking, piston-pumps for liquids were not a feature of the Chinese eotechnic tradition, and their illustrations in the Chhi Chi Tzu Shuo of 1627 may well have been a novelty at the time. Yet there had been one element of traditional art which involved a principle near to that of the suction-lift pump, namely the long bamboo tube-buckets (chhi shui thung) which were being sent down, from Han times onward, to the brine at the bottom of the bore-holes of the Szechuan salt-field (cf. Figs. 396, 422 and Sect. 37 below). These buckets (cf. Fig. 432) carried a valve at the base by which they were filled, and would have constituted suction-lift pumps if they had fitted tightly to the walls of the bore-hole. But the Chinese aim was different; it must be remembered that the contents had to be raised a distance of 1000 to 2000 ft., not spilled out after a short haul, within the limits of a vacuum which atmospheric pressure could fill. According to Esterer's observations forty years ago, the filling time at the brine was 180 sec., the emptying time at the bore-head 300, the raising time 253 min. for each load, the dimensions of the buckets 25 m. (c. 75 ft.) long by 7-6 cm. (q in.) diam., and the contents 132 kg. (about 28 gallons) This was a considerable engineering operation.

The relationship of the brine-bucket valves to valves in air-pumps or bellows was perfectly appreciated by Su Tung-pho in a passage written about +1066. In his description of the Szechuan salt industry, he says: They also use smaller bamboo tubes which travel up and down in the wells; these cylinders have no (fixed) bottom, and possess an orifice in the top. Pieces of leather several inches in size are attached (to the bottom, forming a valve). As these buckets go in and out of the brine, the air by pushing and sucking makes (the cylinder) bring up several times. All these bore-holes use machinery (hoists). Where profit is to be had, no one fails to know about it. The Hou Han Shu speaks of 'water-driven' bellows (shui pai). [The expression it actually uses is shui phai (cf. p. 370).] This is applied to iron-working in Szechuan, and large ones are used. It seems to me to be the same kind of method as that used in the brine-collecting tube-buckets (chhi shui thung) of these salt-wells. Prince Hsien (who made a commentary on the Hou Han Shu in the Thang dynasty) did not understand this, and his ideas on the subject were wrong.

This is most valuable evidence on a number of points. Since Su Tung-pho identifies valves in bellows working like those of the buckets in the shafts, the piston-bellows in some form or other must have been fairly familiar in his time, and though water-driven piston-bellows were probably less common, he speaks as if he had himself seen them. He reproaches Li Hsien for wanting to substitute words meaning 'leather bellows' for the 'push-and-pull' of the text. Then, just over a century later, we find a further reference to piston-bellows in one of the works of the great Neo-Confucian philosopher Chu Hsi. About +1180 he wrote a commentary on the Han alchemical book of Wei Po-Yang, entitled it Chou I Tan Thang Chi Kuo 1. We had said that four male and female hua (the hexagram symbols of the Book of Changes) functioned like the bellows and the tuyère, to which Chu Hsi added the following remark:

These hua are those in which the Yin and the Yang are combined, namely Chen (no. 51), Tui (no. 58), Sun (no. 57) and Kén (no. 52). The bellows (the), the piston-bellows (paiiu), the (nang) and the tuyère (yu) are the tubular spaces (through which they work). . The bellows should sometimes he worked slowly and sometimes rapidly (according to the degree of heat desired), just as the moon waxes and wanes.

And finally one can actually illustrate piston-bellows from the century following Chu Hsi, for a book printed about +1280 gives two small pictures of smiths working at their anvils with unmistakable piston-bellows by their side. This is the Yen Chihm Yiu Shu San Shih Hsiang Shu (Book of Physiognomical, Astrological and Ornithomantic Divination according to the Three Schools) attributed to Yuan Thien-Kang. We can thus quite safely conclude that the piston-bellows was well known in the Sung. Above (p. 139) reasons were given for thinking that it probably goes back much further, probably long before the Thang. The fact that Yuan Thien-Kang was a diviner of that period (d. c. +635) adds further reinforcement to this view. As has just been said, generally speaking, piston-pumps for liquids were not prominent in Chinese eotechnic practice. But there is sometimes reason to suspect their presence, and sometimes rather extraordinary examples come into the limelight. Let us consider first the simplest ancestor of such pumps, the syringe. In its most primitive form, a tube of bone or metal fixed into a bag of animal origin, it was strictly analogous to the primitive skin-bellows already discussed. There is mention in Hippocrates (c. 460) of injunctions using pig's bladders as containers, and doubtless the earlier techniques of the ancient Egyptian embalmers were similar. Piston syringes seem to begin with the Alexandrians, for Philon alludes to the squiring of rose-water,
and a very clear description of a bronze syringe occurs in Heron. Roman examples exist in museums. Celsius, Heron's older contemporary, describes the use of the instrument in aural therapy, and from accounts of Indian surgical equipment it would seem that it developed in that civilization at least as early. It has a particularly prominent place in India because of its well-known association with a great folk-festival, Holi, where people squirt coloured water and perfumes at each other. In China there is nothing analogous to this, but the instrument is certainly ancient there. From its modern name, _tsui chih-ku_ (water gun), a late appearance might be suspected, but it would be unsafe to assume that because a single-character term for it is lacking the modern name, it would be unsafe to assume that because a single-character term for it is lacking the modern name, there is nothing analogous to this, but the instrument is certainly ancient there. From its modern name, _tsui chih-ku_ (water gun), a late appearance might be suspected, but it would be unsafe to assume that because a single-character term for it is lacking the modern name, it would be unsafe to assume that because a single-character term for it is lacking the modern name, there is nothing analogous to this, but the instrument is certainly ancient there.

The _Wu Ch'ing Ts'e Yao_ (Collection of the most important Military Techniques), preoccupied at this point by fire-fighting, says: *For syringes (chi thung) one uses long pieces of (hollow) bamboo, opening a hole in the bottom (septum), and wrapping silk floss round a piston-rod (tsui kan) inside (to form the piston). Then from the hole water may be shot forth.* This is much more significant than it might seem, for the use of bamboo emphasises once again the cardinal importance of this material for all initiatives concerning tubing in classical Chinese technology. As far as we have just seen, one of the commonest terms for the siphon proper in ancient and medieval Chinese was _kho su?,_ the 'thirsty crow', but though it was common for _clepsydra siphons_, it is also capable of occurring in contexts where something more than the siphon seems inescapable. For example, we shall find it before long as part of the water-raising machinery built by Pi Lan in +186 for the supply of the city of Loyang (p. 345), and therefore in all probability some simple form of suction-lift pumps. The term _kho su_ would also have quite appropriate for syringes, which also suck up water, and in considering the interpretation of ancient passages this presence may sometimes be implied. In the +11th century, however, the view is much clearer. The military encyclopedia just mentioned gives us elsewhere a very remarkable account of a flamethrower for naphtha (Greek fire, in fact), which constituted a liquid piston-pump of ingenious design (Fig. 433). A translation of the passage could not be omitted here. It runs: *

For the naphtha flamethrower (lit. fierce fire oil shooter, _fang meng hua yu_). The tank is made of brass (_shui thung_), and supported on four legs. From its upper surface arise four (vertical) tubes attached to a horizontal cylinder (_chi thung_) above; they are all connected with the tank. The head and the tail of the cylinder are large, (the middle) is of narrow (diameter). In the tail end there is a small opening as big as a millet-grain. The head end has (two) openings 14 in. in diameter. At the side of the tank there is a hole with a (little) tube which is used for filling, and this is fitted with a cover. Inside the cylinder there is a (piston-rod) packed with silk floss (_tsa su chang_), the head of which is wound round with hemp waste about 1 in. thick. Before and behind, the two communicating tubes are (alternately) occluded (lit. controlled, _sha_?), and (the mechanism) thus determined. The tank has a horizontal handle (the pump handle), in front of which there is a round cover. When the (handle) is pushed (in the pistons) close the mouths of the tubes (in turn). Before use the tank is filled with rather more than three catties of the oil with a spoon through a filter (sha lo); at the same time gunpowder (composition) (_hao yang_?) is placed in the ignition-chamber (_tao low_?) at the head. When the fire is to be started one applies a heated branding-iron (_tsa chang_?) (to the ignition-chamber), and the piston-rod (_tsa chang_?) is forced fully into the cylinder—then the man at the back is ordered to draw the piston-rod fully backwards and work it (then back) at about a third of the tank's length, then at a third, then at a third and thus as vigorously as possible. Whereupon the oil (the naphtha) comes out through the ignition-chamber and is shot forth as blazing flame. When filling, the bowl, the spoon and the filter; for igniting there is the branding-iron; for maintaining (or renewing) the fire there is the container (_hua_?). The branding-iron is made sharp like an awl so that it may be used to unblock the tubes if they get stopped up. There are tongs with which to pick up the glowing fire, and there is a soldering-iron for stopping-up leaks.

[Comm. If the tank or the tubes get cracked and leak they may be mended by using green wax. Altogether there are 12 items of equipment, all of brass except the tongs, the branding-iron and the soldering-iron]. Another method is to fix a brass gourd-shaped container inside a large tube; below it has two feet, and inside there are two small feet communicating with them [Comm. All made of brass]. If the enemy comes to attack a city, these weapons are placed on the great ramps, or else in outworks, so that large numbers of assailants cannot get through.
It will readily be allowed that this is a text of great interest, dating as it does from a couple of decades before the time of William the Conqueror. We know indeed that the flamethrower was already in use in the first years of the +11th century from a story in which certain officials were laughed at for being more expert with it than with their writing-brushes. The description reads in part rather like a set of army directions concerning a 'Mark II kit', and is none too explicit about the details of the internal mechanism—perhaps these were 'restricted'. We can however be confident that the purpose of the four upright tubes was to enable a continuous jet of flame to be shot forth, just as the double-acting piston-bellows gave a continuous blast of air, and the most obvious way of effecting this was to have a pair of internal nozzles one of which was fed from the rear compartment on the backstroke. According to the reconstruction which we think most probable, here shown in Fig. 434a, b, this meant having two of the tubes secretly connected within the tank. Such a design is very compatible with the directions in the text that the machine was to be started with the piston-rod pushed fully forward, and it also agrees with the statement that the 'two' communicating tubes (i.e. the feed-tubes) are alternately occluded. Only two valves were necessary since the pistons themselves acted like slide-valves on the feeds, but the apparatus was more suitable for a light fluid such as naphtha than it would have been for water, since the feeds were open only at the end of each stroke and the response had to be rapid. That the pistons themselves had no valves is indicated partly by their long and narrow shape, partly by the fact that then only one central feed-tube would have been necessary. Why two pistons instead of a single one (as in the box-bellows) were fitted it is hard to say; possibly for greater rigidity.

Perhaps this apparatus reveals more about the famous Byzantine 'siphon' used for Greek fire than anything yet available from occidental sources. Yet if that gave a continuous jet, it was most probably by the combination of two cylinders in a Ctesibian force-pump system, while the single-cylinder double-acting machine described in the Wu Ching Tsung Yao seems characteristically Chinese. In fact it was the principle of the box-bellows used for a liquid, and supplies still further evidence for the dating of the latter. Here we must not enlarge upon the military aspects of our flamethrower. A date very near to +675 is still accepted as that of the introduction of Greek fire in the defence of Byzantium by Callinicus, and one must still rely on classical descriptions such as those of Leo Tacticus in the +8th and +9th centuries. The best opinion, which following Partington (5) we adopt, is that Greek fire was...
will certainly have been aroused by its use as an igniter in the forward chamber of the projector. It must suffice to say that though the technical term huo yao never (in our experience) refers to anything other than mixtures of sulphur, saltpetre and carbonaceous material, the proportion of nitrate in some of the earliest 11th-century compositions was so small that it would have been quite possible to use them as a kind of slow-match in the way described.

If the military engineers of the Sung could produce such elegant pumps to withstand the attacks of enemies such as the Chin Tartars and later the Mongols, why did piston water-pumps seem new in the 11th century in China? Ewbank gave some thought to the reasons why the deep bore-hole buckets and the piston-bellows failed to generate a widespread use of piston water-pumps in the Chinese Middle Ages, concluding that their inhibition was probably due to the very efficiency of the square-pallet chain-pumps. He also maintained, much less plausibly, that the Alexandrian inventions had been influenced by a knowledge of pistons and valves transmitted from Asia. However, it is agreed that the earliest double-acting reciprocating water-pump was that of J. N. de la Hire in 1716, and this assuredly had some connection with the Chinese double-acting air-bellows known by that time to Europeans for nearly two centuries.

From what we have now seen, the converse possibility, namely that the double-acting piston-bellows shown in Chinese illustrations from the middle of the 13th century onwards was an introduction from Europe, is highly unlikely. Its origin there was in fact surprisingly late. Throughout the Middle Ages and the Renaissance period, Europe had depended for its metallurgical blowers either on the trombe or on cuneate skin-and-wood bellows of the type familiar in domestic fireplaces, but larger. These are seen in Mariano (+1440) in Agricola’s great work, and abundantly in the Pirotechnia of Biringuccio dating from about 1540, where batteries of them are worked in various ways by trip-lugs on water-driven shafts, or by systems of cranks, levers and weights. According to Beckmann’s researches, ironfounders about this

* It will have been noted that the ignition-chamber was fitted with two air-inlets, like a Bunsen burner or a jet engine.

b Coarse twine impregnated with saltpetre and slowly burning; used for touching off all kinds of firearms during the first three centuries of gunpowder usage in the West.

c (1), p. 250.

d (1), p. 268.

f This was a blower analogous to the ordinary filter-pump; a stream of water descended into a closed space which had an outlet allowing the trapped air to escape. It was particularly associated with the Canaan iron bloom furnaces (on which see Sect. 304) though it had the disadvantage that the air was always damp. The trombe (cf. Percy (4), p. 285; Ewbank (1), p. 478) must certainly derive from the pneumatic-hydraulic apparatus of the Alexandrians, in which water was always driving air out of closed spaces (Bonni, I). Lacking the simple and elegant Chinese double-acting piston-bellows, the Arabs and Byzantines used remarkably complex arrangements to give continuous streams of air (cf. Wiedemann & Hauser (3), and p. 356 below).

g The first reference to this kind of bellows is said to be in Ausonius (4th century), who refers to the valve. The water-driven metallurgical bellows used in German mining centres from about 1200 onwards, described by Johannsen (1), were undoubtedly of this type. We can see a very clear representation of the bellows along carved in wood on one of the panels in the Norwegian stave church of Hyllestad, dating from the 12th century (Holmqvist (1), pl. LXII, fig. 138).

k (1), vol. 1, pp. 63ff.

time grew tired of the expense and trouble of oiling and maintaining bellows with flexible leather parts, and cuneate all-wood blowers were made in Germany about 1550 by Lobsinger, the Schelhorn, and others. They became general during the latter half of the 16th century. \(^a\) The development had nothing to do with the cylindrical air-pumps with valves which had been known in Hellenistic and Roman times, \(^b\) and it was not until the middle of the 18th century that water-powered blowers of this type were introduced (cf. Fig. 607). By that time, 250 years after the first Portuguese contacts with China, the cylinders were as much Chinese as Ctesibian. \(^c\)

The production of a blast by rotary motion goes back a surprisingly long way in China. This method of propelling air stands of course apart from all other kinds of bellows and pumps in that no valves are necessary, and is logically analogous to a paddle-wheel propelling a liquid up a flume. \(^d\) No doubt the most ancient of all fans were those pieces of any handy flat and relatively rigid material which people bought up to cool themselves in hot summers. Interesting studies of the history of hand fans \((\text{shan}^1, \text{sha}^2)\), ancient in China, \(^a\) have been made: \(^b\) the radial folding fan \((\text{he} \text{shan}^1)\), so characteristic of East Asian cultures, seems to have been a Korean invention of the 11th century. \(^a\) The alternating action of the panthak \((\text{feng} \text{shan}^1)\), though little used, and only in the south, could have suggested the addition of more vanes and a continuous rotation. \(^b\)

When such fans were first fitted on to a continuously revolving axle in China we do not know, but it was certainly not later than the Han. Nor do we know whether rotary fans of this kind were used first for air-conditioning or for the winnowing process necessary in cereal agriculture. Let us follow these two applications separately. \(^a\)

An important passage in the \textit{Hsi Ching Tsa Chi} (Miscellaneous Records of the Western Capital) refers to the famous inventor Ting Huan \(^4\) whom we often meet elsewhere in other contexts. \(^a\) His \textit{fornui} seems to have been in the neighbourhood of +180. It says: \(^b\)

Ting Huan also made a fan consisting of seven wheels, each ten feet in diameter. They were all connected \((\text{lem}^1)\) \(^a\) with one another, and set in motion by \((\text{the power of})\) one man. The whole hall became so cool that people would even begin to shiver.

This must have made the Han palaces, with their winding waterways, \(^a\) very pleasant in the heat of a Chinese summer. But air-conditioning was not confined to them, for we continue to meet with it century after century. From a passage quoted not long ago \(^d\) it was clear that rotary fans \((\text{feng} \text{lan}^2)\) were operated by water-power in the Cool Halls of Thang palaces, and from numerous mentions in the \textit{Sung} \((\text{e.g.} \ c + 1085 \text{and} +1270)\) the refrigerant effects of artificial draught seem to have been appreciated ever more widely.

Now we can turn to the rotary-fan winnowing-machine. The problem was to find a way of substituting a controllable air-current for the natural breezes on which the farmers of old had depended for separating the chaff from the grain. \(^a\) Metal-workers had had their blast from remote antiquity, but the farmers needed a gentler one, and they solved the problem in a different way. The encyclopaedias of rustic science show two forms of the winnowing-machine, one in which the crank-operated fan is set high up and quite open (Fig. 435), the other in which it is fully enclosed in a cylindrical casing and made to direct its draught over a grain-chute and under a hopper (cf. Fig. 414). Although this latter apparatus looks so like those which we are accustomed to seeing on the farms of our own time, we must remember that its date is only just after +1300. The open form was called the \textit{shan chh\d{76}} (and later \textit{yang chh\d{76}}), the closed form the \textit{yang chh\d{76}} (later \textit{feng chh\d{76}} and \textit{feng shan chh\d{76}}). The most venerable work, the \textit{Nung Shu}, depicts only the closed form, but \textit{Nung Chh\d{76} Chh\d{76}u Shh\d{76} Thung Kh\d{76} oho} only the open one; \textit{Thien Kung Kh\d{76} Wu} has both. From the greater sophistication of the closed type one would be inclined to regard it as the later, while the open type would seem to belong more appropriately to the lifetime of Ting Huan, but as there is some evidence for the former as early as the Han, the latter may be much older than he. I have never seen the open type, nor any contemporary photograph of it, but the closed-box type is still in widespread use. \(^b\) Of course the ancient method of throwing up the grain in baskets still persists in some areas. \(^a\)

\(^{a}\) See Schlatter (Schlittler), vol. 1, pl. lll b, p. 225. vol. 2, pl. v 2 b, h. i, p. 55; de Gennasce (1); \textit{Urlo} (1), 1st and 3rd eds. pp. 1127 f.; Pauluni (1); Singer et al. (1), vol. 4, p. 125. At the great copper works in Dalarna in Sweden, for instance, as we learn from Lindroth (3), they depended until the end of the 18-th century wholly on the old leather bellows or the trombe or on bellows descending and rising in water (cf. p. 356). By 1800 there were hinged-fan bellows like the Chinese medieval metal-hallows (cf. p. 371) and the Japanese tatara bellows (cf. p. 377 below and Sect. 304f). Piston-bellows came later still.

\(^{b}\) Piston-bellows were described by Philon (app. 1), Hero (chs. 7b, 77) and Vitruvius (x, viii), but there is no evidence that they were anything but very exceptional. Intended for organ-blowing (see above, p. 376), they were single-acting, with clock intake-valves, and fed air into a reservoir under constant hydraulic pressure. The design was supposed to go back to Ctesibius (c. 3rd century); \(^c\) cf. Beck (1), pp. 24 ff.; Drachmann (2), pp. 27 f., 100 (4), 206; Woodward (1), pp. 105 ff.

\(^{c}\) On this see the evidence presented in Needham (48).

\(^{d}\) Such a device actually existed, cf. p. 337 below.

\(^{e}\) The earliest mention may be of the 5th century, if the \textit{Wu Ling Tuk\d{76}} is a genuine work; cf. Forke (1), p. 594.

\(^{f}\) See Forke (1), Rhead (1).

\(^{g}\) Cf. Giles (12), p. 206, translating from Kuo Jo-Hui's \(^4\) contemporary \textit{Chu Hw\d{76} Ch\d{76}en Ww\d{76} Chen} Ch\d{76}h\d{76}t\d{76}h\d{76}t\d{76}h\d{76} (Observations on Drawing and Painting). On this book see Hirth (12), p. 109.

\(^{h}\) A kind of hinged fan action existed in the metal-hallows worked by water-power which we shall presently consider in detail; cf. pp. 356 ff. below.
What Wang Chen had to say in +1313 about the rotary-fan winnowing-machine (see Figs. 415, 435) is worth reading.a

The rotary winnowing fan (yang shan),b according to the \textit{Chi Yin}; yang means 'flying in the wind', and the yang fan is a machine for winnowing grain.c To make it one puts at the centre (of a box) a transverse axle fitted with four or six vanes made of thin boards or of bamboo (slips) glued together.d There are two types, one with the fan vertically mounted, the other having it horizontally mounted,e but both include a driving shaft worked either manually or by means of a treadle, in accordance with which the fan rotates. The mixed grain and chaff from the mortar or the roller-mill is put into the hopper (hao huen),f communicating at the bottom with a separator (pien),g through which the grain falls down as fine as the holes in a hsi sieve.h As the fan turns, it blows away the husks (khang) and bran (sai); thus the pure grain is obtained. Some people raise the fan high up (without enclosing it) and so winnow; this is called the shan chhe.i

After treading out (jou) or beating (with flails)j the wheat or other grain, the stalks and husks are all mixed up with it, hence (the need for) winnowing; but these machines are much more efficient than the throwing up in baskets (chi po).k

As Mei Sheng-Yul the poet says:

\begin{quote}
'There on the threshing-floor stands the wind-maker,
Not like the feeble round fans of the dog-days,
But wood-walled and fan-cranked, a cunning contrivance,
He blows in his tempest all the coarse chaff away,
Easy the work for those manning the handles—
No call to wait for the weather, the breezes
To free the fine grain from its husks, that our fathers
Needed for tossing their baskets on high.'
\end{quote}

Thus at once we find evidence for the existence of the machine early in the +11th century, for the Horatian Mei Yao-Chhenm died in +1060. But pressing further backwards, we can establish it in the early part of the +7th also, for that was the time when Yen Shih-Kun was writing his commentary on the \textit{Chi Chiu Phien}o (Dictionary of the Sounds of Characters) and not completed until +1067.

a Nung Shu, ch. 16, pp. 98, 100a, tr. auct. with Lu Gwei-Djen; adjuv. Chiang Kang-Hu (1), p. 337.
b The \textit{Chi Yin} (Complete Dictionary of the Sounds of Characters) dates from +1037 but was perhaps not completed until +1067.
c This approximation to plywood is worth noting, especially in connection with what has been said above, p. 63.
d We note that our usage in this book follows the Chinese custom of referring horizontally and vertically to the wheel in question and not to its shaft. Cf. p. 367.
e The meaning of this is not quite clear. Perhaps sometimes the machine really contained a sieve, but the reference is more probably to an adjustable trap which controlled the flow of the grain. Indeed the axis of this is seen projecting in Fig. 414, though without the lever attachment which in all the modern models can be hitched at any position on an upright ratchet.
f For this see Nung Shu, ch. 15, pp. 26b, 27a.
g See Nung Shu, ch. 14, pp. 28bff., and above, Fig. 374a.
h The typical Chinese farm baskets are dustpan-shaped (Nung Shu, ch. 15, pp. 24bff.) and therefore convenient for this purpose, especially if they are fitted with short handles (yang tan), as shown in Nung Shu, ch. 15, pp. 30a, b.
i Wang Chen often quoted him. We have already had an example in Vol. 3, p. 320.
for Urgent Use), which the Han scholar Shih Yu¹ had put together about – 40. His entry on cereal techniques² lists 'the tilt-hammer, the grain-mill, the fan-faller, the mortar and the winnowing-basket (tui, t'ai, shan thu, chhüng, po yang)¹'. Yen Shih-Ku then explains that the tui is for pounding and the t'ai for grinding. He adds some synonyms for rotary grain-mills which we shall study later, and repeats the traditional statement that these were invented by Kungshu Phan.³ He then goes on to say:

The fan (shan¹) means the rotary winnowing-fan (shan chhüè¹), and thu¹ explains the principle of the shan chhüè¹. Some write this thu¹, but in any case it means 'to fall', that is to say, while (the machine) fans, (the grain) falls through. Other people after pounding toss up in winnowing-baskets, to blow away (yang¹) the chaff. Some write yang¹, but the idea is the same.

These words might thus seem to place the winnowing-machine not only in the early Thang, but also in the latter part of the Early Han (– 1st century). Yet how valid was Yen Shih-Ku's interpretation of Shih Yu? Strong support for it can be found in those Han tomb-models already mentioned and figured (Fig. 415), which show what looks extraordinarily like a winnowing-machine with its hopper and crank-handle.⁴ There is also the evidence that Ting Huan was using the principle for other purposes in the +2nd century. But certain Han bricks show another device. One man stands behind a pair of uprights some 3 ft. high having long flat fan-boards on them which he seems to be working quickly to and fro, while another man in front of them shakes out grain and chaff from a basket held high above his head.⁵ We need to know more about this Han winnowing method, and whether it was oscillatory or rotary, but in any case some later forms of it may well have been the background for Wang Chén's remark about 'horizontally mounted fans' (too shan¹), of which unfortunately no illustration has come down to us. All in all, however, we need have no hesitation in placing the principle of rotary blowers in the Han time, and perhaps the very early Han (– 2nd century).

This contrasts in a remarkable way with the situation in Europe. If Westcott is right in saying⁶ that the earliest rotary blowers in Europe are those pictured by Agricola for mine ventilation in the mid 16th century,⁷ then it is very hard to believe that the idea did not travel west from China. A striking feature of the Chinese rotary fans is that the air-intake is always shown as central, so that they must be considered the ancestors of all centrifugal compressors. Even the great wind-tunnels

¹ P. 59a, 6; Wang Ying-Lin's ed. ch. 3, pp. 42b, 43a; tr. act. with Lu Gwei-Djen.
² On both these matters see pp. 188ff below.
³ Swann (2), pl. 2, opp. p. 378; Lynne White (7), p. 104; cf. p. 118 above. This Han apparatus seems to be built into a wall of the farmyard rather than constructed separately of wood and bamboo.
⁴ The Chihsêngtâi Municipal Historical Museum has a particularly fine oblong brick showing this scene, but it is not at all uncommon in Han representations of farm techniques, as I noted when visiting many Chinese museums in 1958. The Chihsêng brick, or a very similar one, is reproduced by Liu Chih-Yuan (2), pl. 7; see Fig. 436.
⁵ (1), p. 76.
⁷ Swann (2), pl. 2, opp. p. 378; Lynne White (7), p. 104; cf. p. 118 above. This Han apparatus seems to be built into a wall of the farmyard rather than constructed separately of wood and bamboo.

of today derive from them. The illustrations of rotary ventilators given by Agricola, however, show both inlet and outlet at the periphery of the casing. These fans therefore must have been very inefficient; indeed it is hard to see how they could have worked at all, unless perhaps the rotor was mounted eccentrically in relation to the casing, which is not suggested either by text or pictures. Nor is there any duct widening so as to take the increasing amount of air collected as it circumscribes the fan.\(^{a}\) As for the enclosed rotary-fan winnowing-machine, Europe acquired it even later.\(^{b}\) Special investigations have shown\(^{c}\) that it was introduced to the West from China early in the +18th century as part of one of a distinct series of waves of agricultural transmissions in alternate directions. But this story we must leave for Sect. 41.

The engineering problems involved in extending rotary and centrifugal principles to the pumping of liquids were not overcome until the end of the +17th century in Europe,\(^{d}\) and no such types of pump can as yet be reported from eotechnic China. Since the argument of this subsection has been a little involved, a few words may serve to recapitulate it. It centres round the Chinese single-cylinder double-acting piston air-pump. Historically the most ancient precursor of this must have been the bellows of skin employed by the metallurgical artisans of the Chou period, but at the same time the peoples of east and south-east Asia knew the fire-piston firelighter, and probably the air-pump was born from their union, though the origin of the valves remains obscure. Already in the Warring States (—4th century) oscillating levers were used to work pairs of bellows or pumps, as in Hellenistic Greece, and Han writings (from the —2nd century) afford certain references which point to some kind of push-and-pull bellows which were non-collapsible and therefore probably of piston type. By the Sung (+11th century) the characteristic air-pump is already present in its mature form, implying a prior presence in the Thang. So much for the propulsion of gaseous matter by pistons. Where liquids were concerned the valved buckets used already in the Han for raising brine from deep boreholes approximated to the suction lift pump, and there are strong indications that pumps of this kind, masked now by confusing terminology, were constructed in the Later Han (+2nd century). By the Sung again we have a remarkable use of the piston-pump in the military flamethrower. Yet owing perhaps to the ubiquity of the simpler chain-pumps, the piston-pump for water was uncommon or absent in the Chinese Middle Ages. Finally, rotary blowers make their appearance remarkably early, especially in the practical form of the rotary-fan winnowing-machine, another typical piece of Chinese technology. It seems certain that all European rotary gas-blowers derive from this, but to the Renaissance West must be attributed the extension of the principle to the propulsion of liquids.

\(^{a}\) I owe these interesting points to Mr Sterland and Mr Stanitz.

\(^{b}\) Cf. Feldhaus (1), col. 1029. Feldhaus (20), p. 49, went widely astray in saying that it first appeared in China in +1609; evidently he knew of no mention earlier than the San Tshai Thu Hui. The models by de Knopperf (+1716) and Evers (+1780) show perfect identity in principle with the classical Chinese design. Chambers figured the Chinese machine in +1757.

\(^{c}\) Cf. Berg (1); Leser (1), pp. 454, 564ff., (2) p. 449. It seems to have appeared simultaneously in Sweden, Carinthia and Transylvania.

\(^{d}\) See L. E. Harris (4); Frémont (10); Westcott (1); Beck (1), pp. 225ff.
If there was one field more than any other in which all the basic mechanical principles discussed above were used together, it was that of providing mechanical toys, puppet plays, trick vessels and so on, for the amusement and prestige of successive imperial courts. In the following brief survey we shall come across the names of a number of mechanicians who are known for no other reason than their achievements in this department of 'conspicuous waste', but besides them, many of the best-known engineers of the various periods employed their talents in such services. The subject is closely connected with two bodies of semi-legend, automata on the one hand, and engineers of the various periods employed their talents in such services. We have had something to say already of the former (Vol. 2, p. 53 above), and shall treat lightly of the latter below (p. 368).

The wealth of mechanical toys in the Alexandrian treatises, especially of Heron, is well known. There are figures pouring libations and carrying out all kinds of motions, birds singing and temple doors opening or closing. The treatise on the puppet theatre describes a piece of apparatus which ran along a track under its own power, that of a falling weight. Every possible combination of pipes, siphons, floats, valves, levers, pulleys, gear-wheels, etc., was employed. In later centuries the construction of such ingenious contrivances became a speciality of the Indians and Arabs, who were particularly interested in automata on striking water-clocks and in mechanical cup-bearers. Here they may have had some inspiration from China, for as we shall see, these were notable in Sui and Tang times. The mechanical doves and angels of Villard de Honnecourt in +13th-century Europe were in the same tradition, and as late as +1588 Agostino Ramelli was solemnly illustrating elaborate 'buffets' which delivered different kinds of wine to the accompaniment of singing birds mechanically operated. The 'hydraulic gardens' and puppet plays of the 18th century continued to be widely appreciated at medieval royal courts, both east and west. Raghavan (I) gives details of the earlier Indian achievements of this kind.

\[\text{a}\] See Beck (4, 41); Prou (1); de Rochas d'Aiglain (1).
\[\text{b}\] This plan had an echo long afterwards in the Chu Chhi Thu Shuo of +1637, pp. 114ff.
\[\text{d}\] Indian work on yontra-pahair, as they were called, flourished during the +10th and +11th centuries, while the Arab contribution was rather in the +12th, +13th and +14th. Raghavan (1) has described the treatise of the scholar-prince Bilhia (+1198 to +1260) on the subject, known as gono-st亿ra-adhala, and the descriptions in the popular epic Bish-thathak by Bodhabaivini (+16th century). It was general in India to credit the wealth of mechanical inventions to China, for as we shall see, these were notable in Sui and Tang times.
\[\text{e}\] Cf. pp. 536 ff. below; and Carza de Vaux (3).
\[\text{f}\] The descriptions in Wiedemann & Hauser (2), Goonamswamy (2) and E. Schröeder (1), to name but a few, centre round a remarkable work, the K"{i}ntu *Ma'rajat al-`Ilayl al-Hamastafa* (Book of the Knowledge of Mechanical Contrivances), otherwise known as Al-`Jimn bir-`Im al-wad` (Yml al-
Ma`rajat al-`Ilayl (The Works which combines Theory and Practice, and is profitable to the Craft of Ingenious Contrivances). This was written in +1206 at the command of his Sultan by Abu'l-`Irz Ishmil ibn al-Raziali al-Jazari, an outstanding engineer and horologist. We shall often have occasion to refer to it hereafter. Famous manuscripts which have come down to us bear dates such as +1341, +1354 and +1489. Automatically refilling wine-cups seems to have been one of the amenities most appreciated at medieval royal courts, both east and west. Raghavan (1) gives details of the earlier Indian achievements of this kind.

\[\text{g}\] Lassus & Decel (1); Hablonier (1).

The work, till in our own time we find ourselves surrounded at every stage of life with a thousand 'gadgets' from motor railway engines to cigarette-lighters, which would in earlier ages have been the marvellous secrets of imperial courts.

It seems doubtful whether the Chinese mechanical toys were ever inferior to those constructed by the Alexandrians and the Arabs. The theatrical connection is also equally clear in China, as has been pointed out by Sun Chhai-Til (i), who derives some elements even of traditional opera from the ancient puppet-plays and shadow-plays. Some believe that the idea of animating such puppets originated from the thought of bringing to life the wooden or clay models of human beings (yang) which the Han people placed in their graves as servants for the dead. It is also urged that many of the enigmatic scenes and designs found on Han tomb-carvings and mirrors represent mechanical toys of various kinds. Palace eunuchs and actors (huang men) functioned as exorcists (chhun tsa) in the demon-expelling no ceremonies, and wherever actors or acrobats were involved, Shanghaismatic dances and primitive mechanical devices were not likely to be far away. To indigenous practices were perhaps added techniques from abroad; we have already noted the interchanges of acrobats and conjurers which are known to have taken place between Han China and Roman Syria—some Hellenistic mechanical items may have accompanied them.

One often finds statements such as that in the Hou Han Sha (4) that in +120 the king of Shan (b) sent as tribute to the emperor curious drugs, and magicians who could vomit fire and exchange the heads of horses and oxen. Parallel with these Han exhibitions came in the dramatic puppetries (khuai lei), which later scholars attributed to the
beginning of the dynasty.\(^a\) Early in the 2nd century Chang Heng the mathematician, astronomer, and engineer, speaks, in his essay on the Western Capital, of the ‘plays with artificial fishes and dragons’ (yi lun man-yen chi hsı'), and he may well have advised the workmen how to make them.\(^b\)

An early story, relating to +206, but available to us only in a 4th-century source, the Hsi Ching Tsu Chi,\(^c\) deals with a mechanical orchestra of puppets which the first Han emperor found in the treasury of Chhin Shih Huang Ti.\(^d\)

There were also twelve men cast in bronze, each 3 ft. high, sitting upon a mat. Each one held either a lute (chih\(^e\)), a guitar (che\(^f\)), a sheng\(^g\) or a a2\(^h\) (mouth-organs with free reeds). All were dressed in flowered silks and looked like real men. Under the mat there were two bronze tubes, the upper opening of which was several feet high and protruded behind the mat. One tube was empty and in the other there was a rope as thick as a finger. If someone blew into the empty tube, and a second person (pulled upon) the rope (by means of its) knot, then all the group made music just like real musicians.

No air-pump or bellows seems to have been involved here. It took one person to provide the air-blast by blowing, while another set all the puppets in motion by means of cams, levers, weights, etc., all working off a central drum.

One of the most circumstantial accounts which has come down to us from those times relates to the work of the famous engineer Ma Chün,\(^i\) who flourished in the time of the emperor Ming of the Wei State in the San Kuo period (+227 to +239).

In the San Kuo Chih we read:

Certain persons offered to the emperor a theatre of puppets, which could be set up in various scenes, but all motionless. The emperor asked whether they could be made to move, and Ma Chün said that they could. The emperor asked whether it would be possible to make the whole thing more ingenious, and again Ma Chün said yes, and accepted the command to do it. He took a large piece of wood and fashioned it into the shape of a wheel which rotated in a horizontal position by the power of unseen water.\(^j\) He furthermore arranged images of singing-girls which played music and danced, and when (a particular) puppet came upon the scene, other wooden men beat drums and blew upon flutes. Ma Chün also made a mountain with wooden images dancing on balls, throwing swords about, hanging upside down on rope ladders, and generally behaving in an assured and easy manner.

Government officials were in their offices, pounding and grinding as if being fired, cock-fighting, and all was continually changing and moving ingeniously with a hundred variations.

This was the third of his extraordinary accomplishments.

\(^a\) Shih Wu Chi Yuan, ch. 9, p. 334.
\(^b\) Wen Hsian, ch. 2, p. 153; cf. von Zach (6), vol. I, p. 15. The fullest details on this ceremonial game, which may have been like the dragon processions of today, are to be found in Hou Han Shu, ch. 9b, p. 234.\(^b\)
\(^c\) Ch. 3, p. 32; tr. auct. Dubs (2), vol. I, p. 57. Cf. p. 524.
\(^d\) Besides this there was a hot-air isotope (cf. Vol. 4, pt. 1, p. 125), and a mirror which indicated dangerous thoughts. There must certainly have been some substratum for these stories of the third century.
\(^e\) Ch. 40, p. 9a, tr. auct. Here the passage is embodied in the commentary; it is really part of Fu Hsian’s contemporary biography of Ma Chün (CSHE, Chin sect., ch. 50, pp. 100ff.), which we have translated above (pp. 36ff.). Parallel mention in Shih Wu Chi Yuan, ch. 9, p. 330.
\(^f\) Note particularly the use of a horizontal mounting for the water-wheel (see p. 357 below). The application of such power, even for trivial purposes, marks a step decisively in advance of anything attempted by the Alexandrians.

But Ma Chün was by no means the only mechanic who achieved such successes in his period. Chih Wu Chi\(^i\) of Hengyang was famous in the Chin for his wooden dolls’ house, with images which opened doors and bowed, and for his ‘rats’ market’\(^k\), which had figures which automatically closed the doors when the rats wanted to leave.\(^k\) Ko Yu,\(^l\) of Taoist sympathies, was alleged to have made an artificial goat on which he rode away into the mountains,\(^m\) which probably means that he made some ingenious thing.

One would of course expect to find not only mechanical animals like this, but also actual chariots which moved of themselves. Such an automobile was built, so ran the legend, for his mother by Mo Ti in the 4th century, but as the criticism of this involves even more high-flying matters, we shall postpone the passage until p. 574 below. What is perhaps surprising is to find self-moving carriages attributed to the Chinese by a serious Muslim writer as late as the neighbourhood of +1115. Among the commercial population in China, says al-Marwazi,

there are many who go about the city selling goods, fruits and so on, and each of them builds himself a cart in which he sits and in which he puts stuffs, goods and whatever he requires in his trade. These carts go by themselves, without any animals (to draw them), and each man sits in his cart, stopping it and setting it in motion just as he desires.\(^n\)

This was one of the things which ‘a clever man who had been to China and traded there said…’, and from internal evidence it is possible to date this informant’s visit between +907 and +923, so that al-Marwazi did not have it at first hand. Perhaps this was an echo not so much of Mohist legends of what some bana bide traveller had said about Chinese wheelbarrows, still in those times a quite unknown invention in the West (cf. p. 258 below). Or could they have been really ‘pedicarts’?

In the +4th century Wang Chia refers to a mechanical man of jade which could turn and move, apparently of itself.\(^o\) But we get a clearer picture of what people were doing from the account in the Yeh Chung Chi\(^p\) (Record of Affairs at the Capital of the Later Chao Dynasty) of the masterpiece designed by Hsieh Fei and Wei Meng-Fien,

who worked at the court of the Hunsch emperor Shih Hu between +335 and +345. After describing a wagon-mill (see below, p. 256), it goes on to say:

Haipher Fei also invented a four-wheeled Sandalwood Car 20 ft. long and more than 10 ft. wide. It carried a golden Buddhist statue, over which nine dragons spouted water. A large wooden figure of a Taoist was made with its hands continually rubbing the front of the Buddha. There were also more than ten wooden Taoists each more than 2 ft. high, all dressed in monastic robes, continually moving round the Buddha. At one point in their circuit each automatically bowed and saluted, at another each threw incense into a censer. All their
actions were exactly like those of human beings. When the carriage moved onwards, the wooden men also moved and the dragon quivered their water; when the carriage stopped, all the movements stopped.\(^a\)

We shall meet again with Hsieh Fei and Wei Meng-Pien in connection with other more important kinds of vehicles.\(^b\)

The automaton cup-bearers and wine-pourers begin to be prominent in the Sui period (early 7th century), under the name of 'hydraulic elegances' (shui shih \(^1\)). The mechanician mostly responsible for this development was Huang K'un,\(^2\) a man in the service of Sui Yang Ti, at the request of whom he wrote a manual, \textit{Shui Shih Thu Ching},\(^3\) on the subject. This was edited and enlarged by his friend Tu Pao.\(^4\)

According to the accounts,\(^5\) these displays involved the floating of numbers of boats (about 10 ft. long and 6 ft. wide), fitted with mechanical devices and having moving figures on board, along winding stone channels and canals (chhiu shui \(^1\)) contrived in palace courtyards and gardens, so passing the guests in turn. All the usual beings were represented, animals and men, immortals (hsien \(^1\)) and singing-girls (chi \(^1\)), playing all kinds of musical instruments, dancing and tumbling, just as in Ma Ch'un's time.\(^6\)

There were also seven (cup-bearer) boats, 8 ft. long, with wooden men somewhat larger than 2 ft. tall on them. In each boat, one figure held the wine cup standing at the bow, with another beside him in charge of the wine pot, while a third punted at the stern and two others rowed amidships. The boats moved on around the intricate bends of the canal, faster than the 'hydraulic elegances', going round three times when they had gone only once. At each bend, where one of the emperor's guests was seated, he was served with wine in the following way. The 'Wine Boat' stopped automatically when it reached the seat of a guest, and the cup-bearer stretched out its arm with the full cup. When the guest had drunk, the figure received it back and held it for the second one to fill again with wine. Then immediately the boat proceeded, only to repeat the same at the next stop. All these things were performed by machinery set in the water.

Another account gives us the name of one of those responsible for constructing the canals and channels—Thang Hao-Kuei.\(^7\) Such little artificial water-courses\(^8\) have

\(^a\) I am not quite clear whether there was religious syncretism here, or whether the Taoists were supposed to be paying homage to a superior religion, or whether even the phrasing does not simply mean followers of the Buddhist Tao. From the present point of view, it does not matter. But the use of some kind of pump for shooting out the water matters very much.

\(^b\) Here may be mentioned certain wooden mechanical toys still traditional in Indo-China—pairs of linked two-wheeled carts, the first having a Buddhist monk automatically beating a drum, the second two women automatically bowing. For a description see Colani (6).

\(^c\) YHSP, ch. 76, pp. 474ff.; 'Recollections of the Ta-Yeh reign-period' by Yen Shih-Ku,\(^9\) quoted in Tho-Peng Kuang Chi (Chih chiao sect.), ch. 226, p. 14 (item 7). Also Shih Wu Chi Yuan, ch. 10, p. 35a. Tr. auct. The monograph itself is listed as \textit{Shui Shih} in the \textit{Shui Shih (i soo chih)}, ch. 34, p. 11b.

\(^d\) Actually a detailed account of the set pieces on these barges has come down to us in what remains of the \textit{Shui Shih Thu Ching}. There were 72 items, mostly legendary but some historical, e.g. the turtle coming out of the Yellow River with the eight trigrams of Fu-Hsi on its back. Chih Shih Huang Ti going to meet the ocean spirits, and Chih Yu talking with the fisherman. All the performing figures were clothed in rich apparel, and measured more than 2 ft. in height.

\(^e\) Directions for constructing the channels are found in \textit{Ying Tsao Fu Shih}, ch. 3, p. 104, ch. 16, p. 134; and illustrations in ch. 29, pp. 14ff.

\(^f\) Directions for constructing the canals are found in \textit{Ying Tsao Fu Shih}, ch. 3, p. 104, ch. 16, p. 134; and illustrations in ch. 29, pp. 14ff.

\(^g\) Directions for constructing the canals are found in \textit{Ying Tsao Fu Shih}, ch. 3, p. 104, ch. 16, p. 134; and illustrations in ch. 29, pp. 14ff.
persisted occasionally until today; Fig. 437 illustrates one from the Phosok-ch’ong Pavilion at Kyŏngju in Korea (built before +927), and I have seen another in the royal gardens at Anuradhapura, Ceylon, dating from a time corresponding to the Tang. The Sui channels must have been much larger.

When we consider the possible mechanisms of their ingenuities, one is inclined to think that the simplest way in which they could have been accomplished would have been to have the boats connected together and hauled by an endless rope or chain under the water, and the figures operated by power from small paddle-wheels, doubtless invisible. Later on (p. 417 below) we shall see evidence that the use of such a device at this time (+606 to +616) would be by no means impossible, or even unlikely. The action of the cup-bearer figures at the stopping and starting of the wine-boats might have needed the intervention of projecting trip-pins at each of the guest ‘stations’, or it could have been arranged that the figures should be motionless so long as the paddle-wheels were revolving, after which springs and weights could come into play. It will be noted that this would be another case of what we are calling in this Section ‘ex-aqueous’ wheels (pp. 85 above and 412 below), the nearest analogy being with the mills mounted on moored boats and moved by the river current.

Perhaps the custom grew out of an exorcistic ceremony held in Chin times on the 3rd day of the 3rd month, in which cups of wine were floated along little winding channels, ‘It’u shang chhii Shui’. About +280 the emperor Wu inquired about the practice and was told by Shu Hsi that the custom was considered to have originated when Chou Kung established the capital at Loyang. In +353 Wang Hsi-Chih referred to the ceremony in his famous essay on the Lan Pavilion (Lan Thang Shih Hsü). But there was also a festival on the 15th day of the seventh month, when

a Chapin (1). Probably one or two centuries before this date, when it is mentioned in the Samguk Sagigi, ch. 12, p. 5 a. Cf. Alley (8) on the hot springs near Chi-hsien.

b All we know is that there were ‘wheels raising rods and releasing cords’ (lun chhong han chhı sheng)’. Long after this paragraph had been written, there came to my knowledge, through the kindness of Prof. Derek Price, a quite striking parallel among the illustrations of one of the MSS. of al-Jazar’s treatise on automata. This is the copy of +1315 in the Freer Gallery at Washington. Reproduced in Fig. 438, it shows a boat bearing a company of puppet musicians and a cup-bearer as well as a sultan and his friends. Water flowing from a reservoir on the deck tips a bucket periodically, rotating thereby a paddle-wheel which causes the band to sound a fanfare. The water collects in a sump whence it can be returned to the reservoir by means of an Archimedean screw. Here the general design is closely similar to those which we shall study later (p. 535) in the subsection on clockwork, and it would seem that the whole piece was meant to stand on a table rather than to float in a canal. Yet the idea of a boat with a puppet crew and a paddle-wheel is in itself strangely reminiscent of the hydraulic elegances of the Sui court, and one cannot but wonder whether there was not a genetic connection between them during those six hundred years.

c One is reminded (as to the ‘rowers’) of certain mechanical conceits of the European 17th century. In the kitchen of the Hospice de Beaune in France there is a figure which seems energetically to turn the spit, but is in fact set in motion by the falling weight which really works it.

e CSHK, Chin sect., ch. 26, p. 96. In Sung books, for instance, there is frequent mention of ‘liu shang chhii shui’—Hsieh Ch’ouan Chi, ch. 1, p. 356, and the +1169 Pei Hung T’ha Lu, ch. 1, p. 56a, ch. 2, p. 38a; and Meng Liang Lu, ch. 2, p. 14a.
candles and lights were set aloft. Apparently from the Sui time onwards the channels were constructed indoors and fed with water from clear springs—it must have been a pretty sight to see the mechanical acrobats and Ganymedes floating serenely on their circuitous paths to the accompaniment of musical-box sounds.

In the course of time this interest in boats with mechanical figures spread to the masses of the people, or at least the more affluent of them, leading to a regular trade in model ships. In his Phêng Chhuang Lèi Chí (Classified Records of the Weed-Grown Window) of +1537, Huang Wei informs us that at Nanking model sailing-boats were beautifully carved with crew and passengers all moving ‘by means of a mechanism’. When placed in the water they would sail before the wind, and ‘people who liked to busy themselves with miscellaneous affairs’ engaged in competitions with them, doubtless on the lovely Hou Hu lake which reflects both the Purple Mountain and the battlements of the far-stretching city walls. By good fortune representations of model boats are preserved in extant Chinese paintings. For instance, Li Sung’s scroll (c. +1190) entitled Shui Tien Chao Liang Thu (*Keeping Cool in the Water Pavilion*) shows two boys launching their boats in a lake against a background of an elegant beam bridge on piles.

The Sui emperors left a general reputation for active interest in mechanical devices. There remains, for example, an account of automatically opening library doors constructed for Sui Yang Tî (+656 to +619). In front of the Kuan Wen Hall there was the Library, in which there were fourteen studies, each having windows, doors, couches, cushions, and book-cases, all arranged and ornamented with exceeding great elegance. At every third study there was an open square door (in front of which) silk curtains were suspended, having above two (figures of) flying maids holding perfume-burners, and when they stepped upon the trigger-mechanism, then the flying door halves swung backwards and all the doors of the book-cases opened automatically. And when the emperor went out, everything again closed and returned to its original state.

Here we have what might be considered the half-way house between the spontaneously opening temple doors of the Alexandrians and the selenium cells of the Grand Central Station.

People in the Thang continued to feel the fascination of mechanical toys and puppet plays, and some of the latter were very elaborate, such as that which was constructed for the funeral games of a provincial governor in +770. Names of individual mechanicians have come down to us from this time. There was Yang Wu-Lien, afterwards a general, who made a figure of a monk which stretched out its hand for contributions, saying ‘Alms! Alms!’, and deposited the contributions in its satchel when they reached a certain weight. This had great success in public on market-days, and collected more than a thousand coins at one time, in aid of what, we are not told. Then there was Wang Chî, who made a wooden otter (mu tâu) which could catch fish (probably some kind of spring-trap embodying a figure), and Yin Wen-Liang whose wooden cup-bearers and singing-girls which played the flute were celebrated. About +890 we read of a Japanese called Han Chih-Ho, who achieved renown by his mechanical toys:

A guardian, Han Chih-Ho, who was Japanese by origin... made a wooden cat which could catch rats and birds. This was carried to the emperor, who amused himself by watching it. Later, Han made a framework which was operated by pedals (*cha chhuang*), and called the ‘Dragon Exhibition’. This was several feet in height and beautifully ornamented. At rest there was nothing to be seen, but when it was set in motion, a dragon appeared as large as life with claws, beard, and fangs complete. This was presented to the emperor, and sure enough the dragon rushed about as if it was flying through clouds and rain; but now the emperor was not amused and fearfully ordered the thing to be taken away. Han Chih-Ho threw himself upon his knees and apologised for alarming his imperial master, offering to present some smaller examples of his skill. The emperor laughed and inquired about his lesser techniques. So Han took a wooden box several inches square from his pocket, and turned out from it several hundred ‘tiger-flies’ (*ying hu tus*), red in colour, which he said were taken from them when they had fed on cinnabar. Then he separated them into five columns to perform a dance. When the music started they all skipped and turned in time with it, making small sounds like the buzzing of flies. When the music stopped they withdrew one after the other into their box as if they had ranks and precedences. Later on, Han Chih-Ho showed similar toys to the emperor, which could and did hunt flies, like eagles catching sparrows. The emperor, greatly impressed, bestowed silver and silks on him, but as soon as he had left the palace he gave them all away to other people. A year later he disappeared and no one could ever find him again.

The first part of the account also credits Han Chih-Ho with birds which could fly by means of internal mechanism. There is no need to take these stories *au pied de la lettre*, but we need not doubt that there was some substance behind them. Indeed, there are close parallels elsewhere. Who admires not, wrote Sir Thomas Browne, ‘Regiomontanus, his fly, bey and his eagle?’ He was referring to the automata

8 To guide the spirits of those who had been drowned; see Hough (1), p. 254; Bodde (12), p. 62; Arnold (4), p. 490.
9 Ch. 3, pp. 266, 276.
10 It is reproduced in Anon. (27), pl. 67.
11 Wu Hsin Thang Khoo, ch. 174 (p. 1506.3), tr. asc. I am indebted to Dr Yuan Tung-Li for bringing this passage to our attention.
12 Presumably there was a common lobby door to each three studies.
13 Thang Yü Lûn, ch. 7, pp. 209, 222; ch. 8, p. 126.
described by many writers as having been constructed by the mathematician and astronomer Johannes Müller (+ 1436 to + 1476); one of these was an eagle and the other a fly. Duhem, who carefully examined the traditions, proposed some tentative solutions; the fly, for instance, would beat its wings by means of springs concealed within it, and make the tour of a dinner-table suspended from a hair invisible to the guests, finally approaching the hand of Regiomontanus because of a magnet secretly held by him. Four hundred years earlier, moreover, 'artificial bees' are described in the treatise of Prince Bhôja on automata (Samârâdga-niruddhâra, c. + 1050). In any case, those who doubt that very small automata can really be made may visit the Museum of Art and History in Geneva, where, in an exhibition installed by Dr Chapuis, actual specimens less than half an inch in height may be seen on display.

In the Sung, glass was added to the stock-in-trade of the artisans who employed themselves in such domains, for we read of a mountain of glass with moving figures, and screens of glass behind which movements went on by the use of water-power, in Chou Mi's Wu Lin Chiu Shih (Institutions and Customs at Hangchow) about + 1270. Another book by the same writer, the Chih Ya Thang Tu Chihua, describes the performances of Wang Yin-Stêng, who had a horizontally rotating water-wheel like Ma Ch'iu's and could hit any target on it at will with a small bow and arrows. The puppets continued to flourish, and the application of water-power to them in the + 13th century is almost certain from their designation: thui kuî lai.

By this time they had also become involved in a field rather different from that of simple entertainment; they had been enlisted in the service of horology. To speak of this here would be to anticipate what we shall have to say in the subsection on clockwork below (p. 455 ff.), but a brief summary may suffice. The ancestors of all Chinese clock-jacks may be identified, perhaps, in the two statuettes of the immortal and the policeman which according to Chang Hêng's specification of + 117 were placed on the top of the inflow clepsydra to guide the indicator-rod with their left hands and to point out the graduations with their right. But these did not move. Then in + 692, after the time of Huang Kun and Tu Pao, there was the artisan from Hangchow, who had a horizontally rotating water-wheel and illustrated in Chinese books. These books, which, though partly military and naval, centred upon the agricultural and sericultural arts, form families or constellations somewhat analogous to the + 15th-century German military engineering manuscripts or the + 16th-century French and Italian engineering books. But they cover a longer period, lasting from the middle of the + 17th century down to the + 18th, just as the Pên Tshao series of pharmaceutical compendia extended over an even wider span of centuries.

Later on, when discussing the outlines of Chinese agricultural bibliography, we shall have to refer back to the present paragraphs, in which mention is made only of those works which were part of the iconographic tradition. It will be logical to reserve an account of the farming literature which was not illustrated, and which had to say about machinery, until the agricultural Section. After describing, then, the principal books of the agricultural family, we can tabulate the types of machines which appear in them. The present subsection will proceed to deal with the forms of these which were operated by the force of men or animals, reserving the application of water-power and wind-power till a slightly later stage. Besides the series of books already referred to, there appeared, in the Jesuit period, certain small though elaborately illustrated works on machinery, which added a basis of physics and abandoned the agricultural connection. While these might more properly have been discussed separately at the conclusion of this whole Section, there are good reasons for considering them now in relation to the rest.

(4) TYPES OF MACHINES DESCRIBED IN CHINESE WORKS

We must now turn our attention to the principal types of useful machines described and illustrated in Chinese books. These books, which, though partly military and naval, centred upon the agricultural and sericultural arts, form families or constellations somewhat analogous to the + 15th-century German military engineering manuscripts or the + 16th-century French and Italian engineering books. But they cover a longer period, lasting from the middle of the + 17th century down to the + 18th, just as the Pên Tshao series of pharmaceutical compendia extended over an even wider span of centuries. Later on, when discussing the outlines of Chinese agricultural bibliography, we shall have to refer back to the present paragraphs, in which mention is made only of those works which were part of the iconographic tradition. It will be logical to reserve an account of the farming literature which was not illustrated, and which had to say about machinery, until the agricultural Section. After describing, then, the principal books of the agricultural family, we can tabulate the types of machines which appear in them. The present subsection will proceed to deal with the forms of these which were operated by the force of men or animals, reserving the application of water-power and wind-power till a slightly later stage. Besides the series of books already referred to, there appeared, in the Jesuit period, certain small though elaborately illustrated works on machinery, which added a basis of physics and abandoned the agricultural connection. While these might more properly have been discussed separately at the conclusion of this whole Section, there are good reasons for considering them now in relation to the rest.

a Cf. Sect. 38. b Raghavan (I), p. 20. c See an article in The Times, 17 September 1952. d Ch. 2, pp. 134, 194 (pp. 356, 372); ch. 7, p. 88; cf. Gernet (2), p. 204. In Chou Mi's description of the many different kinds of lamps sold at Hangchow twenty or thirty years previously, he says 'another sort (consisted of a) large vase pouring forth a jet of water which rotated a (suitable) mechanism, so that (representations of) all kinds of creatures seemed to move spontaneously'. Later in the same passage the hot-air zoetrope is referred to, so perhaps this was a variety worked by miniature water-power. Possibly it struck the hours in this way as the oil level decreased (cf. p. 455 below and Vol. 3, p. 311).

d See Wu Lin Chiu Shih, ch. 6, p. 269; ch. 3, p. 12; ch. 7, pp. 153, 154, 168. Cf. Ming Liau Lu, ch. 1, p. 44; ch. 6, p. 248; ch. 13, p. 129; ch. 19, p. 541; ch. 40, p. 113, etc. And Chih Chiao Lu Wai Chü (+ 1260), p. 298.

It seems that the tradition of agricultural and agricultural-engineering illustration began with admonitory pictures upon the walls of imperial palaces. The emperor Ming Ti1 of the Chin (who reigned +954 to +959), himself a famous painter, left a series of pictures known as Pin Shih Chhi Yiieh Thu2 (Illustrations for the ‘Seventh Month’ Ode in the ‘Customs of Pin’ Section of the Shih Ching).a There is also evidence, more doubtful, that the emperor Shih Ts'ang3 of the Later Chou dynasty (reigned +934 to +939) built a pavilion, the Hui Nung4 which was ornamented with scenes of tilling and weaving.5 In any case some such tradition certainly existed, and it seems even to have had a magical significance, for the Sung encyclopaedist Wang Ying-Lin6 reports a tradition that in the Thang and Sung on two occasions when the palace frescoes of labour scenes were replaced by mere landscapes, there was trouble among the people and rebellions arose.7 In due course paintings of this kind were collected into book form, a type of publication the earliest of which was 8 (Pictures of Tilling and Weaving).e Such was the artistic and literary importance of this work, as well as its technological interest, that its history and bibliography, which is complex, has given rise not only to many studies in Chinese, but also to two substantial monographs in Western languages, those of Franke (11) and Pelliot (24).f The original pictures, each accompanied by a poem, were produced by Lou Shou,9 an official of the Southern Sung, for presentation to the emperor Kao Tsung, in approximately +1145, i.e. not long after the transfer of the Sung capital to Hangchow.9 Later, after Lou Shou’s death, they were inscribed on stone, and probably also printed, about +1210, by his nephew Lou Yo10 and grandson Lou Hung.11 Their value to us lies in the fact that they are the oldest pictures we have of Chinese agricultural, mechanical and textile technology—except with the exception of what may be gleaned from carvings in Han tombs and mural paintings of Wei and Thang. Only the military illustrations start earlier (+1044).10

This raises, of course, the important question of the extent to which the pictures which we have today are faithful copies of the +12th- and +13th-century originals. In +1766 the whole set was redrawn at imperial command by an eminent artist, Chiao Ping-Chen,1 who followed, as Hirih was the first to point out,8 the rules of perspective which had already been elaborated in the West and introduced by the Jesuits.9 The Khang-Hsi emperor added a new set of poems, while retaining the old ones of Lou Shou.10 So highly was the work prized, that its symbolic significance as depicting the foundations of Chinese agrarian culture, that in +1739 the Chien-Lung emperor ordered the pictures to be copied anew by Chhen Mei,12 and himself wrote another series of poems for them. The old verses of Lou Shou were now dropped, and a set of prose explanations by seven scholars4 inserted instead. Very soon afterwards, in +1742, the whole was incorporated into the Shou Shiieh Tiang Kiao (chs. 52 and 53), Lou Shou’s poems being restored and a fourth set, written by the Yung-Chêng emperor between +1723 and +1735, added.

Fortunately, certain sets of pre-Chhing illustrations have been recovered in the present century.13 Laufer (21) had the good fortune to obtain in Tokyo a Japanese reproduction made in +1676 of an old Chinese edition issued by Sung Tsung-Lu1 in +1462; and this was published by Franke (11) side by side with the later (+1739) Chhing series. Subsequently, Pelliot (24) went one better by discovering a scroll of rubbings of stone-carvings based on paintings by Chêng Chih14 made during the second half of the +13th century (the SêmâI Scroll). These must have derived directly from the edition of (+1237 issued by Lou Shao15 after the death of Wang Kang,16 Discussion is likely to continue on the finer points of these and the many later editions,17 but there is no great difference between them on the essential technical matters which they represent, and we may therefore feel fairly certain that the older sets are valid for the time of Lou Shou himself.18

1 Pelliot (24), p. 95.
2 Frankel (11), p. 57.
3 See Pelliot (24), p. 92.
5 A better title would be ‘Agriculture and Serticule’, since all the main operations are illustrated, not simply the use of the plough and the loom themselves.
6 Cf. also Montell (3).
7 They may have been printed from wood blocks already at this early date, for they soon became very well known.
8 The original set comprises 21 illustrations of agriculture and 24 of serticule, making all 45. There is some doubt as to whether the original pictures were carved in stone. Jager (4) reported that in 1928 many broken pieces of stone inscribed with Lou Shou’s poems, but without drawings, were found buried in the walls of Ning-po, his home city. It is thought that these finds dated from the early years of the +14th century, but the whole question remains unsettled.
9 Ming Ti of the Chin dynasty, +954 to +959.
10 Wang Ying-Lin reports a tradition that the Thang and Sung on two occasions.
11 Lou Shou’s poems being restored and a fourth set, written by the Yung-Chêng emperor between +1723 and +1735, added.
12 Frankel (11), p. 57.
13 Pelliot (24). These must have derived directly from the edition of (+1237 issued by Lou Shao after the death of Wang Kang, Discussion is likely to continue on the finer points of these and the many later editions, but there is no great difference between them on the essential technical matters which they represent, and we may therefore feel fairly certain that the older sets are valid for the time of Lou Shou himself.
14 Chiao Ping-Chen, +1766, the whole set was redrawn at imperial command by an eminent artist, Chiao Ping-Chen, who followed, as Hirih was the first to point out, the rules of perspective which had already been elaborated in the West and introduced by the Jesuits. The Khang-Hsi emperor added a new set of poems, while retaining the old ones of Lou Shou. So highly was the work prized, that its symbolic significance as depicting the foundations of Chinese agrarian culture, that in +1739 the Chien-Lung emperor ordered the pictures to be copied anew by Chhen Mei, and himself wrote another series of poems for them. The old verses of Lou Shou were now dropped, and a set of prose explanations by seven scholars inserted instead. Very soon afterwards, in +1742, the whole was incorporated into the Shou Shiieh Tiang Kiao (chs. 52 and 53), Lou Shou’s poems being restored and a fourth set, written by the Yung-Chêng emperor between +1723 and +1735, added.
15 Fortunately, certain sets of pre-Chhing illustrations have been recovered in the present century. Laufer (21) had the good fortune to obtain in Tokyo a Japanese reproduction made in +1676 of an old Chinese edition issued by Sung Tsung-Lu in +1462; and this was published by Franke (11) side by side with the later (+1739) Chhing series. Subsequently, Pelliot (24) went one better by discovering a scroll of rubbings of stone-carvings based on paintings by Chêng Chih made during the second half of the +13th century (the SêmâI Scroll). These must have derived directly from the edition of (+1237 issued by Lou Shao after the death of Wang Kang, Discussion is likely to continue on the finer points of these and the many later editions, but there is no great difference between them on the essential technical matters which they represent, and we may therefore feel fairly certain that the older sets are valid for the time of Lou Shou himself.
16 Other works of the same kind as Lou Shou’s, but which had less good fortune, were also produced in the Sung, e.g. the Pin Fêng Thu (Illustrations for the ‘Customs of Pin’) by Ma Ho-Chih cf. Pelliot (24), p. 120. In the 18th century, there were several, such as the Thao Chêng Thu Shao (Illustrations of the Pottery Industry) of +1743 (cf. David, 2), and the Mien Hua Thu (Pictures of Cotton Growing and Weaving) of +1795 (cf. Franke (11), p. 88). It was at one time thought that Han Yen-
These bibliographical technicalities, seemingly tedious, have so much importance for the comparative history of technology at the two ends of the Old World that it is necessary to dwell on their meaning for a moment. Chêng Chhi’s paintings must have been made in the close neighbourhood of +1275. The first half of the set was rediscovered and presented to the emperor soon after +1379 while the second half reached the imperial palace in +1769. The Chhien-Lung emperor, realising its importance, immediately had the whole engraved on stone, adding himself a historical introduction and yet another series of poems to go beside Lou Shou’s. Whether or not the stones still exist matters the less since Pelliot (24) made available the rubbings of the Semalle Scroll, with all their wealth of fine detail. If then we possess in this way an authentic record of the technology of the Southern Sung, an important contrast with Europe follows, for while the manuscript corpus of the Italian and German engineers informs us about the developments of the +15th and +14th centuries, we are here in presence of reliable Chinese material concerning the +13th and the +12th centuries. Chêng Chhi must certainly have worked from the block-printed edition of +1237, which derived in turn from a probable printing of +1210, and that in turn was based upon the drawings (quite possibly disseminated as block-prnts) of the fountain-head of +1145. One would give a good deal to know whether any technical details changed during this period. We believe it is unlikely that they did, and though we generally date Kung Chhi Thu’s work to the +14th century, its probable validity for a century earlier must always be remembered. Here an interesting point emerges, for all through this period (indeed from the +9th century onwards) China had printing while Europe did not. Therefore the criterion of terminus a quo has to be applied more strictly to Western MS. illustrations of, say, the +15th century than to Chinese ones of the same kind, if there is evidence of prior typographical transmission in a particular tradition. In other words, we can never assume the existence in the West of an invention (e.g. the crankshaft or the fusee) earlier than its first Chinese ones of the same kind, if there is evidence of prior typographical transmission.

One curious feature of the Kêng Chhi Thu pictures is that those of Chiao Ping-Chêng (+1696) are a good deal more like those of Chêng Chhi (c. +1275) than either of them resemble the Ming edition of +1462 (known from the Japanese version of +1676). As Pelliot says, the only possible explanation for this is that both Chêng Chhi, the well-known monographer of citrus horticulture (d. +1200), had written a work like the Kêng Chhi Thu, but this is apparently a mistake (Pelliot (24), p. 100). On the other hand, the famous painter and calligrapher Chao Meng-Fu (+1254 to +1322) did write 24 poems at the imperial request and Chiao worked directly from extant copies of the edition of +1237. Only a few decades after Chêng was active, the next fundamental contribution was being prepared, and to it we must now turn.

Whether the illustrations in the accessible editions of the Nung Shu (Treatise on Agriculture), produced by Wang Chên in +1313, are equally contemporary with his text is a matter even more important and more difficult to determine. For while so much attention has been paid to the bibliographical of the Kêng Chhi Thu, only a minority of its pictures have information to give us about machines. The Nung Shu, on the other hand, shows us no less than 265 diagrams and illustrations of agricultural implements and machines, mostly in a section entitled Nung Chhi Thu Phu (Illustrations of Agricultural Tools). But here again, the authenticity of the illustrative material is strongly vouched for by the significant fact that in no case have we ever found a discrepancy between the text and the pictures. Moreover, the somewhat archaic character of the drawings, quite similar in style to the old series of the Kêng Chhi Thu, indicates that we may securely take them as valid for Wang Chên’s own time.a His Nung Shu is the greatest, though not the largest, of all works on agriculture and agricultural engineering in China, holding a unique position on account of its date.b This is shared to some extent by the Nung Sang I Shih Tiso Yao (Essentials of Agriculture, Sericulture, Food and Clothing) written by Lu Ming-Shan in +1314, a work first noticed by Batin (2). Lu’s book was intended to supplement the Nung Sang Chhi Yao (Fundamentals of Agriculture and Sericulture), which had been compiled by imperial order under the Yuan dynasty already in +1274; but so far as we know, neither of these was ever illustrated. A few years later, in +1318, there appeared a small work by Miao Hao-Chên, the Tsai Sang Thu Shuo (Pictures of the Planting of Mulberry-Trees, with Explanations), but it is not conserved.

Throughout the Sung, Yuan and Ming dynasties another class of literature became important, the encyclopaedias for daily use (jüng leî shuâ). So widespread were these that people generally considered them not worth preserving, and they are now to be found only as rare or unique copies in libraries, as many in Japan and other

a Cf. Franke (II), p. 46. b And hence its freedom from occidental influences.

8 For the same reason we pass over here the useful and much earlier Nung Shu of Chên Hu, written about +1149, and still partly conserved. Another work dating from about the same time as Wang Chên’s great Nung Shu is an Everyman’s Guide to Agriculture (Chung I Po Yung) by Wu Tuan, with a supplement by Chang Fu. This is preserved, according to Chao Wan-Li (1), in the Yung-Lo Te Tien, ch. 13,194, and the publication promised will be eagerly awaited. So far as we know, this work contains no illustrations of rural engineering. Diagrams and specifications are contained, however, in a tractate by Hsiüeh Ching-Shih (2) in ch. 18,445 of the same encyclopaedia, which deals with carpentry and wood-work, the making of vehicles, and the construction of looms and other textile machinery. It is entitled Tsu Jen I Chih (Traditions of the Joiners’ Craft). Although it has been already edited by Chou Chi-Chien and Liu Tun-Chên (3), the forthcoming facsimile publications of this will be of still greater interest. Since the Mu Ching is lost, and the Yung Tao Fu Shih deals only with building technology, Hsiüeh’s work, dating as it does from the beginning of the Yuan, gives us the earliest extant text of its kind. We shall highlight it in the Section on textile technology.

a Franke (II), p. 60; Pelliot (24a), p. 108.

10.00...11.00; Pelliot (24a), p. 108.

And hence its freedom from occidental influences.
foreign countries as in China itself. Niida (i) and Sakai (i) have recently described more than twenty of these vade-mecums, printed at dates ranging from about 1530 to 1630. Besides instructions on family customs, popular medicine and hygiene, fortune-telling and the drafting of legal documents, they also give numerous details of farming, sericulture and the arts and crafts. Thus a glance at the Pien Yung Huaeh Hui Chi Hui (Seas of Knowledge and Mines of Jade; Encyclopedia for Convenient Use) printed in 1607 finds wood block cuts of the square-pallet chain-pump, the rotary-fan winnowing-machine, the connecting-rod hand-mill, a very simple silk-reeling machine, and some looms. This "inquire-within-everything" literature thus urgently invites study by historians of technology, and if the Ming editions are not likely to tell us much that we do not already know, those of the Yuan and the Sung may well provide us with important new evidence. Here we come once again upon the effects of the art of printing. Before the popularisation of typography technical monographs or treatises on, say, textiles or iron-working could have had only a very restricted circulation in manuscript, and much must have been lost, but as soon as the democratic medium got into its stride, from the 10th century onwards, technical subjects began to take their place, even if it was often only in popular encyclopaedias, graphs or treatises.

During the three centuries after Wang Chen no further contributions of importance to the literature of rural engineering appeared, but in 1609 the San Tzai Thu Hui illustrated encyclopedia reproduced a good many of the pictures of the Nung Shu in somewhat degenerate form. No Western influence is perceptible here, but this was the time of the Jesuits, and shortly afterwards came three books prepared under their inspiration which broke away from the agricultural domination under which Chinese eotechnic mechanical engineering had grown up. The first was the Thai Hsi Shui Fa (Hydraulic Machinery of the West) published by Sabatino de Ursis (Hsiaun San-Pa) and Hsi Kuang-Chhi in +1612. Then came the Chhi Chi Thu Shuo (Diagrams and Explanations of Wonderul Machines of the Far West), by Johann Schreck (Teng Yu-Han) & Wang Cheng in +1627; this deals with a great variety of machines, including cranes, mills and sawmills, as well as water-raising engines. A shorter companion work, by Wang Chong alone, the Chhi Chi Thu Shuo (Diagrams and Explanations of a Number of Machines), appeared in the same year. Owing perhaps to the abundance of the illustrations in these works, they have attracted great attention, an analysis of them will shortly follow.

Between +1624 and +1628, Hsi Kuang-Chhi occupied himself with a new agricultural compendium destined to supersede all earlier works, but it was not published until after his death, when it was edited by Chhen Tzu-Lung as the Nung Cheng Chhion Shu (Complete Tretise on Agriculture), of +1659. This famous book is well illustrated, especially in the irrigation section (chs. 12-17), and later (chs. 18 and 21-3) reproduces nearly all the agricultural machinery of the Nung Shu with minor variations. The Thai Hsi Shui Fa is reproduced complete (chs. 19, 20), but there is no essential advance along the lines of traditional Chinese engineering beyond Lou Shou and Wang Chen.

Contemporary with the work of Hsi Kuang-Chhi was that of Sung Ying-Hsing, who produced his Thien Kung Kai Wu (The Exploitation of the Works of Nature), China's greatest technological classic, in +1637. Though dealing with agriculture and industry rather than engineering in the strict sense, this is perhaps the right place for a brief mention of its contents. It is divided into the following sections:

c. the German cultural work for his brilliant attainments in medicine, natural philosophy and mathematics. Between +1624 and +1627, he was in Italy, and in the early years of the 17th century he gained further renown and won himself the friendship of Galileo, one of the first half-dozen members of the Cesi Academy. A glimpse of his activity among them at this time may be obtained from E. Rosen (1). Already in the north he had won the personal friendship of Kepler. This was the man who, as Teng Yu-Han, a dedicated reader, first found himself in +1638 in far-away Peking, working with a distinguished Chinese scholar, Wang Chong, on a book which would provide for the first time in Chinese dress the principles of Renaissance mechanics and an account of their applications by the engineers of Europe. This was the Chhi Chi Thu Shuo, which appeared in the following year. For a fuller account see Bernard-Maile (17), and the biography by Gabrieli (1). Schreck latinised his name, punningly, as Terrentius, hence the English form John Terence, best not used. He was elected to the Academy of the Lynxes in +1611, joined the Jesuits in +1612 and reached China in +1621. For the last few years of his life he was engaged in the beginning of the calendar reform which Kepler himself undertook by the imperial court to undertake (cf. Vol. 3, pp. 259, 497).

b. Pfister (1), p. 157, is wrong in saying that this book was also under joint authorship with Schreck, and that it was concerned with 'les machines indigennes'. On the contrary, the devices were mainly of Western inspiration, and the device of adaptation, and he was decisively the first modern Chinese engineer, indeed a man of the Renaissance, though so far from its birthplace. A biography of Wang Chong (+1572 to +1644) is given in Hummel (a), pp. 807ff. The late Prof. Fritz Jager of Hamburg made available the whole of Wang Chong's work and all his scientific work. I have had the valuable opportunity of consulting the unpublished posthumous papers of Prof. Jager, thanks to the kindness of the present occupant of the Hamburg chair, Prof. Wolfgang Franke. As this was long after the writing of the present book, the main satisfaction lay in finding so many connections and co-dependencies.

d. Horwitz (1), Reimuller (1), Feldhaus (8, 11, 12), Goodrich (7); and special studies by Jager (2), Hsiieh Fan-Shao Li-Tsu (1) and Liu Hsien-Chou (2).

b. Among the relevant Jesuit publications of this period, we ought to mention also the Hai Hsiao Fan B (A Sketch of European Science and Learning), written in +1637 by Giulio Aleni (Al Ju-Litch) to give an idea of the contents of the books which Nicholas Trissalt had brought back for the Pei-Tang Library. See Cordier (8), p. 107; Pfister (1), p. 135; Bernard-Maile (18).

e. Franke (11), p. 121; Bretschneider (1), Vol. 1, p. 84.

b. There is a special, though short, study of it by Yoshioba Mitsuaki (1), and Sung's biography was written by Ting Wun-Chiang (1). Since this section was first drafted, a remarkable edition of the
The illustrations for both of these were fully traditional. The four cheese-like rollers, fixed all together within a rectangular frame, are made to revolve over their gratings by the motion of a discoidal cam at the centre into which the main vertical driving-shaft is fitted eccentrically. Flumes deliver the tea-leaves which drop down through the gratings.

The works and Days), prepared by imperial order to be the continued to reproduce the traditional illustrations. The Yuan series of Wang Chen, modified but not essentially changed, reappears twice, all the Thien Kung Khi Wu pictures are also given, as are those of the Chhi Chhi Thu Shuo and Chhi Chhi Thu Shuo. Finally, in + 1742, came the Shou Shih Thung Khao (Complete investigation of the Works and Days), prepared by imperial order to be the non plus ultra of all compendia on agriculture and agricultural engineering. It differs from its predecessors in starting with some geography and meteorology, and including large sections on agriculture, botany, but the engineering illustrations deviate in no way from those of the Nung Chheng Chhiaen Shu. The Keng Chhth Thu and the three Jesuit books are all incorporated.

It may be said, therefore, that by the end of the Sung the Chinese tradition of agricultural engineering had reached its fullest development. The Nung Shu and the Thien Kung Khi Wu are the best sources for it, and though pumps and various kinds of gearing were introduced by the Jesuits there is no evidence that these innovations were adopted, presumably because social and economic conditions made unnecessary any changes from the classical methods. Hence also there were no essential advances in the books themselves down to the beginning of the 19th century. Indeed, those who, like the writer, have lived in China, know that the early medieval techniques strictly speaking, if we think of an iconographic tradition such as this rightly as a whole, we may follow it down to the beginning of the 19th century. The appearance of the Shou Shih Thung Khao in no way checked the flow of Chinese literature on agriculture and rural engineering. In + 1766, for instance, there appeared the Sun Nung Chi (Records of the Three Departments of Agriculture) by Chang Tsung-Fu, among others, very Szechuanese, work unfortunately lacking illustrations. There were many others in the following decades, and all through the nineteenth century works on agriculture and sericulture continued to appear—mention has already been made (p. 2) of some of these, which have important illustrations. Even in the first years of the twentieth, publications on these subjects, such as the Nung Hieh Tsaen Yoa of Fu T'eng-Huang, could be furnished with interesting, and informative, drawings entirely in the traditional style. Moreover, a thorough survey would not neglect certain Japanese contributions. For example, in 1822 Okura Nagatsune produced a treatise on agricultural machinery including pile-driving and hydraulic engineering, the Nyo Bneri-ron, while in 1839 Tokugawa Naria-Fu devoted another entirely to designs for pumps and other kinds of water-raising machinery, the Ugen Kihan. The illustrations for both of these were fully traditional.
(such as the square-paddle chain-pump with radial treadle) are still in full vigour. Their supersession is bound up with the current problems of industrialisation, persistence of wet rice cultivation, and the like, and it may well be that China will adopt designs of modern equipment based on the traditional machines and suited to the country's needs rather than those which were developed over the ages for other purposes in Europe.

We are now in a position to come to concrete detail and examine Table 56, where are assembled all the main types of Chinese eotechnic machines, listed under the heads of (A) Pounding, (B) Grinding, (C) Water raising, (D) Blowing, (E) Sifting, (F) Turning, and (G) Pressing. Where these were operated by the power of water or wind we shall treat of them in more detail below; where they were operated by men or animals we shall discuss them now—except in the cases of water-raising machinery, which it is more convenient to assemble together as the first subsection on hydraulic engineering (p. 330 below), and of blowing apparatus, which has been discussed already (p. 135 above).

(2) Eotechnic Machinery, Powered by Man and Animals

Here we must start with pounding and grinding procedures, probably among the most ancient of man's food-preparing activities. But before we can pursue our investigation of their place in the prehistory of mechanical engineering in East and West a few words may help to recall the reasons for the human need for them. These concerned the problem of de-husking cereal grains. The grain of the cultivated grasses contains, beside the embryo of the future plant, a mass of starch-containing material, the endosperm, which acts as the fostering yolk until starch can be made by the new plant photosynthetically. This through the ages has been man's 'staff of life'. But it is guarded externally by the husk and the aleurone layer, forming when comminuted what we know as chaff and bran; these also contain carbohydrate but in an insoluble

* These words were first written in 1952. They have proved quite prophetic. When six years later I had the pleasure of attending the National Exhibition of Agricultural Machinery in Peking, I found that great progress had been made in the utilisation and adaptation of the traditional style of engineering and craftsmanship to meet modern needs. I give here three examples: Fig. 439 shows a tea-leaf rolling-mill worked off a vertical water-wheel, Fig. 440 a simple crop-sprayer, and Fig. 441 a hay-cutter with a drive from the wheels; Anon. (18), pt. 5, no. 50; pt. 7, no. 25; pt. 9, no. 19. Some idea of the immense amount of manual labour saved by tea-rolling machinery may be gained from Fortune (I), vol. 2, pp. 473ff.; (4), pp. 197ff., 207ff. All these designs derive parenthetically from Mā Chūn and Su Sung rather than from Vitruvius and Leonardo. Of course where the more advanced metallurgical technology is concerned there can be less continuity with the past, yet even in such fields the Chinese technical tradition is exerting its own inspirations. The continuous development from ancient ways has moreover been much encouraged by the emphasis placed at the present time (1959) on industrial decentralisation. We shall describe in Sect. 36 a visit paid in 1958 to a traditional steel-works in Szechuan, where steel has long been made by the highest form of a most ancient process, co-fusion (cf. Needham, 32). Indeed, the fixed idea that yang fa (foreign methods) must always necessarily be better than thu fa (traditional methods) has been condemned as a superstition, and it is not likely that the Chinese will again succumb to it.

b In this subsection we deal primarily with grinding machinery for comminution of food or other materials. Grinding machinery for abrasion, shaping or polishing comes into consideration elsewhere, cf. Vol. 3, pp. 667ff., and above pp. 82, 92, 122.
Key to Table 56

NOTE. This table excludes, in the main, machines of the textile industry and of agricultural husbandry, as also purely military and naval apparatus, which we reserve for discussion in the appropriate Sections.

ABBREVIATIONS

KC King Chih Thu (Poems and) Pictures of Tilling and Weaving

+1145 (+ 1210)
Numbers as in Franke (11)

NS Nung Shu (Treatise on Agriculture) +1313
Illustrations numbered consecutively all through

ST San Ts'ai Thu Hui (Universal Encyclopaedia) +1609

Chhi Yung section, ch. 10

KC/18, 19 NS/117 ST NC/23.2 TK/49, 59 (35), 113 (81) TC/130 SS/40.17, 52.38
NS/118 NC/23.3 TC/131 SS/40.18
NS/188 ST NC/18.15 TC/41

Not illustrated, though universally used

KC/18, 21 NS/119 NC/23.5 TK/46 (29), 112 (81)
TC/112 SS/12.44
TK/47 (30) SS/40.10
TK/48 (29) SS/40.11
NS/124 ST NC/23.12 TK/51 TC/137 SS/40.25
NS/120 NC/23.6 TK/53 TC/133 SS/40.13
NS/125

NS/182 ST NC/18.6 TK/52 TC/33 SS/40.26

These are all repeated in the Khao hung tien section, ch. 244.

The Khao hung tien section repeats the TK illustrations in ch. 248 and those of CC and WC in ch. 249

These are all repeated in the Shou Shih Thang Kiao (Complete Investigation of the Works and Days) +1742

Ch. 31 ff. The KC illustrations reappear in chs. 52, 53.

References by chapter and page

The last three books describe Western, rather than Chinese, machines

HC Thai Hsi Shui Fa (Hydraulic Machinery of the West) + 1612

CC Chhi Chhi Thu Shuo (Diagrams and Explanations of Strange Machines) +1627

Illustrations numbered throughout the book

(a) Pounding

1. Pestle and mortar, manually operated (man-power)

2. Tilt-hammer pestle (man-power)

3. Water-counterweighted tilt-hammer ('spoon' tilt-hammer) operated automatically by water fall

4. Battery of trip-hammers actuated by lugs on the shaft of a vertical undershot water-wheel

5. Battery of trip-hammers actuated by lugs on a shaft driven by right-angle gearing from a horizontal water-wheel (no lus, 固, 輪)

(b) Grinding

1. Quern, manually operated, with short (crank-) handle

2. Quern with long-handled connecting-rod and crank, operated by one or several men

3. Rotary grinding-mill operated by two animals, directly yoked

4. Rotary grinding-mill operated by two animals by means of a crossed driving-belt from a whim or capstan driving-wheel

5. Multiple rotary grinding-mills, up to eight, directly geared to a driving-wheel operated by animals

6. Rotary grinding-mill operated directly by a horizontal water-wheel underneath

Table 56. Principal machines described and illustrated in traditional Chinese books

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Pounding</td>
<td>(B) Grinding</td>
<td>Illustrations</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>1.</td>
<td>chung</td>
<td>chung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
<td>chtui</td>
<td>chtui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>hang</td>
<td>hang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
<td>tshao</td>
<td>tshao</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
<td>chi</td>
<td>chi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>6.</td>
<td>shui</td>
<td>shui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>7.</td>
<td>mo</td>
<td>mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>8.</td>
<td>lung</td>
<td>lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>9.</td>
<td>thu</td>
<td>thu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>10.</td>
<td>mu</td>
<td>mu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>11.</td>
<td>nio</td>
<td>nio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>12.</td>
<td>lu</td>
<td>lu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>13.</td>
<td>lien</td>
<td>lien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>14.</td>
<td>shui</td>
<td>shui</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KC | NS | ST | TK | TC | SS |

KC/18 NS/116 ST TK/59 (35) TC/129 SS/40.16, 52.38
KC/18, 19 NS/117 ST NC/23.2 TK/49, 59 (35), 113 (81) TC/130 SS/40.17, 52.38
NS/118 NC/23.3 TC/131 SS/40.18
NS/188 ST NC/18.15 TC/41
(NS/189 ST NC/18.13 TK/50 (32) TC/40
SS/40.19
ST

Not illustrated, though universally used

KC/18, 21 NS/119 NC/23.5 TK/46 (29), 112 (81)
TC/112 SS/12.44
TK/47 (30) SS/40.10
TK/48 (29) SS/40.11
NS/124 ST NC/23.12 TK/51 TC/137 SS/40.25
NS/120 NC/23.6 TK/53 TC/133 SS/40.13
NS/125

NS/182 ST NC/18.6 TK/52 TC/33 SS/40.26
Apposition of wheel-edge or roller surfaces

(1)	Edge-runner mill with longitudinal travel (man-power)
(2)	Rotary disc knife, treadle-operated with alternating motion (man-power) for jade-working (cf. Vol. 3, pp. 667 ff.)
(3)	Single edge-runner mill travelling in circular trough (animal-driven)
(4)	Double edge-runner mill travelling in circular trough (driven by two animals)
(5)	Single or double edge-runner mill operated directly by a horizontal water-wheel underneath
(6)	Double narrow-tread wheel roller (agricultural)
(7)	Hand-roller for grinding (man-power)
(8)	Roller harrow (animal-drawn)
(9)	Roller mill (horizontal roller travelling round a circular course), animal-operated

Water Raising (and Liquid Propulsion)

Leverage

(1)	Double hand-swung bucket
(2)	Swape (counterweighted bailer; shadiif)
(3)	Ditto, modified with flame in beam

Rotary

(1)	Winch or windlass, with crank, for wells
(2)	Capstan winding drum, for salt-well boreholes
(3)	Scoop-wheel in flume, hand-operated (man-power), with crank, for short lifts
(4)	Square-pallet chain-pump, hand-operated (man-power), with crank, for short lifts
(5)	Square-pallet chain-pump, operated by radial treadle (man-power)
(6)	Square-pallet chain-pump, driven by one or two animals through right-angle gearing from a driving-wheel
(7)	Square-pallet chain-pump, driven by a horizontal water-wheel through right-angle gearing
(8)	High-lift undershot Noria (a'ama)
(9)	High-lift Noria for still water, driven by two animals through right-angle gearing from a driving-wheel
(10)	High-lift pot-chain pump (sāpya), apparently current-operated
(11)	High-lift pot-chain pump, driven by two animals through right-angle gearing

shui mo 水磨 (or shui lung)	TK(33) SS/40.12, 40.27
shui chuan lien mo 水轉連磨	NS/186 ST NC/18.7, 18.10 TC/34.35, 38 SS/40.27, 40.28
feng shan mo 風扇磨	CC/33, 34, 40 WC/4
feng wei 風輪	TK/146 (108)
yen nien 破碾	TK/161 (121), 162 (121) TC/KKT/4
cho yu lun 琉玉輪	ST TK/(26)
chu tho 錘錘	NS/121 NC/23.8 TK/55 TC/134
nien 楔	NS/184 ST NC/18.8 TK/56 TC/36 SS/40.23
shih nien 石輪	TK/18
shih nien 水輪 (or nien 溝)	TK/54 (37) SS/40.22
shih tho 石陀	KC/5 NS/23 NC/21.11 SS/33.11
hiao han nien 小碓碾	TK/41 (34) SS/39.7
shih ho tse 石碓鑳	NS/122 NC/23.9 TC/135 SS/40.21
lu tu 銅鑳	TK/76 (44)
lu tu 銅鑳	NS/245 NC/35.22 TK/34 (22)
hun 荒	NS/185 ST NC/18.5, 18.9 SS/40.24
hun 荒	}

| (c) WATER RAISING (and LIQUID PROPULSION) |
| (a) Leverage |
(1)	Double hand-swung bucket
(2)	Swape (counterweighted bailer; shadiif)
(3)	Ditto, modified with flame in beam
(b) Rotary	
(1)	Winch or windlass, with crank, for wells
(2)	Capstan winding drum, for salt-well boreholes
(3)	Scoop-wheel in flume, hand-operated (man-power), with crank, for short lifts
(4)	Square-pallet chain-pump, hand-operated (man-power), with crank, for short lifts
(5)	Square-pallet chain-pump, operated by radial treadle (man-power)
(6)	Square-pallet chain-pump, driven by one or two animals through right-angle gearing from a driving-wheel
(7)	Square-pallet chain-pump, driven by a horizontal water-wheel through right-angle gearing
(8)	High-lift undershot noria (a'ama)
(9)	High-lift noria for still water, driven by two animals through right-angle gearing from a driving-wheel
(10)	High-lift pot-chain pump (sāpya), apparently current-operated
(11)	High-lift pot-chain pump, driven by two animals through right-angle gearing

lu tou 厲斗	KC/10, 11 NS/171 NC/17.21 TC/21 SS/37.21, 52.24
chieh kao 柴桺	KC/13, 14 NS/173 ST NC/17.25 TK/11 (9) TC/23 SS/37.23, 52.30
ho yin 鹽鈹	CC WC SS/38.30
lu lu 砭鉈	NS/174 ST NC/17.29 TC/24.29 SS/37.24 CC
kua chéh 刮車	TK/105 (74), 157 (117), 158 (118)
pa chéh 拔車	TK/66
lang lu chéh 龍骨車	TK/68 (42), 71 (42)
fan chéh 快軌	NS/172 NC/17.23 TC/22 SS/37.22
tha chéh 蹲軌	TK/14 (8)
shai chéh 水車	KC/13, 14 NS/160 ST NC/17.7 TK/13 (6) TC/13 SS/37.12
niau chuan fan chéh 牛輪車	NS/163 ST NC/17.13 TK/9 (7) TC/16 SS/37.13, 37.16
shui chuan fan chéh 水轉車	NS/164 ST NC/17.11 TK/10 TC/15 SS/37.14
thung chéh 筒車	NS/162 ST NC/17.9 TK/5 (5) TC/14 SS/37.15
wai chuan thung chéh 衛轉車	NS/165 ST NC/17.15 TC/17
hau chuan thung chéh 高輪車	NS/166, 167 ST NC/17.18 TK/8 TC/18 SS/37.17

Ditto

Not illustrated, though undoubtedly used, especially in relatively recent times
and indigestible form. Many animals, better provided than man with amylase, and even with cellulose-splitting enzymes contributed by their symbiotic bacteria, can digest all this 'roughage' as well as the inner part of the grain. Human beings, however, deriving but a partial benefit from the bran, can digest only the inner endosperm, and even so, a 'pre-digestion' in the form of cooking is necessary. The simplest and oldest form of this was a toasting or parching of the whole grain which made complete dehusking possible; then the grain was heated with water to about 60°C so that the starch swelled and gelatinised to form a kind of porridge. But this is something which does not keep. If instead of being heated below boiling temperature the flour is made into a dough with water and baked at about 235°C, durability and consistency is attained, yet the product, even when made very thin, soon stales and is difficult to eat—hence the invention of 'leavening' by means of gas-producing yeasts. But here the gluten proteins of the endosperm have a leading role to play.

Bread cannot be properly leavened and 'risen' unless advantage can be taken of these proteins, for as baking proceeds they are denatured and form an elastic framework which retains the carbon dioxide until perfectly set. If the grain has had to be roasted before hulling, these proteins will have been prematurely denatured, and nothing more than porridge will be possible. Now all cereals other than wheat and rye (including barley, millet and oats) are normally husked in such a way that they cannot be freed from their cover-glumes by ordinary threshing, and this is why they are unsuitable for making aerated bread. But in addition the relative quantity of the proteins in wheat, and also their quality, make this cereal far superior to any other in panification. Furthermore the 'naked' wheats of the species *Triticum vulgare* have proved capable through centuries of domestication of yielding a considerable number of varieties with different desirable properties.

These facts explain the long persistence of pounding processes, variations of the pestle and mortar stemming from the mealing-stone of Palaeolithic man, both in East and West. In classical antiquity maize was of course unknown, sorghum and rice rare and medicinal, oats considered only food for animals, and barley (in the form of kneaded unleavened baps, *maza,* *μαζα*) unfit for baking. Rye was a German-Scandinavian grain which came south but slowly and never very much, while millet was used as a stand-by if the wheat harvest failed. Bread wheat was already supreme in Greek lands by the 4th century, supplanting barley, and naked wheats ousted emmer, the principal husked wheat (*Triticum dicoccum*), in Italy by the 2nd. Thus the Etruscans and the Romans of the early Republic were eaters of porridge (*puis*), made from *far oz zeia* (*ζεια*), which was pounded after roasting, and the pounding gave the name *pistor* to the later miller-bakers of Rome. But the Hellenistic world lived, like modern Europe, upon baked bread.\(^a\)\(^b\)

\(^a\) This does not mean that they cannot be used for making flat unleavened cakes like chapatties or *shao ping,* slapped on to the side of a hot iron plate and toasted until crisp, or fried in various ways. Millet is still made into a coarse bread of this kind in north China. In Western antiquity a naked barley was occasionally cultivated; cf. Moritz (3).\(^b\)

On all these questions cf. Zeuner (1) and Moritz (1, 2, 4). Many of us have eaten the porridge of early Republican Rome without knowing it, for in Slavonic lands we have been served with a dark, stiff and rather sour dish called *kasha,* as much of an acquired taste as the rye pumpernickel of Germany.
In China the place which emmer and barley had in Mediterranean civilisation was taken by millet, both kinds of which, the paniced and the spiked, glutinous and non-glutinous, were indigenous there, and formed the chief cereal of the Yangshao and other Neolithic cultures. But archaeological evidence shows that rice had already penetrated to these cultures before the end of the 3rd millennium, certainly coming from India. From actual remains in Han tombs the presence of wheat, barley and adlay (Job's tears, Coix lacryma) has been established, but certain other cereals, notably kaoliang and buckwheat, are indigenous to China like millet, and were probably cultivated at least as early as the Chou. Exactly when wheat began to be cultivated on a large scale it is hard to say, but it was certainly a crop of the Shang period (c. -1400), having reached China by way of Western and Central Asia, and in subsequent ages it became characteristic of the Yellow River basin as rice was of that of the Yangtze. Nor do we know when emmer was superseded by the naked wheats, which, as a result of the changes of the early Warring States period, perhaps in association with the many revolutionary agricultural changes of the early Warring States period. Abundance of bread flour does not depend upon rotary milling, but that invention seems to follow it fairly soon. This brings us back to engineering problems.

Now kasha is a porridge made from the coarse grits of emmer (cf. Carleton, 2). Another question which might be raised is that of the unleavened bread (matzah) of Israel, alone orthodox for temple sacrifice and Passover. The prohibition of leaven goes back to the Je stratum of Exodus, and traditionally therefore to the 5th century, but this may not mean that Israel had naked wheat and therefore formed bread earlier than the peoples of the Western Mediterranean. Perhaps the unleavened bread of later ages was held holy because it was the only form of bread that the patriarchs had known. And the Roman sacrificial bread (la) which was made from emmer might be cited as a parallel. But the truth herein might admit of a wide conjecture. The only part of the world where the staple cereal is still grown roasted before being ground is Tibet. The tsamba celebrated by so many travellers is also however a primary element of diet for Mongols, Kazakhs and the Chinese of the western and north-western border areas (cf. Trippner, 1). It is eaten as a paste with warm tea or even cold water, together with butter, vegetables, etc. The chief grain used is ching hu, a cold-resistant cereal little cultivated in China proper, and seemingly closely related to the various emmer wheats, or to barley: but wheat, oats, nacked oats, millet, buckwheat and maize may also be used. References in Chinese literature include Chhi Min Yao Shu (c. +450), ch. 10, San Nung Chi, ch. 7, p. 160, and Wu Chhi-Chih (1), vol. 1, ch. 8 (p. 164), vol. 2, ch. 9 (p. 19). This paragraph is based not only on the fundamental publications of Vavilov (1, 2) and Bishop (2), but also on the kind counsel of Dr Hsia Nai at the Archaeological Institute of Academia Sinica in Peking, and of Prof. Cheng Te-Khun of Shanghai University. It will stand full cooking without disintegrating into porridge form, and as this is so there was no need to go to the trouble of bread-making.

The simplest form of comminution, pounding (impact crushing) by means of the manhandled pestle and mortar, goes back in principle, no doubt, to Mesolithic times and even earlier, but has lasted on for the daily decortication of cereal grains, as well as other purposes, until the present day, not only in China but in a multitude of other places from the Hebrides to Bali. It is fairly frequently represented in ancient Egyptian pictures and Greek vase-paintings. In China the pestle (chhu) and mortar (chou) was used from antiquity for the hulling of all grains, but especially for the removal of the glumes from rice grains, which are also roughly polished in the process so that they become white and shining by the partial removal of the outer fatty aleurome layer. From Han references we know of mortars made of clay, of wood and of stone, materials to which stone-wear was afterwards added. In the Thang southerners used boat-shaped pestles stamping communally in long troughs. Farmers used the pestle for breaking up clods in the fields, as apothecaries and alchemists also for their own purposes, and sometimes the pestle was (and is) suspended from a bamboo bow-spring. In a Chinese cereal-pounding scene of +1210 the pestles are almost indistinguishable from mallets (Fig. 339).

This drawing is noteworthy, however, for the presence of something far more characteristically Chinese, namely the treadle-operated tilt-hammer (twi). This was an extremely simple device, using lever and fulcrum to enable the pounding work to be done with the feet and the weight of the whole body, instead of with the hands and hands and...
arms alone.

Illustrated in all the agricultural encyclopaedias (cf. Fig. 359), it is one of the commonest objects of the Chinese countryside. It was used in the same way as the pestle and mortar for deccorticating and polishing cereal grains, but also extensively by miners in ore-dressing. In modern times it finds many applications, as in mobile earth-tamperers for construction works. As to its antiquity, most Chinese historians would place it without hesitation in the late Chou period, or about the Ch'in time, though literary references to it are hard to find before the 1st century. At that date we have the Ch'i Chiu Pien dictionary of -40 and the definitions in the F'ang Yen of about -15, attributable to Hsiang Hsiung; but the best statement is that of Huan Than in the Hsin Lan of about +20, which we shall give in translation later on.

The pedal tilt-hammer seems not to have been used in other civilisations until much later, if at all. It is not mentioned or illustrated in Europe until a +1377 edition of Hesiod, so it may safely be regarded as derivative there. But it seems to have had European descendants, namely the 'oliver', a sprung treadle-operated tilt-hammer used in forges. If this goes back to the 14th century, as has been supposed, the transmission would have been as medieval as that of the blast-furnace and gunpowder. In any case the mechanism tai, the hydraulic trip-hammer, had, as we shall see, much more imposing European progeny in the heavy 'martinet' forge hammers of the 18th century. For this particular machine, animal power was seemingly less suitable, and we do not know of any trip-hammers so worked in China, but when they spread to South America a curious device was invented whereby the ends of the hammer-stones were curved upwards, and depressed successively by the circling whippletree of a plodding animal. Pounding techniques had eventually their own monograph in Chinese literature, though very late, the Chhu Chiu Ching by Ong Kuang-Phing.

Grinding procedures were more complex, and led further. n In Chinese literature, though very late, the Ch'uan Than aboubout +10, the Ch'uan Than of about +15, the Chuan Than aboubout +20, all of which we shall give in translation later on.

Though the lever was pivoted to a firm bench and the mill was worked back and forth on its lower stone. All these types were incised with parallel grooves in herring-bone or other patterns from the saddle-quern stage onwards.

The transition from these oscillatory forms to the true rotary mill and hand-quern, in which an upper discoidal millstone revolves upon a lower stationary stone, is not at all obvious and indeed presents unsolved mysteries, though the radial motion of the lever-operated hopper-rubber may have inspired the advance. The general principle is shown diagrammatically in Fig. 443; the lower stone is always convex, though it may be only very slightly so, while the upper one is concave with a hole pierced in it through which the grain can fall on to the grinding surfaces. Across this hole is placed a bar, the rynd, which supports the upper stone upon a pin rising from the lower stone. The difficulty of continuously feeding in the grain led to the more convenient hopper-rubber (Fig. 442), in which the upper stone has cut out within it a hopper with an elongated slit for the grain to pass through. From this there developed the oscillating lever-operated hopper-rubber (Fig. 442) in which one end of the lever was pivoted to a firm bench and the mill was worked back and forth on its lower stone. All these types were incised with parallel grooves in herring-bone or other patterns from the saddle-quern stage onwards.

The transition from these oscillatory forms to the true rotary mill and hand-quern, in which an upper discoidal millstone revolves upon a lower stationary stone, is not at all obvious and indeed presents unsolved mysteries, though the radial motion of the lever-operated hopper-rubber may have inspired the advance. The general principle is shown diagrammatically in Fig. 443; the lower stone is always convex, though it may be only very slightly so, while the upper one is concave with a hole pierced in it through which the grain can fall on to the grinding surfaces. Across this hole is placed a bar, the rynd, which supports the upper stone upon a pin rising from the centre of the lower one. If this pin be continued through a hole in the thickness of the lower stone and attached to a movable lever (the bridge-tree) then a simple method is available for adjusting the exact clearance between the two stones. The

27. Mechanical Engineering

![Fig. 442. Reciprocating motion in primitive mills. Left, the ancient occidental hopper-rubber. Right, the Olbian mill, a lever-operated radially oscillating hopper-rubber.](image-url)
convexity of the lower stone allows the flour to fall out automatically. In some cases the upper stone was so cut as to provide a very large hopper above, as in the famous Roman donkey-mills of Pompeii (Fig. 443). Most hand-querns had a handle placed eccentrically so as to constitute a crank. It may be noted that the rotary mill or quern is morphologically the pestle and mortar turned upside down, the pestle being held stationary below, while the mortar, with a hole made through it, rotates above; this may be another clue in the genesis of the invention. There is much to be said in favour of Curwen's opinion (2) that the revolving mill was so great an advance on any previous appliance that it could not have come into being gradually without a decisive act of invention, and the only general precedent it had was the potter's wheel. The problem is to locate the act.

In order to compare the Chinese data with the course of events in Europe it is necessary first to establish a chronological sequence for the inventions just described.

The very great convexity of the Pompeian donkey-mills, says R. H. Anderson (1), proved ancestral to a number of Renaissance devices, though hardly perhaps by direct affiliaiton. When the meta revolved and the caullius stood still the machine became the de la Gëche mill of +1744 and generated modern feed-grinders of the sweep type. When it was made to revolve on its side it became the Rahuili mill of +1488, and when part of the caullius was removed so as to leave only a concave block, the Bockler mill of +1662. By that time it was not a far cry to the true double roller mill. But that had probably been invented in India many centuries before. The Rahuili and Bockler mills are figured also by Forbes of the lower stone, and when part of the female mortar applied to the upper stone, and huang chu (male mortar) to the lower. The upward-projecting pin strengthened the analogy.

The potter's wheel also partook of concavity or convexity according to whether it was of the socketed or pivoted type (Childe, 11). The former was more characteristic of East Asia.

The recent researches of Moritz (1) have rescued the subject from the state of confusion and uncertainty which long prevailed. No verbs implying the 'turning' of mills can be evidenced from any Western culture before the 2nd century, but the contrast between the 'push-and-pull mill' (*mola trusatilis*) and the 'turned mill' (*mola versatilis*) is clear from then onwards. Most misleading was the fact that from the 5th century onwards the word donkey (*omo, *bov*) was regularly used to designate the upper stone of the saddle-quern and the hopper-rubber; this led to a conviction that rotary mills powered by animals, originating then, had long preceded querns turned by hand. In fact there is no evidence for rotary mills of any kind in the West before Roman times. Saddle-querns were used in all the ancient occidental cultures, hopper-rubbers following them from about the 6th century, and then the lever-operated hopper-rubbers from the 5th onwards. This last device, which may be called the 'Olynthian mill,' must be considered the principal grain-mill of the classical Greek world. But a great puzzle remains in that the hand-quern and the seemingly more developed mass-production 'Pompeian mill' (the donkey-mill or *mola australis*) appear at about the same time, though one would expect to find the much smaller manual rotary mill considerably earlier. On archaeological evidence the former goes back only to Pliny's time (+70) but the mentions in Catuv (fix - 190 as a date when it was in fairly common use. Archaeological finds place the latter in pre-Roman Spain about -140 and in the late La Tene culture of the north from about -100, but it cannot be evidenced from literature until -10 unless it was Catuv's *mola hispaniensis*, which is probable enough. Plautus, who died in -185, never speaks of turned mills except in the Aesinaria, which may not be a genuine play (or was perhaps his last, c. -185). He mentions *panis* more frequently than *pulls*, and Moritz associates the beginnings of rotary milling with the introduction of commercial bakers at Rome about -170. The essential invention seems to belong therefore to the close neighbourhood of -200, i.e. shortly after Archimedes' lifetime and the establishment of the Early Han. There is still no reason for disallowing the Latin tradition reported by Varro (+116 to -28) that the rotary mill was invented, so far as he knew, by the Etruscans of Volsci. Whether we have to think of an origin much further east will appear in what follows.

Fig. 443. Rotary mills. Left, the hand-quern or manually operated rotary mill. Right, the Pompeian mill, an animal-powered rotary mill with large hopper.

2. **References**

1. *Pliny, Nat. Hist. xxxv, xxvii, 125; Cato, De Re Rust. x, 4, etc.*
2. *Perhaps because of the ear-like handles with which the thing was grasped, perhaps because of a parallel analogy. As a parallel from later technology Moritz cites the term 'donkey-engine', which he expects may give trouble to future historians. We have met with a similar confusion in China already (Vol. 3, p. 317). Instances: Xenophon, *Anab. i, v, 1; Herodas, vi, 83, et al.*
3. *Curwen (3); Childe (9).*
4. *These were the hand-mills of Xenophon, *Cyrop. 71, b, 31, m] querns.*
5. *Because so many examples have been found at Olynthus, therefore prior to -348.*
6. *De Re Rust. x, 4 and xi, 4.*
8. *On the evidence available Moritz has still to leave open the question as to the priority of hand- or animal-mills, but though it may be argued that the former were an adaptation of the latter to meet the needs of troops and travellers, so great an invention of the usual passage in technological evolution from the simple to the complex and from the small to the large will take a lot of proving. We shall return to the question shortly (p. 192 below).*

*We know only because of a quotation in Pliny, *Nat. Hist. xxxvii, 115. Bailey (1), vol. 2, p. 119, unusually for him, misses the sense doubly in translating it. The view of Curwen (3) that the
There were two words in Chinese for the rotary mill, *mo* (alternatively *mo*), and *lung*, depending on the material of which it was made. An ancient dialect word, *chhui*, comprised all these indifferently, and yet another term, *wei*, acquired an even broader significance in that it could include edge-runner mills and roller-mills. The rationale of Chinese eotechnic grinding machinery may be followed not only in original sources but in a number of useful modern studies. The *lung* was essentially for hulling grain and especially for decorti­cating rice, but the remarkable thing about it was that the Chinese made it from sun­dried or baked clay (*thu lung*) or wood (*mu lung*). When clay was used it was customary to fix teeth of oak and bamboo into the mill-stones' while still damp (Fig. 445), to act in the same way as grooves incised in stone. The *mo* on the other hand was essentially a stone grist-mill, for comminuting husked grain, rice or naked wheat, to flour (see Figs. 444, 446). In all these various types the clearance was adjusted by the height of the central pin bearing. Rotary mills are illustrated frequently in the Chinese agricultural books, and usually shown equipped with a connecting-rod attached to the crank-handle of such length that it could easily be pushed and pulled by several men (cf. Fig. 413). This tradition of hand-labour inspired the relevant poem of Lou Shou in his *Keng Chih Thu*:

Shoulder to shoulder the farmers push and pull,
Setting the mill in motion with its grinding teeth,
Making a noise like thunder in the spring.
As the mill turns the grains fly whirling down,
Falling in heaps like mountains and rivers,
Facing each other like high hills.
They began with a tou of grain
But soon, soon there is plenty to gladden their eyes.

Rotary mills were one of the great Greek contributions to civilisation is now quite untenable and the conclusion of Moritz (1), p. 116, that it was invented in some part of the western Mediterranean basin, depended on excluding East Asian evidence from survey. Volubilis had fallen to the Romans in -280.

Fig. 444. Typical Chinese rural hand-quern.

PLATE CLXVIII

Fig. 445. Chinese rotary mills; the lung, of baked clay or wood, used for hulling grain and decorticating rice. The lower disc or bed-stone is here in process of manufacture. Clay soil is beaten down into the wickerwork form as in *terre pisé* construction (cf. Sect. 48) and the teeth of bamboo (smoked oak for the upper disc), as well as the central pin, are set in place before the drying. Fu-chhou, Chiangsi (Hommel, 1).
All such uses were current from the beginning of the Sung.\(^4\) The real problem is what was happening at the beginning of the Han.

It is first of all clear that words implying rotary mills do not occur before the Chhin and Han, though some of them were already in use as verbs with the sense of grinding, smoothing and polishing.\(^b\) This at once suggests that variants of the pestle and mortar were the only grain-handling instruments in use in the Chou and that the rotary mill appeared at the beginning of the — 2nd century. At this time in China, curiously also, there is a somewhat imperfect concordance between the literary and the archaeological evidence similar to that which we have encountered in the development of rotary milling in Rome. The point at issue is whether we can feel assured of the existence of rotary mills in the Early Han period. ‘Pairs of mills’ (wei i ho)\(^e\) are mentioned a number of times in the bamboo-slip documents of the Han which have been published by Lao Kan \(^5\), and although few can be exactly dated the whole series runs from — 102 to + 93. Particularly interesting is the reference to rotary mills in the Shih Pên \(^e\) (Book of Origins),\(^d\) a text which must certainly be at least as old as the — 2nd century for Ssuma Chhien used it as one of his most important sources in planning and writing the Shih Chi (finished in — 90).\(^d\) It contains imperial genealogies,\(^b\) explanations of the origin of clan names, and statements regarding inventors legendary and otherwise. What it says is that ‘Kungshu (Phan)\(^a\) invented the stone (rotary) mill (shih jee)\(^a\).’ The Thu Shu Chi Chheng \(^g\) encyclopaedia\(^g\) glosses this in a commentary taken partly from the Shih Wu Chi Yuan\(^b\) of + 1085:

He made a plaiting of bamboo which he filled with clay (ni)\(^b\), to decorticate grain and produce hulled rice; this was called nui\(^b\) (actually lung\(^b\)). He also chiselled out stones which he placed one on top of the other, to grind hulled rice and wheat to produce flour; this was called mo.\(^b\) Both originated in the Chou time.

Kungshu Phan is an old friend of ours \(p. 43\) and cannot be written off as legendary; he was a famous artisan of the State of Lu, associated with automata and poliorcetics, whose floruit must have been within the period — 470 to — 380. While Laufer \(3\) thought him much too late for the invention of rotary milling, our hesitations are just

\(^a\) This is clear not only from the agricultural encyclopaedias but also from other important sources such as the passage in the Shih Wu Chi Yuan which will now be quoted.
\(^b\) For example, some have thought to find an ancient reference to the lung in a passage of the Kuo Yu, ch. 14 (Chu Yu, ch. 8), p. 122: ‘Wen, prince of Chao, built a palace, causing the beams and rafters to be cut and polished (lung?)’— not ‘supported on pillar-bases like lung’.
\(^c\) Cf. Vol. I, pp. 74ff. The text was edited by Sung Chung\(^a\) in the — 2nd century.
\(^e\) The information which it gave has been strikingly vindicated by the modern archaeology of the Shang and Chou; cf. Vol. I, p. 88.
\(^f\) The statement was preserved by a quotation in Hou Han Shu, ch. 89, p. 23b. See Chang Shu’s edition of the Shih Pên, ch. 1, p. 24, Sun Feng-I’s ed., p. 3 and Lei Hsieh-Chhi’s ed., ch. 2 (p. 87). The interpretation of this very early use of the term not as specifically rotary is all the more justified since the hopper-rubber and even the saddle-quem itself seem to have been quite absent from Chinese culture.
\(^g\) Khao Kung Tien, ch. 245, ma sui hai kiao, p. 14a; tr. supt. adv. Laufer (3), p. 21.
we have abundant examples of rotary mills with double hoppers from Han tombs in the form of models (Figs. 447, 414), sometimes alone and sometimes associated with till-hoppers and other farm equipment. Although only those specimens from Later Han tombs can as yet be exactly dated, there are far too many of them to warrant the view that none are earlier than the +1st century, and Chinese archaeologists do not hesitate to assign them dates as far back as the Chhin. We thus reach the conclusion that everything points to the first half of the -2nd century as the period when rotary mills were in general use—and therefore that what was familiar to Cato and Varro was also familiar to Chihs Tsho and Chao Kuo at the other end of the Old World.

We thus have to face a difficult question, diffusion or simultaneous invention? Nor will this be the last time, for we shall soon see (p. 407) that a very strong case can be made out for an approximately simultaneous appearance of the water-mill itself at the two extremes of East and West. It is a good deal easier, however, to visualise such changes in power source as independent developments, than to accept two quite separate origins for so basic an invention as rotary milling itself—comparable as we must feel it to be with such cultural elements as bronze-founding, the wheel, or cereal agriculture, for which no one has been willing to admit independent beginnings. Forcibly putting this point, but hesitating between Etruscan and Iberian, Moritz retains a suspicion 'that there was a common origin about which we still know nothing'. The dilemma is even more acute as between Chinese and Europeans. We are therefore driven once again to look for some geographically intermediate locality such as Persia or Mesopotamia, whence the fundamental discovery could have spread in both directions.

Now an exception to what was said above about con-cavity and convexity is constituted by the so-called 'pot querns' (Fig. 448), in which the upper stone revolves within the collar of a hollowed cylindrical lower stone. This design was common enough during the European Middle Ages, though it seems uncertain whether primarily for grinding grain. It was never a Chinese type, but some of the examples from the Middle East may be very ancient; and though certain forms of these are now accepted as the lower bearings of potter's wheels, others may well have been used (as one of their names assumes) for grinding paints, and the existence of larger grain-grinding ones of similar pattern may perhaps be inferred from them. Moreover, these are not the only objects which make a claim to be millstones of high antiquity in the central region; there are querns from Urartu in the neighbourhood of Lake Van, now in the Tiflis Museum, which if not as old as their -8th- or -7th-century attribution, might well be old enough to serve as the archetypes for both the Chinese and the Roman mills. At any rate they call for further investigation.

Here a hitherto unsuggested possibility presents itself. Is it not possible that the Chinese system of making hulling-mills of baked clay, stoneware or wood might have derived from still earlier precedents somewhere in or near the Fertile Crescent or the Indus valley? In this case all evidences of rotary mills in the West, as in China, earlier than the -2nd or -3rd century may well have perished. If only those which were made of durable stone are sought, as it were, by the beam of our archaeological torch, their predecessors might have remained for ever in darkness if the particular agricultural needs of the Chinese had not induced them to continue through the ages this interesting method, assuredly cheap, but also perhaps very ancient. And doubtless the probable locality of these predecessors was neither Etruria nor Spain nor China, but somewhere in the Middle East. Indeed it is not inconceivable that only
the baked clay mills spread, and that stone ones were independently developed both by Kungshu Phan and the Volksinians.

Let us turn now to the application to milling of sources of power other than the muscular strength of man. Here one always feels an inclination to visualise a fixed succession, animal-power coming first, then water-power and eventually wind followed by steam and electricity. But it looks as though any logical scheme of this kind is only partially visible as a real historical sequence, at any rate in the earlier stages, and we may think of it best as a framework for the presentation of facts. The first and simplest amplification of milling machinery would be the mechanical advantage derived from fitting millstones with gearing, human labour remaining the motive power. This happened quite early in Europe, if one may judge from certain remains which have been discovered at the Saalburg, that Roman fortress on the limes in South Germany, including two iron shafts 31\(\frac{1}{4}\) in. long and bearing at one end pin-drums (cf. Fig. 192) with wooden discs and 'teeth' in the form of iron bars. These lantern gear-wheels were undoubtedly intended for the working of mills by right-angled gearing, and as the location precludes a water-mill, human or animal-power was their drive. The date is settled more or less by the fact that the fortress was abandoned about +263. That such an arrangement was not a primary invention is shown by the fact that the right-angled gearing repeats exactly the pattern of the Vitruvian water-mill of about -25, and must almost certainly derive from it. All through the subsequent medieval centuries this manual mill continued to be used, forming indeed a motif in religious art where the four evangelists pour the grain into the hopper, saints man the crank-handles, and bishops receive the issuing hosts in chalice and paten. Geared hand-mills were a sort of \textit{pons aequorium} for the 15th-century German engineers, but in China we find them not until modern times, when they have proved useful in the countryside.

The history of the use of gearing with rotary mills and the history of animal-power for them are intimately connected. From what has already been said we know that in the West mills turned by donkeys go back to the very beginning of firm information about rotary mills themselves, for they date from Cato's time (c. -160). They take precedence over water-mills, therefore, by about a century. As we have seen, too, there is even a tendency to place them earlier than querns and hand-mills. In China, on the other hand, an inversion of the logical order occurs later and seems better established. There water-mills appear to have come first, for while we can find them already at a high state of perfection in +31 (cf. p. 370 below), we get no mention of animal-driven mills before about +175, when Hsi Ching,\(^1\) afterwards an important official, failed to get any post when young and made his living out of mills turned by horses (\textit{mo mo}).\(^2\) Chu \(^1\) missed this reference when he wrote about +1200 that the poet Yuan Shu\(^4\) (+408 to +453) mentioned donkey-mills in one of his compositions in the Liu Sung period, but still the implication was that water-mills had started long before.\(^5\) In the Thang it was customary to use blindfolded mules (\textit{mang lo}).\(^6\) Further evidence for the historical inversion of water-power and animal-power from their logical sequence might be drawn from the curious circumstance that in Wang Chen's time (+1313), and certainly at later periods also, mills driven by animals were not.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig449.png}
\caption{Ox-driven cereal-grinding mill (mo), from \textit{Thien Kung Khai Wu}, ch. 4. p. 132 (+1657).}
\end{figure}

\footnotesize
\begin{itemize}
 \item a An ideal scheme of this kind is set forth at length by Forbes (11), pp. 78ff.
 \item b Illustration in Moritz (1), pl. 14c.
 \item c See Jacobs (1), who experimented successfully with a reconstructed mill of this kind, and Moritz (1), pp. 123ff.
 \item d Material on these mills and pictures has been collected by Nolthenius (1). The manual mill was called in England the Essex mill. I can add a fine example in the Folklore Museum at South Kensington, where the four evangelists pour the grain into the hopper, saints man the crank-handles, and bishops receive the issuing hosts in chalice and paten. Geared hand-mills were a sort of \textit{pons aequorium} for the 15th-century German engineers, but in China we find them not until modern times, when they have proved useful in the countryside.
 \item e Cf. Berthelot (4, 5, 6) and Beck (1), pp. 275ff., 277ff.
 \item f Drawings of manual mills, generally combined with four-alters, and sometimes incorporating driving-belts as well as gearing, or instead of it, will be found in Anon. (6) (4), pt. 5, nos. 15, 42, 50, etc.
 \item g It is quite strange that neither Clark (1) nor the members of the Newcomen Society who discussed his paper knew of any animal-driven mills with or without gearing before Agricola in the mid +16th century. This kind of machinery survived in Europe until the beginning of the 19th century (Matschoss, 1), and in Arab lands, as in China, until the present time (Brunot, 1). See also Atkinson (1).
 \item h Sam Koos Chah, ch. 38, p. 14a.
 \item i I Chao Liao Tso Chi, ch. 2, p. 49b.
 \item j Thai-Phing Khuong Chi, ch. 43b, entry under \textit{thui mo lo}.
 \item k 警
 \item l 質
 \item m 朱至
 \item n 本
 \item o 遠
 \item p 彼
\end{itemize}

called 'dry water-mills' (han shui mo). In +1360 we read of the mills of the imperial palace that they were located in the upper storey of a special building, with the plodding donkeys and the gossiping loafers below; this mill-house had been built by an ingenious artisan named Chhii. The same plan, with the addition of mechanised flour-sifters, is now widely found in Chinese rural areas. In the agricultural treatises of the great tradition we find animal-power or by means of a driving-belt (Fig. 450), it will doubtless last until rural electrification takes over.

In a moment we shall see that another early inventor applied the same idea to edge-runner mills. Meanwhile we reproduce the classical picture of a geared animal-driven milling plant (Fig. 451). It is interesting to compare it with similar treadle-driven systems still used in China on co-operative farms.

Reference has already been made to the use of wheel-like objects and rollers for grinding and milling purposes. The simplest is the longitudinal-travel edge-runner mill (yen nien; Fig. 452), still commonly used in China, especially by pharmacists and metallurgists, but little known in Europe. Sometimes it is worked by the feet. It would be tempting to regard this as derived directly from the saddle-quern, if the more developed forms of this ancient instrument were known from Shang and Chou China. It might also be thought of in relation to the vertical rotary grindstone turned by a crank, if this had ever been characteristic of Chinese technique (cf. p. 124). That it was not so is rather surprising in view of the early appearance there of the rotary disc-knife for jade-cutting—a technique which goes back at least to the 13th to 3rd century BC. Here doubtless the name of a real inventor has been preserved for us, but he may not have been quite the first, for some sources attribute this design to Tu Yu in a preceding generation (+222 to +284). Whether these multiple mills began in connection with water-power or animal-power is thus not sure, but the 'Eight Mills' tended in later times to become synonymous with multiple installations driven by water-power (lien chi shui wei). In a moment we shall see that another early inventor applied the same idea to edge-runner mills. Meanwhile we reproduce the classical picture of a geared animal-driven milling plant (Fig. 451). It is interesting to compare it with similar treadle-driven systems still used in China on co-operative farms.

Reference has already been made to the use of wheel-like objects and rollers for grinding and milling purposes. The simplest is the longitudinal-travel edge-runner mill (yen nien; Fig. 452), still commonly used in China, especially by pharmacists and metallurgists, but little known in Europe. Sometimes it is worked by the feet. It would be tempting to regard this as derived directly from the saddle-quern, if the more developed forms of this ancient instrument were known from Shang and Chou China. It might also be thought of in relation to the vertical rotary grindstone turned by a crank, if this had ever been characteristic of Chinese technique (cf. p. 55 above). That it was not so is rather surprising in view of the early appearance there of the rotary disc-knife for jade-cutting—a technique which goes back at least to the beginning of the Han and perhaps to the beginning of the Chou (-13th to -11th century BC).
Fig. 451. Geared animal-driven milling-plant (zi mo), with eight mills worked directly by the central whim wheel; from Nang Sheo, ch. 16, p. 12a (+ 1313). Cf. Fig. 622.

Fig. 452. Longitudinal-travel edge-runner mill (yen nien), here grinding cinnabar for vermilion (chu), and mainly used in the mineral and pharmaceutical industries; from Thien Kung Chai Wu, ch. 16, p. 5a (+1637). The trough is labelled as being of iron. Purifying by decantation in the foreground.
Fig. 453. Rotary double edge-runner mill (shih nien), for millet, kaoliang, hemp, etc.; from *Thien Kung Khat Wu*, ch. 4, p. 144 (+ 1637). The trailer, for sweeping back the grain into the annular trough, is the only part not shown in the oldest picture of the same device, *Nung Shu*, ch. 16, p. 76 (+ 1313).

Fig. 454. Rotary bogie-wheel edge-runner mill in Hupei.
27. MECHANICAL ENGINEERING 199

Yet in this rotary tool, developed for an industry peculiarly Chinese, we may perhaps recognize the ancestor of all China's edge-runner mills.

A transition exactly analogous to that from grain-rubber to quern took place when the edge-runner wheel was made to revolve in a circular path or trough. This type of mill, the *ien*, is not often illustrated with a single wheel in the Chinese books (cf. Table 56), and the oldest picture which we have of it shows two wheels diametrically opposite each other (Fig. 453). Probably the commonest contemporary variant is that in which the two wheels are arranged bogie-fashion, one immediately behind the other (Fig. 454). The distinction between wheels and rollers is of course not sharp, and the roller-mill (kan *ien* or *Hai-chhing nien*), where a circular path is described, may have been a development from the roller harrow. This apparatus, called variously *shi thu* or *lu tu* (with several alternatives for *lu*), if or if furnished with teeth *shih ho tsê* or *mu ho tsê*, is ancient in China, and there is evidence that the roller harrows of 18th-century Europe were directly derived from it. Such rollers, if used for threshing, would have given rise very naturally to roller-mills since they would be driven round and round the threshing-floor in a circle. The simple hand-roller (Fig. 455) has always been used mainly for millet in China, but the roller-mill (which often carries a hopper at the opposite side of the beam) is used as a method of hulling rice alternative to the *lung*. We give the Nung Shu illustration of about +1200 (Fig. 456).

What of the antiquity of these forms of milling in China? Kao Chheng, in the Sung, thought that the roller-mill began with Tshui Liang about 400, but he was certainly mistaken, since the passage in the Wei Shu which he cited (we quote it later, p. 403) refers to the application of water-power to multiple edge-runner mills and roller-mills, and not to their invention. They were undoubtedly familiar in the Han, since they are defined in the Thung Su Wen of Fu Chhien about 180. Whether or not they go back, like the rotary grain-mill, to the beginning of the Han, it is hard to say. But there is more than meets the eye in the apparently simple edge-runner mill.

a See Vol. 3, p. 667.
b An example of this kind was photographed, however, by Hommel (i), fig. 133.
c Cf. Hommel (i), p. 98.
d Engineering drawings are given by Than Tan-Chhiung (i), pp. 179, 230, for china-clay and oil-seed respectively.
e Nung Shu, ch. 16, p. 9a.
f Ibid. ch. 12, pp. 14a, 15a.
g Ibid. ch. 12, pp. 16a, b, 17a.
h See Leter (i), pp. 451, 56a ff. (a), p. 448. We shall discuss the matter fully in Sect. 41 below.
i Chinese agricultural books generally depict the use of the flail rather than the threshing-sledge of occidental antiquity (cf. Curwen (6), p. 99). The classical description of the sledge (triclinum) is in Varro (De Re Rust. 1, iii, but he speaks also of the 'Punic cart', a toothed axle running on low wheels, which seems to have fallen out of use in Europe early. See also Feldhaus (i), col. 222.
j Cf. Hommel (i), fig. 149.
k Shih Wu Chi Yum, ch. 9, p. 4a.
l TPYL, ch. 76a, p. 8a, gathered into YHSF, ch. 61, p. 23a.
m Ibid. p. 314.
Fig. 455. Hand-roller (hsiao nien) worked by two girls; from Thien Kung Khi Wu, ch. 4, p. 136 (+1677). The legend on the pedestal says that this instrument is used for ordinary, panicled and glutinous millet as well as kaoliang.

Fig. 456. Animal-driven roller-mill with hopper and road-wheel (hsue nien); from Nung Shu, ch. 16, p. 88 (+1313). Note collar-harness and traces.
model for the most archaic of the Chinese cosmological theories, in which case it would have existed at least as early as the Warring States period. Moreover, if the diametric double-wheel type (Fig. 453 above) came into use in the Chhin or Early Han, it might have provided a conceptual model for the idling wheels in the differential gear of the south-pointing carriage from Chang Heng’s time onwards.a We have at least proof of the existence of this type in the Thang because of the entertaining story of a particularly strong-armed artisan named Chang Fên, who worked for Buddhist monks around +855 and could stop a double-wheeled water-powered edge-runner mill (shuang ban shui xei) unaided.b Amano (2) brings evidence to show that at this time and later the term xei was more and more applied to edge-runner and roller-mills as distinguished from rotating millstones.

Comparison with Europe is made a little difficult because of the existence of another puzzle there, namely the unexpectedly early appearance of forms of rotary mill much more complicated than the rotary quern or the Pompeian grain-mill. It seems that the rather special needs of the olive crop so characteristic of Mediterranean lands generated there a highly complex combination of edge-runner mill and quern as early as the Greek - 5th century.c This was the trapetum, designed to separate the stones from the fruit without crushing them as well, after which the oil was expelled from the pulp by pressing. As Fig. 457 shows, it consisted of two hemispherical stones (orbit) revolving on a transverse beam (the cupa) which itself rotated on an iron pivot (columella) fixed in a central pillar (millarium) of the concave mill-trough (the mortarium). The meticulous studies of Drachmann (7) and Hörle (1) have elucidated the advanced character of the components, such as the iron bearings (fistula ferrea, imbrici), collar (cunica) and washers (armillae), which this machine, with its accurate control of clearance, necessitated. At a comparable period in China probably only the crafts of the wheelwrights, vehicle-builders, and jade-workers would have equalled this.

The other Greek and Roman olive-mill (mola olearia) was simpler, though the classical description of it is later, c. +50; it consisted of one or two rather narrow rollers or edge-runner wheels describing a travel circle of very small diameter in a trough (Fig. 458). Here the crushing occurred only underneath and not at the sides of the grinding components. Still simpler was the longitudinal trough (canalis) in which a millstone (solea) set on end was rolled back and forth with its axle gudgeons moving on the walls of the container.d This was the only European analogue of the Chinese longitudinal-travel edge-runner mill. Yet another way, the crudest, of crushing olives was to use a tooted board (tudicula) something like the threshing-sledge (tribulum).e This is interesting because it connects again the technique of threshing and milling.

In post-classical times the trapetum seems to have died out completely in Europe, though it has an analogue, the origin of which is quite unknown, in the oil-mills of India, which consist of a deep annular trough (like the mortarium) in which a pestle-shaped crushecr is carried round by an animal pulling a radial bar (like the cupa).f The longitudinal trough was also forgotten, surviving only in local uses.g On the other hand the mola olearia presumably gave rise in Europe to edge-runner and roller mills of the ordinary type with larger travel circles, and these seem to have been used for many purposes in Europe during and after the Middle Ages.h To determine how like these were to the Chinese edge-runner and roller mills would require a special investigation, but in the meantime one can at least say that when edge-runners appear in the Renaissance engineering books they are of quite Chinese type. Agricola figures

*a Columnella, De Re Rust., ii., l., 6, 7, who preferred it to the trapetum. See Drachmann (7), pp. 41 ff., 143; Baroja (5).
*b Columnella, loc. cit., cf. Hörle (1), who noted that Verantius pictured such a mill in +1616 (pl. 24), but by that time Chinese influence might have been at work. Cf. Feldhaus (a3).
*c Crawford (1).
*d See Feldhaus (1), col. 719.
*e Hörle (1) thinks that one can find it, in somewhat crumpled form, in the cider-apple mills of Tausn and Oberwald.
*f According to Gill (5), p. 116, (7), p. 7, such mills were, and are, traditionally used for olives in Provence and North Africa, for cider-apples and poppy-seed oil in Normandy, for grapes in the Palestine, and for mustard in the Forez hills west of Lyons. So also wind-driven oil-mills in England (Waltes (3), pl. 10).

IF. 457. The trapetum, an olive-crushing mill, characteristic of classical Greece (after Drachmann, 7).
none, but Zonca (+1621) and Böckler (+1662) have them. Since the common European name for this type of mill is the 'gunpowder mill' the possibility presents itself that its Western forms may not all derive directly from the Roman mola alearia but rather from Chinese influence exerted in the early +14th century at the time of the westward transmission of gunpowder technology. Indeed Zonca shows them being used for this purpose. Further research on the subject would be valuable. As for the ultimate origin of the Chinese edge-runner and roller-mills it seems highly unlikely that they could have derived from a more complex device developed at the other end of the Old World for an industry quite foreign to East Asia, and spontaneous evolution from threshing and harrowing operations, or from the rotary disc-knife used in jade-working, is much more probable.

Though the terminology is not good, the roller-mill must be distinguished from the rolling-mill. While the former consists of one or more rollers travelling continuously in a circular path, the latter utilises the compressing and shearing properties of two rollers adjacent to each other turning in opposite directions. The oldest representatives of these mills, which became so important in the palaeotechnic age of iron for fashioning metal bars and strips, are certainly the cotton-gin (chiao ch'i) and the sugar-mill (yu ch'i), about which some remarks have already been made (p. 92 and p. 122 above). Neither are likely to have been Chinese in origin, since both the cotton-plant and the sugar-cane are essentially indigenous to South Asia. The chief difference between the two mills is that the gin is always mounted so as to rotate vertically, while the sugar-cane mill generally moves horizontally. The gin cannot have been used in China more than a few centuries before its first illustration in the Nung Shu (Fig. 419), and the sugar-mill is not illustrated till the Thien Kung Khai Wu (Fig. 459). From this it is not clear how the two rollers engage, but in fact the traditional machine always has sturdy gear-teeth on the rollers themselves, as may be seen from the engineering drawings given by Than Tan-Chhiung.

Fig. 459. Animal-driven rolling-mill for expressing the juice of the sugar-cane (yu ch'i); from Thien Kung Khai Wu, ch. 6, pp. 6b, 7a (+1637). The feeding-hole is here called the 'duck-bill', and the main shaft the 'upstanding bamboo-shoot'. Cane has to be fed through thrice.

(ii) Sifting and pressing

It only remains now to say a few words about the techniques of sifting and pressing. For sifting powders or bolting flour a treadle-operated machine with rocking motion has long been in use in China. In Fig. 460 the old farmer is seen throwing his weight from side to side of the oscillating axis. Though we have not found any illustration of the treadle machine (mien lo) before the +17th century (the picture comes from the Thien Kung Khai Wu), the Nung Shu of +1513 already describes a system of coupling such oscillating sifters to water-wheels (shai chi mien lo or shai ta lo') with a conversion of rotary to longitudi-
tridinal motion exactly similar (Fig. 461)\(^a\) to that of the hydraulic metallurgical blowers which we shall presently study in detail.\(^b\) The box-sifter must therefore certainly be of the Sung, and is in all probability much older, but its history remains for further study. Nowadays automatic sifters are incorporated in most of the designs for milling machinery used on the co-operative farms of the Chinese countryside.\(^c\)

The comparative study of pressing plant in East and West presents problems of some interest in the history of technology not hitherto investigated. It happens that in this field we are particularly well informed about the chronological development of presses for those industries of oil and wine which were so characteristic of the Mediterranean region. We may therefore conveniently proceed from the known to the unknown, first discussing the Western methods and then comparing them with the typical presses (sha\(^d\)) of Chinese culture.

The basic Hellenistic texts\(^d\) have revealed in the hands of modern scholars\(^e\) a great deal of information about the successive machines used in Greece and Roman Italy. With the aid of the diagrams in Fig. 462 we may summarise them in Table 57. Thus after the 1st century the large presses for olive pulp and grapes were equipped with screw mechanisms rather than the winding gear and weights which had before been used. Although the wedge-press was known, ancient authors do not describe it, and it seems to have been used rather for the preparation of pharmaceutical products, essential oils, cloth and papyrus.

The Chinese pattern was quite different from this. In China the most important type of press has probably always been one which uses wedges driven home vertically or horizontally with hammers\(^f\) or a suspended battering-ram (cf. Fig. 463).\(^g\) This it is at any rate which is described in the Nung Shu\(^h\) at the beginning of the +14th century. But while the relatively small upright wedge-presses of Europe were constructed of a framework of beams, the Chinese horizontal oil-presses, used for obtaining the large variety of vegetable oils characteristic of that culture (e.g. soya-bean oil, sesame-seed oil, rape-seed oil, hemp oil, peanut oil), were (and are) contrived from great tree-trunks slotted and hollowed out. In these is placed the material to be pressed, made into discs ringed with bamboo rope and bound with straw (cf. Fig. 462, 4b); then the blocks are placed in position and the pressure increased from time to time by the wedges. This method takes advantage of the high tensile strength of the

\(^a\) We illustrate the best of the traditional drawings from Shou Shih Thung Khun, ch. 40, p. 31a.

\(^b\) Pp. 769ff. below.

\(^c\) Anon. (18).

\(^d\) Cato, De Re Rust. XII, XIII, XVIII and esp. XIX; Vitruvius, De Arch. VI, VI, 3; Heron, Mechanica, 111, xiii ff.; Pliny, Nat. Hist. XVII, lixiv, 317. The dating of the inventions depends largely on the passage in Pliny.

\(^e\) Formerly Blümner (1), vol. 1, pp. 337 ff.; Usher (1), 1st ed. pp. 786 ff., and ed. pp. 125 ff. etc. The monograph of Drachmann (9) now supersedes all other treatments, and though Forbes (12), pp. 121 ff., considers a wider range of material he does so less critically. Indeed, without the help of Drachmann his account is barely comprehensible.

\(^f\) In some descriptions a tilt-hammer arrangement was incorporated.

\(^g\) See Hommel (1), pp. 87 ff. Detailed working drawings are given by Than Tan-Chhiung (1), pp. 231 ff. I have had many opportunities of studying this rustic but effective type of press while in China. An example of a similar form is in the Folklore Museum at Iaşi, Rumania.

\(^h\) Ch. 16, pp. 136, 144 ff.
Fig. 461. Hydraulic sifting or bolting machine (shui ta lo), constructed on the same principles as the metallurgical blowing-engines (cf. Figs. 602 ff. below). From Shou Shih Thung Kaoh, ch. 40, p. 31a (+1742).

Table 57. Types of pressing machines used in Greece and Roman Italy

<table>
<thead>
<tr>
<th>Type</th>
<th>Description of toculum</th>
<th>Sources</th>
<th>Dating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Indirect lever beam press with windlass and handspikes to lower beam (the 'Catonic' press)</td>
<td>Cato (-160), Vitruv. (-25), Pliny (+77)</td>
<td>Already old in the 2nd century perhaps also very old</td>
</tr>
<tr>
<td>1b</td>
<td>Indirect lever beam press with tackle, windlass and handspikes raising weight from beam (the 'Heronic' press)</td>
<td>Heron (+60)</td>
<td>Invented c. +50</td>
</tr>
<tr>
<td>2a</td>
<td>Indirect lever beam press with fixed screw and nut to lower beam</td>
<td>Vitruv. (-25), Heron (+60), Pliny (+77)</td>
<td>Invented c. -30</td>
</tr>
<tr>
<td>2b</td>
<td>Indirect lever beam press with rising screw raising weight to hang from beam (the 'Greek' press)</td>
<td>Heron (+60), Pliny (+77)</td>
<td>Perhaps also the 1st century</td>
</tr>
<tr>
<td>2c</td>
<td>Indirect lever beam press with descending screw swallowed in weight and raising it to hang from beam</td>
<td>Heron (+60)</td>
<td>Invented c. +55</td>
</tr>
<tr>
<td>3a</td>
<td>Direct press with single screw</td>
<td>Heron (+60)</td>
<td>In use c. +50</td>
</tr>
<tr>
<td>3b</td>
<td>Direct press with twin screws</td>
<td>Heron (+60)</td>
<td>No lit. sources, Pompeian frescoes</td>
</tr>
<tr>
<td>4a</td>
<td>Wedge press</td>
<td>Heron (+60)</td>
<td>Pompeian frescoes</td>
</tr>
</tbody>
</table>

Natural wood. It would seem to be ancient, indigenous, and without many parallels in the West.

Indirect lever beam presses were also much used in traditional Chinese technology. One of these, a rope-clutch press common in the paper and tobacco industries (Fig. 464), is closely similar to type 1a in Table 57 and Fig. 462. It differs, however, in having a simple but ingenious disposition of the ropes so that besides hauling down the press beam they act as a brake upon the windlass, thus rendering any pawl and ratchet unnecessary. Again this has all the characteristics of an ancient design. The other main type of Chinese indirect lever beam press is distinctly different from any European form (see Fig. 462, 1c). Since this is used in a typically Chinese industry, the pressing of soya-bean curd, it is unlikely to have been an importation. Here a weight of stone or iron is used, as in type 1b, but instead of being raised by tackle and windlass it is made to depress a lever connected with the beam by an adjustable link-work arrangement, so that when a certain amount of pressure has been applied the weight may be raised and the perforated ratchet-bar re-set so as to continue the pressure as the curd...

* See Drachmann (7), pp. 55, 145.
* Loc. cit. pp. 64, 67, 151. This may have developed from one of the oldest forms of all, simply heavy stones tied to the end of the beam.
* Loc. cit. pp. 77, 156.
* Loc. cit. p. 32.
* See Saxl (2), vol. 2, p. 171b.
* See Hommel (1), pp. 107ff.; photographs in figs. 164 and 165.
Fig. 462. The principal types of pressing plant; table and descriptions in the text.

decreases in bulk owing to expulsion of water. This solution accords with the prominence of linkwork in Chinese eotechnic engineering.a

Unfortunately, no studies have been made of the history of these devices.b A transmission of the lever beam press to China, perhaps by means of the visits of Roman Syrian merchants,c has sometimes been surmised, but there is no evidence for it, and if what we have seen of grain-milling is any criterion, it may perhaps be predicted that we shall find the presses to have been parallel and probably simultaneous developments deriving from the primitive use of heavy stones to weight the end of a beam, or

a Cf. pp. 69ff. above, and the linkwork escapement of the earliest mechanical clocks, p. 460 below.
b It is curious that the agricultural encyclopaedias do not illustrate any form of the indirect lever beam press, but that may perhaps be because it was used primarily in certain special trades which came outside their range. On the economic history of oil-pressing a little is known. It seems to have been an important source of income for Buddhist abbeys; cf. Garnet (1); Twitchett (3); Reischauer (2), pp. 71, 218.
wedges to tighten discrete objects. The outstanding difference between the two ends of the Old World was the absence of screw-presses from China, but this is only another manifestation of the fact that this basic mechanism was foreign to that culture.

(3) PALAEO-TECHNIC MACHINERY; JESUIT NOVELTY AND REDUNDANCE

So far we have been dealing with machines which were unquestionably and traditionally Chinese. But, as we saw, the palaeotechnic age of coal and iron exerted its first influence on Chinese technology in three engineering books produced in the early years of the 17th century, either by Jesuits or under their influence. These were the *Thai Hua Shui Fa* (Hydraulic Machinery of the West) of +1612, the *Chi Chi Thu Shuo* (Diagrams and Explanations of Wonderful Machines) and the *Chi Chi Thu Shuo*, both of +1627. It is necessary to examine them with some care, since quite erroneous conclusions have been drawn as to the extent to which they brought to China real novelties in engineering practice.

A number of investigators have devoted their attention to the sources of these books. Working through certain technological illustrations in the *Thu Shu Chi Chheng* encyclopaedia of +1726, Horwitz noticed that some of them were simply reproductions, rather badly redrawn, as if by artists who did not well understand what they were depicting, of illustrations which he could identify in previous European books. Thus the drum-treadmill operated externally by three men had been copied from Faustus Verantius' *Machinae Novae* of +1615; the endless chain of baskets (bucket conveyor) had been taken from Jacques Besson's *Theatre des Instruments Mathématiques et Mécaniques* of +1578 (Figs. 465, 466); and the tower windmill working a chain-pump was obviously the same as that shown in Agostino Ramelli's *Diversi e Artificiali Machine* of +1588. But the Chinese encyclopaedia drawings omitted the worm drive of the upper sprocket-wheel of the conveyor, and reproduced the windmill very imperfectly. Later, Reismüller added a fourth identification. He showed that the drum-treadmill operating by means of a two-throw crankshaft two water-pumps with rings or eyes on the ends of their piston-rods (Fig. 467), was a very
Fig. 465. An endless-chain bucket-conveyor, as it appeared in the Chi chi Chi Thu Shuo of +1627 (ch. 3, p. 86). At the top: "The Eighth Diagram" (of the Weight Raising section).

Fig. 466. The endless-chain bucket-conveyor, from Besson's engineering treatise of +1578.
garbled drawing of a similar machine shown in Vittorio Zonca’s *Novo Teatro di Machine e Edificii* (+1607 and +1621); see Fig. 408. Finally Jäger added a number of other identifications.\

We are now in a position to say that we have practically all the identifications. Table 58 summarises the contents of the three books. From this it can be seen that a considerable number of the machines and devices which the Jesuits and their collaborators described were specifications which had only just been published in the West, from Cardan and Agricola in the middle of the +16th century, to Besson and Ramelli at its end, with Zonca and Zeising’s work only a year or two before the transmission to China took place. But there were also a number of machines which had been known for a long time previously in Europe, since they can be traced to +15th-century MSS. such as that of the Anonymous Hussite, Mariano Taccola, and others. One or two, such as the spring-suspended saw-mill, go back to the +13th century with Villard de Honnecourt. Finally, there were a few, such as the drum-treadmill and the anaphoric water-clock (see pp. 466ff. below), which were derived directly from Vitruvius—or indeed the Archimedian screws and the Ctesibian force-pumps, which dated still further back. Though specific attributions of the machines are not given, the introductory material has references to Agricola (Kêng-Thien), Simon Stevin (Hsi-Men), Ramelli (La-Mo-Lî), and others. Horwitz and Reismüller were uncertain as to the origin of the numerous mistakes in the Chinese drawings, but inspection of the *Chhi Chhi Thu Shuo* clearly shows that the errors were mostly already contained in the book as it left the hands of Johann Schreck and Wang Chêng.

Feldhaus (11, 12) understood that to be clear of European influence it would be necessary to analyse the content of the *San Tshai Thu Hui* encyclopedia of +1609. This, and more, has been done in Table 56. But the really relevant question is how far the ‘novelties’ of the Jesuits were new. Following the lead of Horwitz and Reismüller, Feldhaus affirmed that the pictures of paddle-wheel boats in the Great Encyclopaedia of +1726 were obviously copied from Western sources. But here came in error, for convincing literary evidence will soon be adduced (p. 417 below) establishing the use of treadmill-operated paddle-boats at least as far back as the +8th century in China. Moreover, the demonstration that a certain picture in one of the Jesuit books was directly copied from a Western work does not in itself prove that the idea was new for the Chinese, though it may have been so for the particular

* P. 110. Cf. Zeising (i), redrawn in Beck (i), fig. 550. The design was an ingenious way of avoiding the necessity for connecting-rods between crankshaft and piston-rods, but not of wide applicability on account of the extreme play. It is seen also in Zonca’s book, pp. 103, 107. It stems from di Giorgio (+1475).

* In particular, he showed that the systematic description of the principles of mechanics which occupies the first two chapters of the *Chhi Chi Thu Shuo* was taken from three books, the *Promotus Archimedia* of Marino Ghetaldi of Dubrovnik (+1603), the *Mechanicon Liber* of Guidobaldo (+1577), and the *Hypomnemata Mathematica* of Simon Stevin (+1586, +1605). But though Schreck had known Galileo well, there is no trace of modern dynamics in the book.

* They realised that the *Thu Shu Chi Chêng* had copied them from earlier books.

* TSSC, *Khao hung tien*, ch. 249, 45th ill.; from CCTS, ch. 3, p. 48b.

* TSSC, *Jung chêng tien*, ch. 97, 29th ill. We reproduce it in Fig. 633 below.
Fig. 467. A water-pump worked by a Hellenistic drum-treadmill, from the Chi Ch’i Thu Shuo of +1647 (ch. 3, p. 266). The drawing is so garbled as to be almost incomprehensible. At the top: "The Eighth Diagram" (of the Water Lifting section).

Fig. 468. The original from which the previous picture was taken, an illustration from Zonca’s engineering treatise of +1607. The machine is a drum-treadmill operating by means of a two-throw crankshaft two lift-pumps which have rings or eyes on their piston-rods. It appears first in the MSS. of Francesco di Giorgio, c. +1475; see Reti (3).
Table 58. Machines described and illustrated in the Chinese books produced under Jesuit influence

Note. The 16th-century books mentioned here will all be found in the bibliography, but if access to them is difficult, secondary sources which reproduce some of their illustrations have been given below with the following abbreviations: B (1), Beck (1); F (1), Feldhaus (1); F (2), Feldhaus (2); P (2), Parsons (2).

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Identification in previous European book</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Hsi Shui Fa (+1612)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Ctesibian force-pump</td>
<td>Ditto</td>
<td></td>
</tr>
<tr>
<td>(3) Suction lift-pump</td>
<td>Ditto</td>
<td></td>
</tr>
<tr>
<td>(4) Water tanks</td>
<td>Ditto</td>
<td></td>
</tr>
<tr>
<td>Chhi Chhi Thu Shuo (+1627). All pictures redrawn for TSCC, Khao hung tien, ch. 249. Chhi Chung section (Weight Raising)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 and 2) Steelyard principle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Windlass (with handspikes) as crane with three-legged derrick</td>
<td></td>
<td>Known in China from the 4th century onwards (see above, Vol. 4, pt. I, pp. 24 ff.).</td>
</tr>
<tr>
<td>(4) Windlass (with crank) as crane with four-legged derrick</td>
<td></td>
<td>Not illustrated in traditional Chinese books, but must have been known and used from Han onwards at least. Cf. Figs. 394, 395, 396.</td>
</tr>
<tr>
<td>(5) Capstan and pulley as crane with four-legged derrick</td>
<td></td>
<td>Seems to have been used in Sung. See Figs. 465, 466.</td>
</tr>
<tr>
<td>(6) As (4) but doubled</td>
<td></td>
<td>Cf. Schmithals & Klemm (1), pp. 1, 5; Klemm (1), p. 87. See Fig. 397.</td>
</tr>
<tr>
<td>(7) Capstan and driving-belt (using mechanical advantage) for crane</td>
<td></td>
<td>With regard to the use of the endless chains above, and the chain purchase here, the chain drives of Su Sung in the Sung (p. 111 above) should be remembered.</td>
</tr>
<tr>
<td>(8) Conveyor; an endless chain of baskets (ordinary crank seen in use, but worm gear shown)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Conveyor; an endless chain of boxes (ordinary crank turning the upper sprocket-wheel, as in 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Vitruvian drum-treadmill as crane with gearing (mechanical advantage) including pulley tackle, worm and two winches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) Capstan as crane drive, with gearing (mechanical advantage) including right-angle gear and one winch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yin Chung section (Weight Hauling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) Haulage over rollers by chain running over sprocket-wheel, operated by crank and right-angle gear (mechanical advantage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) Haulage over rollers by ropes; crank and worm moving four winches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustration</td>
<td>Identification in previous European book</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>(38) Treadmill with external steps, worked by three men, to drive two mills</td>
<td>Veranus (+1615), pl. 23</td>
<td>Horvitz (1)</td>
</tr>
<tr>
<td>(33) Horizontal windmill, carrying four square luffing sails at the ends of its arms, and driving two mills by gearing</td>
<td>Veranus (+1615), pl. 8</td>
<td>auct.</td>
</tr>
<tr>
<td>(34) Horizontal windmill, carrying four longitudinally streamlined sails and driving two mills by gearing</td>
<td>Veranus (+1615), pl. 9</td>
<td>auct.</td>
</tr>
<tr>
<td>(35) Horizontal windmill with square hinged sails attached beneath a ring</td>
<td>Veranus (+1615), pl. 10</td>
<td>auct.</td>
</tr>
<tr>
<td>(36) Horizontal windmill with square hinged sails attached above a ring</td>
<td>Veranus (+1615), pl. 12</td>
<td>auct.</td>
</tr>
<tr>
<td>(37) Horizontal Persian windmill consisting of large vanes in a square tower with side openings</td>
<td>Veranus (+1645), pl. 13</td>
<td>auct.</td>
</tr>
<tr>
<td>(38) Horizontal Persian windmill consisting of large vanes in a round tower with side openings</td>
<td>Veranus (+1645), pl. 14</td>
<td>auct.</td>
</tr>
<tr>
<td>(39) Mill actuated by crankshaft (single throw; man-power), with bob flywheel and right-angle gears</td>
<td>Anonymous Hutsch (+1470), F (1), col. 352</td>
<td>auct.</td>
</tr>
<tr>
<td>(40) Multiple mills geared to a horizontal wind-wheel with curved turbine vanes (and a man lying inside), 'self-explanatory'</td>
<td>Besson (+1578), pl. 30</td>
<td>auct.</td>
</tr>
<tr>
<td>(41) Variable-height horizontal water-wheel (tide-mill, working two mills, 'self-explanatory'</td>
<td>Veranus (+1613), pl. 11</td>
<td>auct.</td>
</tr>
<tr>
<td>(42) Saw-mill operated by a crank from an undershot vertical water-wheel; saw vertical; wood moved on by ratchet mechanism</td>
<td>di Giorgio (+1475), Leonardo (+1480), Zingha (+1613), F (1), col. 406</td>
<td>auct.</td>
</tr>
<tr>
<td>(43) The same, another design</td>
<td>Besson (+1578), pl. 15</td>
<td>auct.</td>
</tr>
<tr>
<td>(44) Saw-mill operated by crank and rocking beam (man-power), with handspike windlass for moving wood along</td>
<td>Besson (+1578), pl. 15</td>
<td>auct.</td>
</tr>
<tr>
<td>(45) Spring saw-mill (man-power)</td>
<td>Villard de Honnecourt (+1460)</td>
<td>auct.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Identification in previous European book</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14) Shovelage by ropes and handspike windlasses</td>
<td>Mariano Taccola (+1621), F (1), col. 830</td>
<td>auct.</td>
</tr>
<tr>
<td>(15) Non-spill buckets mounted on two wheels</td>
<td>Numerous in Agricola (+1556)</td>
<td>auct.</td>
</tr>
<tr>
<td>(17) Well-lifted operated by crank and gearing</td>
<td>Horvitz (1), Reimüller (1)</td>
<td>auct.</td>
</tr>
<tr>
<td>(18) Series of three Archimedean screws at right angles, operated by vertical water-wheel and raised from a moria-filled basin</td>
<td>Horvitz (1), Besson (+1578), pl. 46</td>
<td>auct.</td>
</tr>
<tr>
<td>(19) Double swipes lifted and lowered automatically by a very obliquely cut conical cam rotated by a horizontal water-wheel</td>
<td>Reimüller (1)</td>
<td>auct.</td>
</tr>
<tr>
<td>(20) Suction-lift pump operated by man-power (and) rocking beam</td>
<td>di Giorgio (+1475), Zonca (+1621), F (1), col. 837</td>
<td>auct.</td>
</tr>
<tr>
<td>(21) Vertical (horizontal-axle) windmill on tower-type windmill operating a pateroster pump</td>
<td>Zonca (+1621), B (1), p. 310</td>
<td>auct.</td>
</tr>
<tr>
<td>(22) Four groups of men with flume-levied swipes emptying a caisson or cofferdam</td>
<td>Reimüller (1)</td>
<td>auct.</td>
</tr>
<tr>
<td>(23) Double swipes lifted and lowered automatically by a very obliquely cut conical cam rotated by a horizontal water-wheel</td>
<td>di Giorgio (+1475), Zonca (+1621), B (1), p. 201</td>
<td>auct.</td>
</tr>
<tr>
<td>(24) Hinged-pan swipes (man-power)</td>
<td>di Giorgio (+1475), Zonca (+1621), B (1), col. 827</td>
<td>auct.</td>
</tr>
<tr>
<td>(25) Double suction-lift pump with two-throve crankshaft working in rings or eyes on the postrods, operated by a drum-treadmill</td>
<td>Reimüller (1)</td>
<td>auct.</td>
</tr>
<tr>
<td>(26) Rotary water-pump</td>
<td>See Figs. 467, 468</td>
<td>auct.</td>
</tr>
<tr>
<td>(27) Inclined treadmill with right-angle gearing</td>
<td>Besson (+1578), pl. 30</td>
<td>auct.</td>
</tr>
<tr>
<td>(28) Drum-treadmill working two mills by right-angle gearing</td>
<td>Veranus (+1615), pl. 13</td>
<td>auct.</td>
</tr>
<tr>
<td>(29) Two-throve crankshaft (man-power), with bob flywheel, operating mill mounted on same shaft</td>
<td>Veranus (+1615), pl. 14</td>
<td>auct.</td>
</tr>
<tr>
<td>(30) Falling weight, like a clock weight, driving a mill by gearing</td>
<td>Veranus (+1615), pl. 15</td>
<td>auct.</td>
</tr>
<tr>
<td>(31) Field mill (two mills mounted on a four-wheeled wagon), turned by animals</td>
<td>Targone (+1580), Zonca (+1621), B (1), p. 982</td>
<td>auct.</td>
</tr>
<tr>
<td>Illustration</td>
<td>Identification in previous European work</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Chieh Shih section (Saw-Mills for Stone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Stone saw-mill (animal-power); saws horizontal, with crank from driving-wheel and right-angle gearing</td>
<td>d Giorgio (+1475)</td>
<td>auct.</td>
</tr>
<tr>
<td>Chuan Tui section (Trip-Hammers; Stamp-Mills)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Stamp-mill, the logs on the main shaft raising vertical pestles, the shaft turned by two men with cranks</td>
<td>Anonymous Husain (1430) B (1), p. 280</td>
<td>auct.</td>
</tr>
<tr>
<td>Shu Chia section (Revolution Bookcases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) Revolution bookcase (gearing shown), vertical</td>
<td>Ramelli (+1588)</td>
<td>auct.</td>
</tr>
<tr>
<td></td>
<td>Feldhaus (a), pp. 70, 71</td>
<td>See on pp. 466ff. and Figs. 679, 680</td>
</tr>
<tr>
<td>Tai Kung section (Mechanical Ploughing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50) Plough drawn back and forth across a field by ropes and handspike winches (man-power) (cf. steam-ploughing)</td>
<td>Vitruvius ix, viii, Diels (1)</td>
<td>auct.</td>
</tr>
<tr>
<td></td>
<td>See Fig. 469</td>
<td></td>
</tr>
<tr>
<td>Shui Chhun section (Water Shooters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) Ctesibian double-cylinder single-acting force pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See (a) above</td>
<td>See p. 192</td>
</tr>
<tr>
<td>(32) The same, on a sled, for fire-fighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(33) The same, on wheels, for fire-fighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(54) Fire-fighting scene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi Chhi Thu Shuo (+1627)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Single-cylinder force-pump</td>
<td>See (a) above</td>
<td>See p. 192</td>
</tr>
<tr>
<td>(a) Agricultural use of flume-reamed swans</td>
<td>Vitruvius</td>
<td>See (33–8) above</td>
</tr>
<tr>
<td>(3) Crank-operated man-power mill with right-angle gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Mill operated directly by horizontal windmill with vanes or sails</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Weight-driven geared null</td>
<td>Cf. (30) above</td>
<td>See Fig. 669</td>
</tr>
<tr>
<td>(6) Weight-driven automobile vehicle</td>
<td>Cf. (30) above</td>
<td>See Fig. 669</td>
</tr>
<tr>
<td>(7) Combined clock (a Western verge-and-foliot weight-drive system for day hours and a Chinese lead-shot noop-wheel or striking clepsydra for night-watches), see on, pp. 151ff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Winch-driven cable plough</td>
<td>See (50) above</td>
<td>See Sect. 307</td>
</tr>
<tr>
<td>(9) Parts for an arcuballista trigger</td>
<td>Old in China (see p. 84 above)</td>
<td></td>
</tr>
</tbody>
</table>

27. MECHANICAL ENGINEERING

Table 58 (continued)

Individuals with whom the Jesuits were in contact. Take the case of the endless-chain conveyor or excavator. In view of the antiquity of the radial-treadle square-pallet chain-pump in China, it would almost have been curious if it should never have occurred to anyone there that the same device, modified, could be used in excavations for earthworks. And indeed, in the late +11th century Tung Hsin Pi Lu1 (Jottings from the Eastern Side-Hall) Wei Thai tells us the following story:8

(In the Hui-Ning reign-period, +1068 to +1077) the city of Linchow had no wells inside the city walls, and it was necessary to draw water from sandy springs outside, where the ground often collapsed. People called it 'scrabbling in the sand'. There was a great desire to extend the city walls to that place (so as to protect the water supply) but the ground was unsafe, and anything built on it was liable to fall down...

So the Acting Commissioner Teng Tsu-Chiang1 said to General Lü Kung-Pi, the commander of the forces in Ho-Tung: Formerly there used to be a Pa Chu Fa 2 (hit, pulling-forth axle method). The sands should be shovelled and pulled out (chsew) and the space filled up with powdered charcoal and cement (cne-bu). City walls can then be built upon this (foundation) without fear of collapse. I should like to use this method and to build new city walls enclosing and protecting the water supply so that Linchow will always be defended.3 Lü Kung-Pi adopted the suggestion and the plan was carried out. And the walls have remained firm to this day, without any subsidences, so that the New Chhin district can be securely defended.

The expression pa chu fa here may well have been figurative, signifying simply an exchange method, in which some sort of cement or concrete was substituted for the sand, but if we prefer to take it more literally we must surmise a continuous-chain excavator on the same plan as the chain-pump but using buckets or buckets into which the spoil was shovelled below and ejected above. Perhaps it was something like the endless-belt transporters locally constructed and so much used in China today (cf. Fig. 58).4

Before summarising the situation concerning transmission in the +17th century period, let us glance at the sections into which the Chhi Chhi Thu Shuo (ch. 3) was divided.

8 Ch. 8, p. 94, tr. auct.
9 Note that the term pa is the same as that used for the man-power crank-operated square-pallet chain-pump (Fig. 580 below), which would have been the direct model for the excavator which the Jesuits represented as new. See Table 58.
10 Further light is thrown upon the chu bu or cement referred to in this passage by an entry in Fang I-Chih's technical encyclopaedia, the Wu Li Hsin Shih of +1664 (ch. 8, p. 38). Down some notes on building crafts, he says: Sun-dried clay mixed with straw from various plants makes bricks so hard that holes cannot be bored in them. Hohen (Pho-Pho's) (fortifications, cf. Sect. 30) were like this—it was one of his numerous techniques. But to mix cement (cne-bu) the method is to add broken charcoal to broken pottery tiles and stamp down very hard, then it must be baked on all sides; it need not be dried first. He then tells the story of the Linchow walls in abbreviated form and ends with a few words on wood piling. A study of Chinese traditions regarding mortar, cement, and concrete is much needed, meanwhile it looks as if we have a glimpse here of an early form of the clinkering process essential in the production of the calcium alumino-silicate which gives with gypsum a good setting cement. No doubt if Fang I-Chih had been more explicit we should have heard of the addition of limestone. The further step to concrete by the addition of gravel, slag, etc., would have been much easier.
11 We shall return to the subject of conveyors and transporters on p. 350 below, in connection with the square-pallet chain-pump.
divided. The first, Chi Chung (Weight Raising), has eleven items, mostly various forms of pulley tackle. It includes the excavators just mentioned, but the curious thing about it is that the steelyard and the crane-windlass should have been carefully explained—instruments which the Chinese had certainly used since the time of the Warring States. The same applies to the well-windlass in the third section, Chuan Chu'ng (Weight Raising by Turning). The second section, Yin Chu'ng (Weight Hauling), with four items, could have had little novelty except the use of the worm, for Chinese architects had been getting their heavy beams into position for centuries previously. In the fourth section, Chhi Shui (Water Lifting), there are eight items, and here the Archimedean screws and the crankshaft pump were no doubt new. The fifth, Chuan Mo (Grinding-Mills), with fourteen items, is devoted mostly to the application of wind-power, a topic which was not at all new to China (see pp. 558ff. below), though the designs of windmills given can be easily identified in earlier European books. There is also included a mobile mill mounted on a wagon; this was an invention of which Europeans were quite proud, but which had been made also in China, presumably independently, a good many centuries earlier (see pp. 255ff. below). Saw-mills for wood and stone are taken up in the sixth and seventh sections (Chieh Mu and Chieh Shih), with six items. Lastly there comes a vertical stamp-mill of characteristically European, not Chinese, design (Chuan Tui); a revolving bookcase (Shu Chia) about which there will be something to say later (pp. 546ff.) and which was certainly not European only in origin; the Vitruvian anaphoric clock (Shui Jih Kuei); mechanical cable ploughing (Tai Keng), a plan which can hardly have been much used before the advent of the steam and internal-combustion engines; and four drawings of force pumps for fire-fighting (Shui Chhung), especially Alexandrian.

It is worth while to take a closer look at the practice of mechanical, or cable, ploughing, for it seems to afford an instance of the adoption in China of the improved gearing arrangements for mechanical advantage introduced by the Jesuits. Fig. 469 shows the illustration given in the Chhi Chhi Thu Shuo; it must have been copied from Besson (+ 1778), but it goes back much earlier than that in Europe, for Feldhaus figures a MS. illustration of the same kind dating from + 1430. All these pictures are very unrealistic, for they show only handspike windlasses in use for drawing the plough back and forth across the field, while any effective system must have involved gearing similar to that shown on a previous page in the works of Johann Schreck & Wang Chêng for hauling heavy weights horizontally. Such an arrangement

Fig. 469. Mechanical, or cable, ploughing (tao kung); an illustration from the Chhi Chhi Thu Shuo (+ 1627), ch. 3, pp. 543b, 55a. The idea was old in Europe, but perhaps not practised either there or in China until after the latter part of the + 16th century.
also indicates some simple form of gearing. The absence of mechanical advantage in the European +15th-century drawings suggests that cable ploughing was then only an idea, but it probably was actually employed towards the end of the +16th century. Another clear instance of the acceptance of Western techniques by the Chinese in the Jesuit period was the use of force-pumps mounted on wheeled vehicles for use as fire-engines. These were already being made by Po Yü¹ at Suchow about +1635. Information on fire-fighting organisation in China and Japan has been collected by Horwits (7).

(i) A provisional balance-sheet of transmissions

Let us now try to strike a balance-sheet of the position. First we may list ten machines and devices which were assuredly European introductions: (a) Archimedean screw and worm gear, (b) the Cesbian double force-pump, (c) the Roman drum-treadmill, (d) the tower-type vertical windmill, (e) the crank-shaft, (f) the inclined treadmill, (g) the flume-beamed swape, (h) the double swape worked by a rotating conical cam, (i) the pan-swape, and (j) the rotary water-pump. Of these by far the most important was the fifth, though the days of its employment in external or internal combustion engines were yet far off. The first, the second and the tenth were also important in principle though only the first was fundamentally new, since, as we have seen, the single-cylinder double-acting force-pump had been familiar in the Sung (p. 145 above), and rotary air-compressors (p. 118 above) much earlier. The Archimedean screw for water-raising found considerable use, and even some place in literature, in China and Japan during and after the +17th century (cf. p. 122 above), and the force-pump with its two cylinders spread even more widely as a fire-engine in cities. Of the others, the drum-treadmill was unnecessarily clumsy for a people who had always made a deft use of radial pedals, the vertical windmill was contrary to their engineering traditions, and the rotary pump for liquids was ahead of its time even in the rising industrialisation of the West—the remainder were hardly even practical and never got adopted anywhere.

The +17th-century books next show thirteen machines or devices which it was a perfect work of supererogation to introduce to China. These are (a) the steelyard and

* In the days of steam traction-engines it was of course very common, and it is interesting to find the lineal descendant of the idea, in terms of steel cables and electric winches, participating in current Chinese rural mechanisation (1959); Chien Po-San (1).²

² Fig. 70. This was naturally rare in the West because of the oblique-angle gearing which it invited. On the authority of the Director of the Deutsches Museum in München, where a model is shown, it was fairly common in +17th-century Italy—but that was certainly not, as suggested, the earliest use of such gears (cf. p. 456).

³ I thought for a long time that this apparatus (as illustrated by the Jesuits) was a figment of the imagination of the +16th-century engineers, but it does appear to have been used traditionally in Bulgaria (see Wakarelski, 1). Some forms of it, too, are ancient in India (cf. p. 344).

⁴ Fig. 470. Inclined man-power treadmill (after Beck (1), p. 211). Described by Ramelli, +1588, and said to have been common in +17th-century Italy.

⁵ Fig. 471. Double swape worked by a rotating conical cam (after Beck (1), p. 201). Described by Besson, +1578.

balance, (b) the windlass, winch and capstan, (c) the crank, (d) the pulley, (e) the derrick, (f) gear-wheels, including ratchets and right-angle gearing, (g) the siphon, (h) chain-pumps, both vertical and inclined, (i) driving-belts and chain-drives transmitting power, (j) the mobile wagon-mill, (k) the windmill, (l) the trip-hammer stamp-mill, (m) pivoted conveniences such as the revolving bookcase. All these the Chinese had long known and used. The position of the saw-mill is uncertain, for while it would be surprising if water-power had not been applied to this purpose, as to so many others, in China, it is not illustrated in any of the traditional books, and we have as yet found only one textual mention of it, in which the circumstances were peculiar (cf. p. 424). A second doubtful case is that of the suction lift-pump, since the Szechuanese brine-well buckets almost amounted to this (cf. p. 142). A third is the anaphoric water-clock, which was very probably employed in medieval China, though positive proof of this is difficult. The question is discussed on pp. 456 ff. below. The introduction of the weight-drive and the spring-drive for clockwork, both distinctively European contributions, should be added to the list drawn up in the preceding paragraph, but they penetrated China a little later in the +17th century than the period of the Jesuit publications which we are here discussing.²

Finally, we have to consider the machines or devices, not of course shown in the

* Historically, of course, the weight-drive no doubt originated from the anaphoric float, whether on water or sand descending (cf. p. 442). We cannot be quite sure that its free-hanging form was developed only in Europe. In any case Wang Cheng was quick to see its value, and long before any account of weight-driven clocks had appeared in Chinese he made use of it in three of his designs (items 5, 6, and 7).
Jesuit books, which had reached Europe from China at earlier times, or were still to be transferred there. Among these characteristically Chinese inventions we may list:

(a) the square-pallet chain-pump,
(b) the double-acting single-cylinder air-pump,
(c) deep borehole drilling technique,
a (d) the water-power edge-runner (gunpowder) mill,
(e) water-powered trip-hammers for forgings (martins) as well as grain-pounding,
(f) rotary fans or air-compressors, notably the winnowing-machine,
(g) power-transmission by driving-belt,
(h) power-transmission by chain-drive,
(i) mechanical clockwork,
(j) chevron-toothed wheels (double helical gear),
(k) the horizontal-warp-loom,
(l) the draw-loom,
(m) silk-reeling machinery,
(n) silk-twisting and doubling machinery,
(o) the conversion of rotary to longitudinal reciprocating motion by the combination of eccentric, connecting-rod and piston-rod, embodied in the water-powered metallurgical blowing-engine,
(p) the wheelbarrow,
(q) the sailing carriage,
(r) a form of truss construction embodied in the dishing of vehicle wheels,
(s) link-work involved in trace-harness,
(t) collar harness,
(u) the crossbow and arcuballista,
(v) the trebuchet or mangonel,
(w) rocket flight,
(x) the segmental arch bridge,
(y) canal lock-gates,
(z) numerous inventions in naval construction including the stern-post rudder, water-tight compartments, and fore-and-aft rig. It will be seen that some of these take us out of the present argument and into fields which will be the subject of detailed attention in later Sections. Naturally the Jesuits said nothing about the diolkos or slipway on canals, the most important lock-and-key mechanisms,
(w) the dishing of vehicle wheels,
(x) link-work involved in trace-harness,
(y) collar harness,
(z) the crossbow and arcuballista,
(aa) the trebuchet or mangonel,
(bb) rocket flight,
(cc) the segmental arch bridge,
(dd) canal lock-gates,
(ee) numerous inventions in naval construction including the stern-post rudder, water-tight compartments, and fore-and-aft rig. It will be seen that some of these take us out of the present argument and into fields which will be the subject of detailed attention in later Sections. Naturally the Jesuits said nothing about the diolkos or slipway on canals, the most important lock-and-key mechanisms,

15 27. MECHANICAL ENGINEERING

tion of water-power to the slow rotation of astronomical instruments and thence to mechanical clocks was fairly clearly in a period of decline in +1600, and another extremer case might be found in the principle of the differential gear, almost certainly used in the south-pointing carriages of the Middle Ages but always confined to a few court technicians and by the end of the +16th century quite lost. Lastly, certain Jesuit selections remain odd; for example, why they did so much to popularise the Archimedean screw for water-raising, but said so little of the useful screw-presses for oil, wine and perfume typical of the Mediterranean region. In any case, our balance-sheet suggests that when traditional Chinese technology came into confrontation with that of the aspiring Renaissance West, it had very little to be ashamed of so far as fundamental principles were concerned. The Jesuits were right inasmuch as they sensed the impending typhoon of Western mechanisation and scientific industry, for which Chinese society was in no way prepared, but standing at the close of the Middle Ages they greatly over-valued the contributions of the Europe of the past.

(ii) The steam-turbine in the Forbidden City

The supreme development of the palaeotechnic period was the steam turbine; the neotechnic age evolved the automobile; and one scene was set in China. About +1671 Fr Philippe-Marie Grimaldi (Min Ming-Wö) organised an elaborate scientific conversation for the young Khang-Hsi emperor, and among the optical and pneumatic curiosities which were exhibited on that occasion there figured both a model steam-carriage and a model steam-boat. It is best to hear the account in the words of Du Halde:

Les Machines Pneumatiques ne piquèrent pas moins la curiosité de l'Empereur. On fit d'un bois léger un chariot à quatre roues de la longueur de deux pieds. Au milieu l'on mit un vase d'airain plein de braise et au-dessus un Eolipile, dont le vent donnait par un petit canal dans une petite roup à ailes semblables à celles des Moulins à vent. Cette petite roue en faisait tourner une seconde avec un essieu, et par leur moyen faisait marcher le chariot deux heures entières. De peur que le terrain ne lui manquât, on le faisait marcher en rond en cette manière.

A l'essieu des deux dernières roues, on attacha un timon, et à l'extrémité de ce timon un second essieu qui allait percer le centre d'une autre roue un peu plus grande que celles du chariot, et selon que cette roue était plus ou moins éloignée du chariot, elle décrivaient un plus grand ou un plus petit cercle.

On appliqua aussi ce principe de mouvement à un petit navire porté sur quatre roues. L'Eolipile etoit caché au milieu du navire; et le vent sortant par deux autres petits canaux enflait ses petites voiles et les faisait tourner en rond fort long-temps. L'artifice en étoit caché, et l'on entendait seulement un bruit semblable à celui du vent, ou à celui que l'eau fait autour d'un vaisseau.

Uccelli gives a design of this vehicle reconstructed by Canonetiri, but it would seem likely that some form of reduction gearing was incorporated between the steam-

(1), vol. 3, p. 270.
(1), p. 637.
turbine and the front axle, as in another model (Fig. 473). The boat was presumably a four-wheel paddle-boat. According to those who have gone into the matter in detail, the experimental models had been begun by Fr Verbiest already in about +1665. The customary opinion is that the plan derived from the suggestions for steam-turbines published by Branca in +1629 but the difference was that none of these would have been at all practicable, while there is no reason to doubt the statement of du Halde that the models of Verbiest and Grimaldi did actually work. It is interesting to note that the turbine principle was not successfully applied to full-scale locomotives till the work of Ljungström in 1922, nor to ship-propulsion till about 1897 with the steam-turbines of Sir Charles Parsons. Liu Hsien-Chou (3), who has most fully summarised the story, and Fang Hao (1), suggest that part of the inspiration of Verbiest and Grimaldi may have been derived from the old Chinese hot-air zoetropes already described (Vol. 4, pt. 1, pp. 122 ff. above), but I am inclined to think that the system of inclined vanes employed in them descended to the helicopter top and hence to the air-screw (see pp. 580 ff. below) rather than to turbine rotors for steam jets, such as the Jesuits used. Even if in some of their designs the rotor was mounted horizontally, the current of vapour had to move (like water over a water-wheel) more or less at right angles to the rotor’s axis, while in devices of the zoetrope category the current moves in a direction parallel with this axis. The shape of the boiler in Fig. 473 suggests quite another parallel, and perhaps it was the steam-jet fire-blower which gave inspiration to the Jesuits of the China Mission.

Most people would naturally be inclined to say that in the history of the steam jet Asia would not be involved. But the matter cannot be dismissed quite so easily. From ancient times onwards a jet of steam was used for a purpose other than making a vaned wheel rotate, i.e. for blowing up fires. The story of these steam fire-blowers has recently been fully related by Hildburgh (1), who points out that the famous aeolipile of Heron, rotating by jet propulsion on account of its L-shaped tubes, was only a special form of aeolipile. The commoner sort was simply a kettle or boiler with a pinhole orifice so arranged that a jet of steam could be directed upon a fire. This has several effects: it accelerates combustion because of the draught of air which accompanies the jet, products of combustion are removed, and at the same time the steam is decomposed by the glowing coal to carbon monoxide and hydrogen (water-gas), which immediately burns away. To Philon of Byzantium (c. -210) is ascribed an incense-burner kept glowing by a steam jet, and similar arrangements are mentioned by Vitruvius.

a Ascribed to Verbiest by Ucelli di Nemi (4), p. 29, who dates it +1681. Uccelli places it as late as +1775 however. Another locomotive model is described on p. 388.

b Thwing (1); Rouleau (1); Fang Hao (1).

c Cf. p. 122 above. One of Branca’s illustrations (fig. 25) is reproduced by Parsons (2), p. 143; Ucelli (1), p. 15; fig. 42; Schmithals & Klemm (1), fig. 46. There may also have been a prior experiment with rudimentary steam-turbine paddle-boats, in +1543; see below, p. 416. We shall return to Branca in connection with the helicopter top, p. 524 below.

d Cf. Lynn White (7), pp. 89ff.

e The word derives from the name of the god of the winds, and pilâ, wîke, a ball.

f Water-gas has quite a wide use in modern technique, and steam-jet blowers are used for industrial boiler furnaces. By varying the mixture with air, a thermostatic control is achieved.

* Pneumatica, ch. 57; Drachmann (2), pp. 67, 125; Feldhaus (1), col. 179.
HERON OF ALEXANDRIA. Then in the +13th century Albertus Magnus describes a 'sufflator' of this kind of detail, and in the later technological MSS. there are several pictures of bronze busts or heads which direct steam jets from their mouths (Kyeser, +1405; Leonardo da Vinci, +1490). The jet 'turbine' follows shortly afterwards (Branca, +1629; Wilkins, for rotating a spit, +1648). In +1545 a hollow bronze statue of a man was found in some ruins at Sondershausen in Germany, and gradually other similar objects appeared; their use was the subject of much dispute until Feldhaus (19) established that these 'Piastriche', or blowers, were fire-blowers corresponding to the description of Albertus Magnus. Examples have been found as far east as South Russia (Ekaterinopol).

We are now recognisably in presence of the 'pre-natal' form of the steam-engine's boiler, so there is significance in the gradual abandonment of the 'wind-cherub' theme still beloved of cartographers long afterwards. When Cesariano translated Vitruvius into Italian early in the +16th century he depicted the boilers in various elegant, but now no longer anthropomorphic, forms; they were turning, so to say, into the celebrated kettle of James Watt. When Ercker illustrated his 'Treatise on Ores and Assaying' later in the century the steam blowers were just alembics placed alongside the furnaces. But Branca still used an Aeolian head for his steam-jet boiler in +1629 (cf. p. 125 above), and Athanasius Kircher followed suit in +1641. The question was, on or into what should the jet be directed? When della Porta in +1601 demonstrated the emptying of water from a closed vessel by the injection of a jet of steam into it, and the drawing up of water by the vacuum left in a vessel by condensed steam, he was much more truly on the rails which were to lead to the primary break-through of steam-power, i.e. the reciprocating steam-engine rather than the steam-turbine. This was the green light for Ramsay (+1631), d'Acres (+1659), Somerset (+1663) and all their successors. Dircx was surely not wrong in his conviction that the sufflator was the chief ancestor of the steam-engine.

But here comes in the unexpected. The human heads and busts were a product of a

a Pneumatics, chs. 71, 75; Dreschmann (4), pp. 130ff.; Woodcroft (1), pp. 100ff.—the millarium.

c See Feldhaus (1), col. 843ff., (18), p. 22. Leonardo also appreciated the expansive force of steam, and described an 'Architronito' or steam-cannon, the invention of which he attributed to one Archimedes, probably a Renaissance contemporary (see McCurdy (1), vol. 2, p. 188; Feldhaus (1), col. 394ff.). Though no success attended the efforts of those engineers in later centuries who continued to play with this idea, the Architronito was symbolic in the highest degree if we may look upon the piston as a tethered projectile. Cf. p. 140, and see further Reti (3); Hart (4), pp. 240ff., 295ff.

d Mathematical Magie, p. 149.

e Como, +1321; see Feldhaus (1), col. 26, fig. 10. Cf. Lynn White (7), pp. 90ff.

f Prague, +1574 and many later editions; see Sisco & Smith (4), Frontispieces and pp. 219, 316ff.

g Magnes... (Rome, +1641), p. 616.

i See Dircx (1), pp. 940ff. Lynn White (7), p. 162, provides evidence that something similar was brewing in Bohemia before the end of the +16th century.

j Here the accent is on the word steam. One can also put the accent on the word engine, and as we shall presently show (pp. 316ff. below) the Chinese culture-area had a part to play in the development of this much more important than for steam jets or vanned wheels. See further Needham (48).
European fancy, but for the steam-jet fire-blowsers there was another focal area, namely the Himalayan region, especially Tibet and Nepal. There they still take the form of bottle-shaped conical copper kettles surmounted by birds' heads, the beaks of which, sometimes quite elongated, point downwards and have the pinhole at the tip (Fig. 472). The fact that an ordinary kettle, which emits steam under very little pressure, does not have the same effect, might plead for a single point of origin of the discovery; if this was Mediterranean, the *sufflator* can hardly have reached the Bactrian region from Egypt in Alexander the Great's time (as Hildburgh suggests), but could have been used there by the later Bactrian Greeks. Alternatively Alexander's veterans may have brought it back. It would certainly have been useful for the fires of dung used by travellers on the Old Silk Road and other desert and mountain regions of Central Asia where wood is scarce and altitude considerable. So far we have no evidence that the Chinese made much use of it, and until this is found we may accept the distribution as being Western and Tibeto-Bactrian. But if so, the remarkable fact presents itself that the Central Asian region of Mongol-Tibetan-Persian culture was that in which the windmill also seems to have its oldest home. And once again there were the Central Asian slaves in Renaissance Italy whose steam jets may at least have reinforced the aeolipiles of Hellenism. Here at any rate is a suggestive juxtaposition of facts, which might prompt us to look for an ancestor of Branca's proposal in the Arabic-Iranian direction, a first combination of steam jet and vaned wheel having occurred somewhere in western Central Asia.

(4) The 'Cardan' Suspension

There is one device of which it has not been convenient so far to say anything, either among basic principles or the chief types of Chinese eotechnic machines, namely, that seemingly simple combination of rings whereby an object may be maintained in horizontal equilibrium, the gimbal, or as it is sometimes called, the Cardan suspension.a

a A rather curious fancy too, for many of the figures are prominently phallic, e.g. the celebrated Jack of Hilton described by Plut in +1586 (p. 453, and pl. xxiii) and still connected with a jocular tenure.

b There are examples in the Cambridge Ethnological Museum, one of which was kindly tested by Dr Bushnell in the writer's presence, with most striking effect. The Himalayan fire-blowers have only one hole, and must be made to 'drink' first by heating the body of the vessel; the European ones have a separate hole for filling.

c Cf. Vol. 1, pp. 374ff., 235ff. above. There is nothing to prove, of course, that the device was not an ancient one in Central Asia, which travelled westwards in time to stimulate Philon.

d Some recent work on the subject has been done by L. White (1), pp. 120ff., and others.

The reference occurs in Book 17 (De Artibus atque artificio Rebus), but Cardan did not claim the invention as his own; he described a chair on which an emperor could sit without being jolted, and he said that the contrivance had previously been used for oil-lamps. Indeed it had been well known in Europe long before his time, though during the +16th and +17th centuries it was attracting particular attention. Leonardo had sketched it about +1500, planning it for use with a compass. Besson (2), in his Cosmolebe (+1567), suggested that navigators should sit within large gimbal for taking their observations (Fig. 474); while Branca (+1629) planned a similar horse-drawn ambulance or litter (Fig. 475). During the +17th century, gimbal for ships' compasses came into general use. A gimbal-mounted azimuth compass of the Chinese +18th century is depicted in Fig. 481.

But the suspension had been known already towards the middle of the +13th century, when Villard de Honnecourt was writing his famous notebook. His diagram (Fig. 476), which we may place at about +1237, shows four rings, and is captioned 'Cis engiens est fait p(ar) tel maniere quel p(ar)t q(u)'il tort ades (est) li paelete droite'. Hahnloer points out that the object of the device at that time was for small hand-stoves ('Wärmapel') which prelates could use during long religious ceremonies in cold cathedrals. Fig. 477 shows a +13th-century example preserved in St Peter's Treasury at Rome. Significantly perhaps, similar portable stoves were known among the Arabs, and Migeon figures a Muslim incense-burner, dated +1271, in the British Museum. The Carrand Collection and similar treasuries have yet other examples, which probably take the use of the device back to the early +12th century both in European and Islamic culture. But there is literary evidence a good deal earlier than this, for the Mappe Clavicula (Little Key of Painting), a recipe-book of the +9th century, Lived from +1501 to +1576; biographies by Waters (1); Eckman (1); Bellini (1); Ori (1), esp. pp. 120ff., and others.

b In the Basel edition of +1560, pp. 1028. Earlier editions had given the credit to Justineo Turriano.

c Feldhaus (1), col. 869, (18), p. 250; Sarton (1), vol. 3, p. 716, dates the first use of it for the mariner's compass at +1556. Edward Wright (1) in +1610, translating Camerano's book of +1581, says that the round box of the compass must be placed 'within two hoopes of latin ... fastened within a square box, or a round, so as although the uttermost box be tossed up and downe every way with the motion of the shipe, yet alwaies the superficies and glasse of the inner box may lie level with the Horizon...'

d Pl. 25.

e Cf. Breusing (1).

f Hahnloer (3), pl. 17.

g Cf. F. Jager (1), p. 45ff.

h (1), p. 285. The late Prof. D. S. Rice intended to describe in a special monograph all the Arabic Cardan suspensions of the +13th and +14th centuries.
Fig. 474. The Cardan suspension or gimbals as a nest for navigators while taking their observations, a proposal of Besson, +1567. Cf. Taylor & Richey (r), p. 95.

Fig. 475. The Cardan suspension or gimbals as a cradle for a patient or traveller in a horse-drawn ambulance or litter, a proposal of Branca, +1629.

Fig. 476. The Cardan suspension in the notebook of Villard de Honnecourt, c. +1237 (Hahnloser, r). Within the rings is written 'This engine is made in such a way that the pan remains straight no matter how it turns'.
Fig. 477. A 13th-century hand-warming stove with Cardan suspension (St Peter’s Treasury, Rome; Hahnloser, 1).

Fig. 478. Chinese perfume-burner with Cardan suspension of the Thang period (c. 8th century), in silver-work (Kempe Collection, Gyllensvärd, 1), diam. c. 2 in. Two rings and three pivot-axes.

Fig. 479. A brass Tibetan globe-lamp with Cardan suspension for temple use (author’s collection), diam. 10 in. Besides figures of gods and bodhisattvas the repoussé work includes germ-letters (symbols of divinities) in medallions. Probably late Ching (photo. Brunney).
century, includes a clear description of a vase surrounded by rings in such a way that rolling motions of the whole sphere are not communicated to it.a

Was the invention an Alexandrian one? The 56th chapter of the *Pneumatica* of Philon of Byzantiumb (c. –220)c describes an ink-well enclosed in a prismatic box with a hole in each face, any one of which could be used since the ring-suspension within would keep the ink-well the right way up.d The statement ends by saying that the design follows an old Jewish pattern for incense-burners. This in itself is suspicious, for it does not sound quite the kind of remark which one of the earlier Alexandrians would have made;e moreover, the whole passage is found only in the Arabic MS, translated by Carra de Vaux (2) and not in the Latin MSS, translated by Schmidt (1) and de Rochas d’Aiglun. Furthermore, the description seems out of place among so many devoted purely to pneumatic devices. Sarton, therefore, cautionsf that it may be an interpolation of later Arabic compilers, perhaps as late as the 11th century.

Strolling one day in a Parisian market (May 1956), I happened to see two brass globe-lamps of Tibetan workmanship,g possibly quite recent in date of manufacture, which carried within their fretted casings Cardan suspensions of four rings and five pivot axes.h One of the two specimens I was able to buy, and it is seen here in Figs. 479 and 480. It had obviously been intended for the hanging of an oil-lamp in a relatively exposed temple hall or porch. Though I have never encountered devices of this kind in China, I was delighted to find two further examples, incense-burners in beautiful silver-work dating from the Thang period, exhibited in the Carl Kempe Collection of Chinese Gold and Silver at the Victoria and Albert Museum in 1956 (Fig. 478).i Then there was the bed-warming brazier which Laufer (23) tells us he found in Sian fifty years ago. It appears moreover that in some provinces lanterns with Cardan suspensions are quite commonly constructed of bamboo, especially those which represent the moon-pearl and are flourished in front of dragons in processions (Fig. 482).j

a See Berthelot (10), p. 64, (11); Thorndike (1), vol. 1, pp. 76ff.

b Cf. B & M, p. 487.

c It must be remembered that the dates of all the Alexandrian engineers are still uncertain, and some authorities (such as Sarton (1), vol. 1, p. 195) have made him the contemporary of Lohit Hing (c. –120) rather than of Lü Pu-Wei.

d Carra de Vaux (2); Beck (5), p. 71; Feldhaus (2), p. 97.

e Whatever Philon’s exact date was, he certainly lived long before Josephus and Philo Judeaus.

f (1), vol. 1, p. 195; Drachmann (2), pp. 67ff., strongly concurs.

g Diameter 10 inches. The repousse work is typically Tibetan, to judge from S. Hummel (1). Each hemisphere is ornamented with a mounted protector deity and four Bodhisattvas. There are also eight medallions containing four *bhāgya* or ‘germ-letters’ (*chung tzu*), used as symbols of divinities, but though the script seems to be the siddham (*hu-than*) on which van Gulik has given us such an interesting monograph (7), identification has not so far been possible. Siddham was a form of Sanskrit script much cultivated in medieval China and Japan as the vehicle of these symbols and of Tantric Mantrayanic spells (cf. Vol. 2, p. 445).

h The number of frames is interesting because modern gyroscopic theory states that five frames are required to give complete freedom of angular motion in all directions of space (Davidson, Saul, Wells & Gyllensvård).

i Gyllensvård (1), nos. 96 and 97; (2) pp. 47ff, fig. 11, pl. 14. These are both about 2 inches in diameter. We reproduce the photographs by the kind permission of Dr Carl Kempe and Dr Bo Gyllensvård. At least one similar piece is in the Shosoin Treasury at Nara in Japan. Shi Shi-Chiing (2) illustrates it, and adds details of another specimen of the Ming period, together with new textual references.

j I am grateful to Mr. Wei T‘H-Hain of Sidney Sussex College for information on this; he himself saw such lanterns in his youth in Fukien. Cf. *Hu-chheng Sui Shih Chih Ko*, p. 24.
That this Sino-Tibetan tradition of gimbals originated from Cardan and the Italian Renaissance becomes very unlikely when we realize that we possess from the +2nd century a Chinese account of the device which is much earlier than anything in Europe or Islam except the dubious passage in Philon. The *Hsi Ch'ing Tsa Chi* says:

In Chang-an there was a very clever mechanician named Ting Huan (fl. +180). He made "Lamps which are always Full" (*ch'ung mien têng*) with many strange ornamentations, such as seven dragons or five phoehines, all interspersed with different kinds of lotuses. He also made a "Perfume Burner for use among Cushions" (*tso ju huang lu*), otherwise known as the "Bedclothes Censer" (*pe i ch'ung huang lu*). Originally (such devices) had been connected with Fang Feng's but afterwards the method had been lost until (Ting) Huan again began to make them. He fashioned a contrivance of rings which could revolve in all the four directions, so that the body of the burner remained constantly level (sui chi hwan chuan yün su chou, er ku thi ch'ung pheng), and could be placed among bedclothes and cushions. For this he gained much renown.

It will be remembered that Ting Huan has been met with before in connection with his zoetrope lamp and air-conditioning fan. The Thang incense-burners mentioned above would thus seem to be descendants of Ting Huan's unspillable censers in a very direct line.

Some colour is given to the statement that Ting Huan only revived an invention which had been current long before, by a curious passage in the *Mei Jen Fu* (Ode on Beautiful Women) written by Ssuma Hsia-ju (d. -117). This poem, a defence of his continence against the reproaches of a certain prince whose guest he was, gave occasion for a couple of seduction scenes admirably described. The second of these

a This is still true even if we date the *Hsi Ch'ing Tsa Chi* as late as the +4th century.

c Philon of Byzantium also described such lamps in his ch. 9 (Beck 5), p. 68; Drachmann (3), p. 122; the wick-reservoir oil when lowered in level by the burning admitted air to a closed space, thus allowing more fuel to descend. Such ever-filled crosses have a remarkably wide distribution. When in 1928 I visited the Museum of the Ceylon Archeological Survey at the Sutiphara Cetiya, near Dedigama, the great dagoba built at his birthplace by the +14th-century king Parakrama Bahu I, the curator, Mr Abhaya Devapura, showed me some remarkable hanging oil-lamps in bronze which had been found in the upper relic chamber of the dagoba and were thus contemporary with the king. At the centre of the reservoir of oil with its radiating wicks there is a tank in the form of a well-fashioned elephant, its belly conspicuously marked by a lingam constituting the pipe through which the reservoir is fed as the level falls below and bubbles of air ascend. I am much indebted for his kind welcome to Mr Devapura, who was inclined to see with me a distant derivation from the Alexandrians (cf. Vol. I, pp. 176ff., on the close relations between India and the Hellenistic world in ancient times), though independent invention can never be excluded. It would be interesting to know what method Ting Huan adopted.

d This is the name of a spirit anciently worshiped by the Yihe people, as also of a later State in what is now Chshiang, and of princes who took their names from it. The more usual writing is Fang Feng.

e On the other hand the reference may well be to an individual person, and if the second character was a misreading, Feng Feng might qualify. He was a scholar and military officer of the +11th century who by Wang Mang's time had attained high rank, and his biography (*Chhien Han Shu*, ch. 88, p. 564a) says that he was both learned and ingenious. It is not at all easy to decide what the writer had in mind.

f *CSHK* (*Chhien Han sect.*), ch. 22, p. 18. There are translations by van Gulik (8), p. 68, and Margoulies (3), p. 344. The passage was quoted by Chhien Mou-Jen in the *Shu Wu I Ming Su* (*Ming*), and by KCCY, ch. 15, p. 4a.
takes place in an empty palace or remote imperial rest-house, and among the furniture, hangings, bedclothes, etc., carefully described, we find that 'the metal rings (containing) the burning perfume' (chün tsa hsin hsüan'). The date of composition would be perhaps in the neighbourhood of —140. Thus it is possible that the invention belongs to the —2nd rather than to the +2nd century.^

And indeed Ting Huan's achievement was no isolated instance of an ingenious novelty. Chinese references to the Cardan's suspension can be found in the literature of nearly every following period. The Liang emperor Chien Wên Ti, who reigned in +550, wrote in his poems of hinges on doors and windows as chün chih hsiu, metal knee-joints or pivot-and-socket fittings. One must remember that the most typical of such Chinese hinges are in fact pivots working in sockets, leaf-hinges being less common. In +692 an artisan whose name has not come down to us presented to the empress Wu Hou 'wooden warming-stoves which though rolled over and over with their iron cups filled with glowing fuel could never be upset'. So when Thang poets such as Li Shang-Yin (+813 to +888) or Li Ho (d. +810) speak of 'perfume-burners with interlocking pivot-and-socket hinges' (ts'o hsiang chün chih hsiu), etc., they are probably referring to gimbal suspensions. Then in the Sung there were balls of ivory worked into a series of loose concentric fretted spheres (ts'ai hang chün hsiu), and since the word chih is sometimes used of the inner components, these may occasionally have been pivoted in the manner of Cardan rings. 'Globe-lamps' (ts'o t'ing chih ts'ao) in the Ju Shu Ch'i (Journey into Szechuan) of +1170, and were used in the defence of Nanking in +1233. Later in the same century Chou Mi mentions t'ing chih tsao and hsiang chih hsiu (perfume balls). In all of these the names and descriptions indicate unmistakably the presence of gimbals. Moreover, Sung scholars

\[\text{Fig. 48A. Children engaged in a dragon procession, part of an inlaid lacquer screen in the collection of Dr G. D. Lu (photo. Brunney). In such perambulations, traditionally customary on the 15th day of the first month (cf. Hodous (1), p. 45), a globe-lamp representing the moon-pearl is flourished, as here, in front of the undulating effigy. Gimbals of bamboo within the globe maintain the stability of its light. On the symbolism of the dragon and the pearl cf. Vol. 3, p. 232 and Fig. 95.}\]
themselves distinctly state that they were regarded as identical with what Ting Huan had invented; Ming scholars also. Certain old names, such as tsan¹ (perfume basket), yis nang² (silver bag) and kun chhiu⁴ (rolling sphere) probably also referred to the device, in their opinion. Lastly, the Hsi Hu Chih⁵ (*Topography of the West Lake Region of Hangchow*) mentions (in one of its supplements) that kun li⁶ (interlocking pivots) were mounted on certain occasions within paper lanterns, and that these were then kicked and rolled along the streets without the lamps inside being extinguished. They were called kun teng,⁷ rolling lamps. This 18th-century account brings us back, then, to the contemporary folk practices mentioned above.

Developments almost incredible awaited the ring-system of Ting Huan when the suspended perfume-lamp turned into a solid heavy wheel or disc and began to spin on its own axis. At the beginning of this section the gimbals of the mariner's compass were mentioned because this application of the suspension is most commonly known. But it was the gyroscope,⁸ the spinning disc with a mounting free in three dimensions, which was destined to replace the very magnetic compass itself, on account of its property, discovered by Foucault a century ago,⁹ of orienting itself in the meridian. Hence the gyro-compass,¹⁰ now of such universal application on steel ships and aeroplanes, which indicates true, not magnetic, north. Hence also the gyroscopic stabilisers¹¹ of ships and especially aircraft, in which the 'automatic pilot' has been the greatest factor in the successful achievement of long-distance and bad-weather flying.¹²

It might be said that in the gimbals the effective power source restoring the original state after displacement is the weight of the object at the centre, and therefore that the power is applied from within outwards. But an invention of even greater importance was made when someone conceived the idea of applying power from the outside, namely the universal joint. Here the outer casing has been changed into a U-piece on the end of a transmitting shaft, corresponding to another U-piece on the end of a receiving shaft, the two being joined by a connecting piece with pivots having axes at right angles to one another. Originally this piece was a ball with pins at right angles. The time of the invention was the end of the 17th century, and it was due either to Schott in +1664¹³ or to Robert Hooke ten years later.¹⁴ Its greatest application today is in the transmission shafts of automobiles, for which purpose it was first used by Schott in +1664¹³ or to Robert Hooke ten years later.¹⁴

¹ Shih Wu Chi Yuan (+1085), ch. 8, p. 8a; also Wei Liuh (c. +1180), cit. KCCY, ch. 58, p. 8a, which terms the pi' as the 'button' (niu¹) and the socket the 'nostril' (pu²).
² Liu Chhing Jih Cha (+1579) which compares the Cardan suspension with the armillary sphere; also Ming I Khoa¹⁵ by Chou Chhi.¹⁶
³ Cf. Vol. 3, p. 314, for a different use of this term in the Sung, when it could mean a float-valve, and p. 485 below for a third meaning, that of trip-lug.
⁴ Cf. A. Gray (1) and Schilovsky (1). Anon. (3).
⁵ See T. W. 'Chalmers' description (1).
⁶ Cf. Ross (1).
⁷ On general applications of gyrostatics see Davidson, Saul, Wells & Glenny.
⁸ Feldhaus (1), col. 870.
Burstable Hill in 1825, but it will give service at low speeds when the angle between the two shafts is considerably greater than ever occurs in normal motor-vehicle practice. Few, however, who ride daily in motor-cars, realise that the lineage of so important a device goes back to the 2nd century China. To sum up, therefore, we are faced in this instance with a situation we shall encounter again, in which conclusions as to the origin of an invention are rendered a little difficult by the dubious authenticity of the first European reference. If we adopt the cautious view and regard the gimbals of Philon of Byzantium as a late interpolation, then the credit is Ting Huan’s and it is not unlikely that the role of the Arabs was to transmit the device from further east. This seems plausible in any case on account of the Thang references from the 12th to the 1oth century. But the gimbals suspension was already in Europe by the 9th. The mention of the Jews in the Philon passage may indeed possibly imply that the apparatus was transmitted westwards through Jewish rather than Arab circles. The suggestion has already presented itself that certain important characteristics of Asian thinking were transmitted to the West through Israel, and elsewhere we took an opportunity of discussing in some detail the means by which such transmissions may well have been effected. We also met with another invention possibly transmitted by Hebrew merchants and scholars in the survey instrument known as Jacob’s staff.

If one should ask as to the stimulus which gave rise to the invention of the gimbals, the thought inevitably occurs that it was a derivative from the construction of armillary spheres for the astronomers, since their rings also had to be pivoted one within the other. At an earlier stage we caught a glimpse of schools of Chinese artisans making armillary spheres in the 1st century, and I should be ready enough to believe that it was one of these groups to which Ting Huan belonged. At any rate ‘Cardan’s’ suspension is as much Cardan’s as ‘Pascal’s’ triangle is Pascal’s.

(5) THE LOCKSMITH’S ART

Together with the millwright, the locksmith was certainly one of those medieval artisans who provided some of the skill required at the beginning of the palaeotechnic age of iron and coal. It would therefore be inexcusable, in the present context, if we omitted any reference to the makers of locks and keys. Unfortunately, there have not been even the barest beginnings so far of a history of the locksmith’s art in Asia, and we shall therefore have to content ourselves with a very simple sketch, rather to draw attention to the possibilities of the subject for the comparative history of technology than to answer any of the questions which arise.

a Up to about 25°. For similar devices giving drives up to right angles see Jones & Horten (1), vol. 1, pp. 410ff; vol. 3, pp. 260ff.

b And not only because of Ting Huan, for on pp. 89, 103, 115 above we considered the curious direct treadle drives of medieval Chinese spinning-wheels.

e Vol. 3, p. 575.

f Huan Than’s account of the old mechanic; Vol. 3, p. 368 above.

g The Hiu Ching T’ou Chi says that he lived at the capital, which is just where the technical assistants and workers who made instruments for the Bureau of Astronomy and Calendar would be expected to be.
Fig. 485. Roman keys (British Museum; Smith, I).

(a) Anchor-key or T-key, the flukes of which were inserted within the door into mortices in the tumblers to lift them up and allow the withdrawal of the bolt; cf. Fig. 489.

(b) Plate-key, for raising a latch protected by wards, i.e. labyrinthine obstructions designed to prevent motion by any pattern other than the female tally. Such keys are still in use in Cambridge colleges for 'oaks' or outer doors of sets of rooms.

(c) Right-angle key with balanoi of triangular cross-section, similar to that required for the lock in Fig. 486.

(d) Rotary key adapted to wards, probably for use with a small peeplock and attached to a finger-ring. A combination of types (b) and (c); a plate component to satisfy wards, and four projecting balanoi to raise or depress tumblers. Perhaps the rotary principle was used here; if not, and as in a number of other forms, the keyhole had to be of complex form, at least L-shaped.

27. MECHANICAL ENGINEERING

Although this branch of technique elaborated itself in later times into a thousand fanciful complexities, to say nothing of the ingenuity devoted to modern time-locks, strong-rooms, and the like, the essentials are simple enough. They may be traced in the memoir of Frémont and the accounts of ancient European locks and keys by Diels and A. H. Smith, while Hommel has brought forward valuable observations on the traditional fastenings still in use in China. On distribution there is a well-known monograph by Pitt-Rivers. In Fig. 483 one can see that the earliest lock was no more than a bolt, which for convenience was kept attached to the door and made to slide through a block mounted thereon. The first amplification was the addition of a stop and two staples to prevent the bolt from coming out; next an additional staple or lock was added to the wall. Then in order to be able to open the door from outside, a hole was contrived through which the hand could enter, and further refinement diminished this to admit only a mechanical implement, the key. All these types go far back into Egyptian antiquity, and have of course lived on in rustic environments, as archaic genera, in China also, until today.

Diels called this last type the 'Homeric' lock, on account of its mention in the Odyssey. The bolt was drawn on, by leaving, by a cord which passed through the door or door-frame and ended in a loop outside. Diels drew attention to a remarkable fact when he pointed out that the kind of key used for opening such a lock was clavicle-shaped (hence its name, clavicula), and essentially in the form of a crank (Fig. 484). When inserted through a hole and appropriately turned, it was pressed against a projection or into an indentation on the top or bottom of the bolt, and moved it back, thus opening the door. The use of a crank-shaped object for such purposes and not for assisting rotary motion merits thought, and almost challenges comparison with the wheels on Aztec toys, i.e. in a wheel-less culture.

The first great invention connected with locks was that of tumblers, i.e. small movable pieces of wood or metal which fell by their own weight so as to engage with mortices in the bolt, and which were then raised by suitable projections on the key (Fig. 484). In the beginning they may well have been simple pegs or pins hanging on cords and inserted to prevent accidental opening of the door. Diels called this the 'Laconian' lock, and thought that it was very probably introduced from Egypt to Greece by A work evidently undertaken with peculiar zest, since Frémont himself came of a family of Parisian locksmiths. Cfr. for orientation, the works of Butter (1); Eras (1) and A. A. Hopkins.

Some particularly splendid stone bolts and staples excavated at the ancient Persian temple of Tchoga-Zanbil near Susa, dating from the - 13th century, have been described by Ghirshman (3). One of the staples has a side-tube of stone to carry a locking-pin which could be inserted into a cavity in the bolt. The staples are thought to have been attached to the stone or wooden gates with clamps of bronze.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

(c) The thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.

A very ancient type of fastening, which found a home in the highest heavens of literary culture, was the thong and pin system which became universal on those cases (han) in which several volumes of a Chinese book are collected.
Theodoreus of Samos in the 5th century, as Pliny implies. The projections on the key, which raised the tumbler, were called "acorns" (balanoi, βαλανοί). There were many ways in which this could be done; the key could enter underneath the bolt, with its projections passing up through the appropriate holes, the key being free to slide with the bolt when it had displaced the tumbler; or the key could actually fit into a hole bored longitudinally in the bolt itself; or the key could enter above the bolt by a separate opening in the lock-case, the tumblers being L-shaped so as to receive it. The first of these types is seen in a specimen of a Roman lock (perhaps +1st century) now in the British Museum (Fig. 486), and the third is still common in China (Fig. 487). Locks of these types are indeed frequent in many parts of the world, such as Cyprus and Algeria.

One way of raising the tumblers from outside the door was by means of an anchor-shaped key (sometimes called a T-key); this was inserted through a vertical slit, given a quarter turn, and then pulled so as to engage with holes in the tumblers; a lever action would then raise them. Fig. 485 a shows such an anchor-key from a Roman site, and Fig. 486 shows exactly the same simple instrument in use upon a contemporary traditional Chinese door in Chiangsi. It must be very ancient in China, for two examples of Chou date are shown in White's *Tombs of Old Loyang*. This simple pattern may have given a stimulus for the much greater elaboration seen in Roman plate-keys (Fig. 485 b) which involved 'wards'; but these were apparently not used in China. A variation in which the tumblers were made double (the lower portions remaining in the moving bolt), and in various lengths so that only a key with projections exactly of the right lengths would raise all the tumblers to the level of uniform clearance, was known as the 'Jewish' lock and this again has not been described from China.

The rotary principle was developed in late Roman times, and many specimens of turning keys are known from Pompeii and Gaul. Angular displacement now took the place of rectilinear. From the Gallo-Roman latch-raisers which Frémont reproduces,
and which are perfectly shaped cranks, it would seem that the ancient *clavicula* may have been adapted from its original use as a bolt-pusher, to become the origin of all rotating keys such as we use today. The Chinese also used, and still use, keys which turn, including quite rustic wooden ones, as in the system represented by Hommel (Fig. 488). Once this principle had been devised, whether for raising tumblers, or for pushing up latches, or for actually sliding the bolt back and forth, the great complexities of cutting keys into so many different shapes answering to different kinds of wards were not substantial modifications. Medieval European locks relied mainly on wards, but the use of tumblers was reintroduced towards the end of the 18th century. Even the pioneers of the modern art, Bramah (+1784) and Chubb (+1818), still retained the fundamentals of tumblers and bolt, though utilising new mechanical principles of arrangement.

![Fig. 488. Mechanism of a common type of Chinese door-lock used for sheds, stores, workshops, etc. (Hommel, r). The key, which is inserted parallel to the bolt, has two pegs which in their upward path raise L-shaped tumblers notched into the bolt, thereby freeing it for withdrawal. One of the simplest applications of the rotary principle.](image)

All modern locks, however, made use of what was perhaps the second great invention in the trade, namely the introduction of the spring. This dispensed with the necessity of having the tumblers so placed that they must fall of their own weight, for to the tumblers it was generally applied. We have seen it in Fig. 486, that of the Roman lock. But there were other methods of using springs, and one of them appears in the diagram (Fig. 491) of one of the kinds of padlock still most widespread in China. When the movable part, which we may continue to call the bolt, is fully home, the springs which it bears expand and prevent its removal. The key enters from the other end, and by compressing the springs close to the bolt, permits its withdrawal. Figure 490 shows several such padlocks. That this device must have been common to China and Iran appears from a figure of Frémont's, where in a Persian form there has been an addition of grooves so disposed that a Roman-type plate-key must be used to compress the hidden springs. But, as Pitt-Rivers showed, its distribution is

* Frémont (17), p. 42.
* Such keys are usually longitudinal, but late examples may be rotary.
* How far they go back in China is difficult to say. An iron example of the Liao dynasty datable at +959, from Chhih-feng Ta-ying-tzu in Jehol, is figured in Thang Lan (1), pl. 103. Bronze padlocks of this kind from the Thang are not rare; I noticed a good one in the Sian Museum in 1958.
* (17), p. 33, figs. 71 to 73.
Fig. 490. Examples of the spring padlock shown on the opposite page, in wrought iron and brass, from Anhui and Chiangsu (Hommel, 1). This form was used in ancient and medieval times throughout the length and breadth of the Old World.

Spring type of spring padlock widespread in China (after Hommel, I), when the bolt which it bears expands and locks it in position; they are compressed and the bolt freed by the insertion of a forked key at the opposite end of the padlock.

Far wider, many specimens being known from Roman Britain, from medieval Sweden and Russia, and from Egypt, Ethiopia, India, Burma and Japan. From his native Wiltshire he described a padlock identical with those which I used to buy in the Chungking markets. In these the bolt is held against the hasp by a helical spring, and the key has a female screw-thread fitting an invisible male screw on the bolt; release is brought about by a backward pull when the screws have fully engaged. Since the screw is essentially European, this must have been a transference from West to East. In any case, the very name of the padlock ('path' or 'road'-lock, used by pedlars with pad-nags against foot-pads), which shows that it was connected particularly with transportable merchandise, suggests readily how the arts of the locksmith were transmitted along all the trade-routes of the Old World.

So far, so good. But the history of the progress of locksmiths’ inventions in China remains extremely obscure, and everything is waiting to be done. One can only offer a few scattered observations, conscious of the first difficulty which needs clearing up, namely the exact significance of the words employed in early times. The Li Chi, which

Fig. 491. A type of spring padlock widespread in China (after Hommel, 1). When the bolt is fully burned the springs which it bears expand and lock it in position; they are compressed and the bolt freed by the insertion of a forked key at the opposite end of the padlock.

a See especially Wright (1); Neville (1); Cuming (1); Fox & Hope (1). I owe these references to Mr H. Courtney Archer, of the Chinese Industrial Cooperatives, who was greatly impressed by the similarity between Roman and Chinese padlocks when visiting the Museum at Cirencester.

b Kolchin (1), pp. 128ff.

c Including, near home, a padlock of +1665 attached to the iron Treasurer's chest of the Royal Society. Many of these padlocks were made in the form of fishes (Pit-Rivers illustrates some, pl. x), presumably because a fish, which never closes its eyes, would be a good watchman. Indeed, a Thang (or pre-Thang) author, Ting Yung-Hui, says just this, in his ‘Thien Lu’ (cit. SF, ch. 74, p. 28).

d The earlier, of course, the more obscure. The Shu Ching has a reference in ch. 26 (Chin Thang), one of the genuine ancient chapters. It concerns the 'metal-bronze coffin' in which oaths and oracles were deposited. Omens being auspicious, the Duke of Chou opened it with a yu. Commentators
may give us Han usage, refers to *chien pi* and *kuai yo*. Commentators seem to think that some spring mechanism was used in the former (presumably for depressing tumblers), and that the latter (lit. tube-pipe) is the same thing as was meant by the word later written *yo*—if only we knew what exactly that was. The section on punishments in the *Hou Han Shu* has a *lang tang* so, apparently a padlock attached to a chain for securing prisoners. The fact that *yo* usually means a flute certainly suggests that the instrument was an elongated key, and probably a female one, such as one of those still used with spring padlocks; or perhaps even the tubular padlock itself. It does not help us much, from the mechanical point of view, unfortunately, to learn from the Ming *Hien I Pien* that the round-bodied *yo* was the old form, while the rectangular ones came later. More interesting is the statement of Tu Kuang-Thing in the early +10th century that padlocks were called ‘Solomon’s Seal locks’ (*nei jui so*), doubtless because of their resemblance to the tubular rhizome of this plant, and that they contained metal strips joined together which could be compressed or extended at will. The earliest pictorial representation, however, of the characteristic Chinese spring padlock occurs in one of the drawings in the *Ning Shu* of +1313, where it is hanging on a granary door.

That some keys fitted over projections, and others into holes, is strongly suggested by one of the biographies in the *Nan Shih*, where a ‘key and bolt’ (*yo mou*) is mentioned, and the use of a word which primarily means ‘male’ is interesting in view of the current use of the analogy among locksmiths, electricians, and engineers. In +493 we get a glimpse of the Prince of Yu-Lin (Hsiao Chao-Yeh) picking a lock of a city gate with a hooked key (*yo kou*). Similarly, the I Yuen says that in the +4th century metal keys (*chin so*) were as long as a ft. While it is hard to deduce much from the Thang term for the lock and key (*yo hsü*), the Pei Shiah speaks of ‘goose generally interpreted this as a ‘pipe with which a treasury is opened’, so that Legge (1), p. 154, his key ‘just as Medhurst (1), p. 215, before him, had ‘lock’. Barde (3) follows this tradition, but Karderen (12), pp. 34, 35, departed from it and regarded the *yo* as the bamboo tubes within which the writing-slips were kept. Perhaps he saw here he went astray; in any case we cannot form a very clear conception of this early Chinese instrument. Another word, *chiah*, commonly meaning a buckle, seems to be used for a lock in *Chuang Tao*, ch. 10, so that Legge (5), vol. 1, p. 281, translated it as ‘clasp’. Implying a ring of some sort, it points to the classical Chinese padlock.

That some keys fitted over projections, and others into holes, is strongly suggested by one of the biographies in the *Nan Shih*, where a ‘key and bolt’ (*yo mou*) is mentioned, and the use of a word which primarily means ‘male’ is interesting in view of the current use of the analogy among locksmiths, electricians, and engineers. In +493 we get a glimpse of the Prince of Yu-Lin (Hsiao Chao-Yeh) picking a lock of a city gate with a hooked key (*yo kou*). Similarly, the I Yuen says that in the +4th century metal keys (*chin so*) were as long as a ft. While it is hard to deduce much from the Thang term for the lock and key (*yo hsü*), the Pei Shiah speaks of ‘goose

That of Tai Fa-Hsing (19 (+5th century)) in ch. 77, p. 90; *Te Ching*, ch. 27, ‘The perfect door has neither bolt nor bar’ (Waley (4), p. 177), lit. ‘a good door has no shutting bolt yet it cannot be opened (*shan pi*). This reference is of considerable interest because independent researches in economic history have indicated that it was just during the Thang period in China also that safes or strong-boxes sufficiently unbreakable began to facilitate the development of banking-houses (*hsueh fang*). As we have already seen, relations between China and Byzantium (Fu-Lin) were then particularly close.

In any case, it will be clear from what has been said that there was a rather singular community of pattern between locks and keys throughout the Old World. Whether any technical ideas travelled between Asia and Europe, and if so in what direction, remains at present an attractive and important problem for further investigation. Perhaps the fundamental types developed rather early, in Mesopotamian and Egyptian civilisation, and then spread outwards in all directions, to remain essentially unmodified until modern times.

(e) VEHICLES FOR LAND TRANSPORT

Of the great invention of the wheel, which revolutionised all transportation on land, something has already been said. It is obvious, too, that one of the earliest applications of engineering principles was to vehicles, from Sumerian and ancient Egyptian times to the clavicula and the Gallo-Roman latch-raiser.

Pitt-Rivers was inclined to think that the developed tumbler lock and the spring padlock were Asian inventions which reached Europe about the –1st century, but the evidence for this is still insufficient. It appears, however, that in the +9th the Arabs had a high opinion of the products of foreign locksmiths. In his *Examination of Commerce* ‘Amr ibn Bahr al-Jahiq of Basra (d. +869) listed some of the imports of Iraq as follows:

From China come perfumes, woven silks, plates and dishes (probably porcelain), paper, ink, peacocks, good spirited horses, saddles, felt, cinnamon, and unadulterated ‘Greek’ rhubarb.

From the Byzantine domains come vessels of gold and silver, qairasand coins of pure gold, brocaded stuffs, spirited horses, slave-girls, rare utensils in red copper, invidiable locks, and lyres. (Besides these, Byzantium sends) hydraulic engineers, agricultural experts, marble-workers and eunuchs.

This reference is of considerable interest because independent researches in economic history have indicated that it was just during the Thang period in China also that safes or strong-boxes sufficiently unbreakable began to facilitate the development of banking-houses (*hsueh fang*). As we have already seen, relations between China and Byzantium (Fu-Lin) were then particularly close.

In any case, it will be clear from what has been said that there was a rather singular community of pattern between locks and keys throughout the Old World. Whether any technical ideas travelled between Asia and Europe, and if so in what direction, remains at present an attractive and important problem for further investigation. Perhaps the fundamental types developed rather early, in Mesopotamian and Egyptian civilisation, and then spread outwards in all directions, to remain essentially unmodified until modern times.

(e) VEHICLES FOR LAND TRANSPORT

Of the great invention of the wheel, which revolutionised all transportation on land, something has already been said. It is obvious, too, that one of the earliest applications of engineering principles was to vehicles, from Sumerian and ancient Egyptian times to the clavicula and the Gallo-Roman latch-raiser.

Pitt-Rivers was inclined to think that the developed tumbler lock and the spring padlock were Asian inventions which reached Europe about the –1st century, but the evidence for this is still insufficient. It appears, however, that in the +9th the Arabs had a high opinion of the products of foreign locksmiths. In his *Examination of Commerce* ‘Amr ibn Bahr al-Jahiq of Basra (d. +869) listed some of the imports of Iraq as follows:

From China come perfumes, woven silks, plates and dishes (probably porcelain), paper, ink, peacocks, good spirited horses, saddles, felt, cinnamon, and unadulterated ‘Greek’ rhubarb.

From the Byzantine domains come vessels of gold and silver, qairasand coins of pure gold, brocaded stuffs, spirited horses, slave-girls, rare utensils in red copper, invidiable locks, and lyres. (Besides these, Byzantium sends) hydraulic engineers, agricultural experts, marble-workers and eunuchs.

This reference is of considerable interest because independent researches in economic history have indicated that it was just during the Thang period in China also that safes or strong-boxes sufficiently unbreakable began to facilitate the development of banking-houses (*hsueh fang*). As we have already seen, relations between China and Byzantium (Fu-Lin) were then particularly close.

In any case, it will be clear from what has been said that there was a rather singular community of pattern between locks and keys throughout the Old World. Whether any technical ideas travelled between Asia and Europe, and if so in what direction, remains at present an attractive and important problem for further investigation. Perhaps the fundamental types developed rather early, in Mesopotamian and Egyptian civilisation, and then spread outwards in all directions, to remain essentially unmodified until modern times.
question of the evolution of vehicles it must suffice to refer to classical studies. On ancient and medieval Chinese vehicles and their construction there is also a substantial literature.

According to Haudricourt, a fundamental distinction may be made between vehicles with a central pole to which animals were yoked at the forward end, and vehicles with shafts (prolongations of the side-pieces of the frame) which permitted of more efficient methods of harnessing. There can be no doubt that both types of vehicle derived from sleds or sledges, and that the distinction between single poles and double shafts is more ancient and more important than any which have regard only to the number of wheels. Here it is assumed that the most ancient device was the triangular sled or travois (Fig. 492a), still used in some parts of the world, and that that gave rise to the rectangular sled or slide-car (Fig. 492b). Already at this point appears the distinction between the pole and the shafts. Along one line of evolution the triangular sled gave rise to the triangular cart (Fig. 492a'), from which it was an easy transition to the pole-chariot (Fig. 492a''), so familiar from a thousand representations belonging to the antiquity of our own civilisation, and seen indeed on the earliest Mesopotamian saddle-chariots of the 4th millennium. This kind of vehicle probably has also some kind of connection with the plough-beam or pole of the plough. The coupling of two of these chariots together would produce a four-wheeled wagon (Fig. 492c), but this may also have originated from the mounting on wheels of another kind of rectangular sledge (Fig. 492c', c''). Meanwhile the slide-car or rectangular sled with shafts had been mounted on wheels to form the shaft-chariot or true cart (Fig. 492b'). This did not make its appearance in Europe until the end of the Roman Empire, i.e. some half a millennium later than in China. When coupled with the pole-chariot, it gave rise in its turn to an articulated four-wheeled wagon (Fig. 492d). The coupling of type e is seen on Bronze-Age rock-carvings in Ireland.

Fig. 492. Diagram to illustrate the evolution of wheeled vehicles. a, travois or triangular sled; a', triangular cart; a'', pole-chariot; b, slide-car or rectangular sled; b', shaft-chariot or true cart; c, rectangular draw-sled; c', four-wheeled wagon derived from c; d, articulated four-wheeled wagon (b'' + a''); e, articulated four-wheeled wagon (a'' + a'); f, four-handled hod or stretcher mounted on a single central wheel (ceremonial litter, cf. p. 471 below); f', wheelbarrow with central wheel; f'', wheelbarrow with forward wheel.

* E.g. Haddon (2), the books of Capot-Rey and Baudry de Saunier, and the brilliant papers of Haudricourt (3); Lane (1); Fox (1) and Childe (10). One of the best recent surveys is that of Haudricourt & Delamarre (1), pp. 134 ff. The evolution of the vehicle can also be studied in the rich collection of illustrations assembled by Lefebvre des Noettes (1). The large work of Ginzrot, though written as long ago as 1817, is still worth consulting. Before the beginning of the 2nd millennium, all wheels were solid (a type which lives on today, as we have seen at p. 86, from China to the Orkneys and Portugal), but spoked wheels spread rapidly after that time. A thorough study of the vehicles of the Shang and Chou periods is due to von Dewall (1). Representations of vehicles from Han sources have been assembled by Harada & Komai (1), Liu Chih-Yuan (1), Anon. (22), etc., while Hayashi (1, 2) has studied the textual evidence about them. Uchida (1) has written on the vehicles of the nomads of ancient Mongolia. A multitude of further references will find mention as we proceed.

* This technique, to which the Chinese made outstanding contributions, will be the subject of a later subsection (pp. 193 ff. below).

* Still surviving in Ireland (Haddon, 2).

* Still surviving in Sardinia and in India.

* Des Noettes (1), figs. 4-10.

* In this case the four-wheeled wagon produced would have been of a non-articulated kind. Rectangular sleds of just this type still exist in China (Hommel (1), p. 322). Uchida (1) publishes ancient drawings of Hsiianh sleds.

* Cf. Fox (1) and the articles in Daremberg & Saglio on the currus (vol. 2, p. 1642), the cisium (vol. 2, p. 1201) and the iron car (vol. 9, p. 465). The +3rd-century relief of a boy's chariot (currus) with shafts on a Trier sarcophagus (des Noettes (1), fig. 73, Jope (1), p. 544) is sometimes regarded as the oldest European example. But the cisium on the leg column near Trier, a cart with two mules in shafts driven by two naked youths, is also of the early +3rd century.

Onward. The story of their diffusion and their developmental modifications, if fully told, would be an epic one, but this is not the place to embark upon it, for it would involve us in the archaeology of times anterior to the earliest Chinese civilisation, and would raise questions of ethnological distribution in those parts of the Old World furthest removed from China. Thus Fig. 377, taken from Bishop (2), shows the known distribution of the war-chariot in antiquity (towards the end of the 2nd millennium). It may now be considered established that the wheeled car, like the potter's wheel, was invented in Sumeria in the Uruk period (c. -3500 to -3200).

* Childe (10, 11, 16).
Sweden, and that of type d is still found in North Italy, while four-wheeled wagons of type c can be noted in La Tène Age bronzes.

The distribution of four-wheeled and two-wheeled vehicles throughout the Old World has been the subject of careful study by Deffontaines (1, 2) and Capot-Rey (1), from which it clearly appears that the former were associated with the steppe country of Northern and Central Asia and Europe, reaching as far west as Eastern France and Northern Italy, and penetrating into Northern India and (formerly) Northern China. Everywhere else two-wheeled carts, derived from two-wheeled chariots, held sway. The conclusion can hardly be avoided that this distribution corresponds to the character of the country, two-wheeled vehicles, turning more easily, being associated with obstructions such as hilly roads, hedges and ditches (in Europe), and irrigation channels (in China).

(1) Chariots in Ancient China

That the chariot which the Chinese originally accepted from the Fertile Crescent in the Shang period was of the pole-and-yoke type (Fig. 492a) seems to be well established from the most ancient forms of the character chhe (K 74), one of which I reproduce here. As archaeologists have clearly seen, this must imply the use of the inefficient throat-and-girth harness (cf. below, p. 305). In the Shang and early Chou periods certain horse-trappings found are very similar in design to those of Europe somewhat later (in the Hallstatt period). And the conclusion has been placed beyond all doubt by the discovery in 1950 of a whole park of Warring States chariots in a royal tomb at Liu-li-ko near Hui-hsien, some fifty miles south-west of Anyang (Fig. 379). These chariots were of the -4th or early -3rd century, and though the wood had decayed, its traces in the compacted soil clearly showed the presence of poles and not shafts. Even as late as the Chhin (the latter half of the -3rd century) there are occasional evidences from bronzes of two-
wheeled chariots with poles, and the classical writings speak from time to time of bigae and quadrigae. By the previous century, however, shafted vehicles were coming in. From the beginning of the Han onwards, all representations (of which a very large number exist, cf. Fig. 493) are unanimous that the chariot had shafts (Fig. 492b') and was drawn almost always by one horse only, with an efficient harness. This has been further demonstrated by wooden models of Former Han (— 1st-century) date excavated from tombs at Changsha in 1950 (Fig. 384). Similar models in pottery and bronze, all recovered from Han tombs, are to be seen in the Chinese museums. Occasionally, moreover (contrary to an often-held opinion), horses were marshalled in tandem to

a For example, one of the spurious chapters of the Shu Ching (ch. 8, Wu Tzu chih Ke) says that rotten reins are no good for driving six horses (Medhurst (1), p. 123). The word *su* meant a team of four. The larger number of horses would not necessarily imply the pole-and-yoke system, for three shafts could project forward from the frame of the vehicle instead of two, thus permitting four horses to be hitched by traces. Such, at least, was des Nodet’s interpretation of a Han tomb-carving collected by Chavannes (des Nodet’s (1), fig. 126). Support for this suggestion might be obtained from a remarkable Han bronze vessel in the collection of Jung Keng, which Sowerby (2) has figured. Two canopied and lattice-sided chariots are drawn respectively by four and five horses abreast, through a landscape of stylised hills and dust-clouds (Fig. 495). In the former case only three lines connect with the vehicle, and in the latter case four, but it is impossible to tell from the bronze ornamentation whether they are curved poles or leather traces. Other pictures of chariots with three, four and five horses in just this style, found on the backs of Later Han and Chin bronze mirrors, are figured by Bulling (8), pls. 71, 72, 73 and 74, but their harness is no clearer. Decision is almost equally difficult when we look at a quadriga in a hunting scene depicted on a bronze harns of Chou or Han date now in the Freer Art Gallery, and discussed by Umezawa (6) and Harada & Komai (vol. 2, pl. VI, 2)—Fig. 494. Here it would seem that there is but one central pole and that the two outermost horses are running in traces. In view of the difficulty of distinguishing traces from reins, however, many more such ancient pictures will have to be analysed, and other evidence will have to come in, before we can feel confident regarding the harness of late Chou and early Han vehicles with more than one horse. We shall return to the subject in connection with harness (cf. pp. 325 fr. below). Meanwhile, see the discussion of Hayashi Mimae (1), pp. 21 fr. The arrangement of reins and traces on Chou and Han quadrigae has been discussed by Legge (8), vol. 1, p. 192; des Nodet’s (1), and Pelliot (46), pp. 265 f. Later representations of quadrigae with central poles also occur, but generally in connection with foreign influence, as for example those of triumphal Buddhist cars in the Tunhuang frescoes. Among a number of these I may cite cave no. 148 of +776 (cf. Chiang Shu-Hung (1), pl. 21).

b Anon. (11), pp. 89, 139 f., pls. 99-102; Hsia Nai (1). We have discussed the wheels of these chariots above (p. 77).

c A large pottery model two-wheeled cart from Ch’ih-fung with a semi-cylindrical awning, and wheels about 2 ft. 5 in. diameter, is in the Chungking Municipal Museum. A smaller bronze one is in the Kansu Provincial Museum at Lanchow, and another bronze, from Nansung, is figured in Wu Wu Tahan Kuo Tzu Liao, 1954 (no. 9), pl. 20. Cf. the small bronze model described by Bulling (10).

d E.g. Sowerby (3).
draw shafted four-wheeled wagons, as is shown on a Han brick published by Rudolph & Wen. This would have been impossible without the efficient breast-strap harness.

For these reasons, Edouard Biot's reconstruction of the chariot of the Khao Kung Chi specifications as a quadriga with central pole and yokes can no longer be taken to represent the typical chariot of all Chinese antiquity. Nevertheless, the Chou Li, for which he provided his illustration, was (as we know) an intentionally archaising book, which he provided his illustration, was (as we know) an intentionally archaising book, if indeed the relevant parts of the 'Artificers' Record' contained in it do not themselves go back to the -4th century, i.e. to the time when the pole-and-yoke chariot was beginning to give place to the shaft chariot. It may well be that the Chinese artisans did not make much change in the technical terms when they embarked upon their great invention towards the end of the Chou period, probably at the late Warring States time, of replacing the pole, yoke, and inefficient harness of horse chariots, by the shafts and the efficient harness. A whole monograph could be devoted to a minute examination of the terms which have chhd as their radical, drawing upon the Chou Li and other late Chou and early Han texts; here it would take us too far even to sketch what could be done, and a few tentative comments must suffice.

At an earlier stage mention has been made of the different wheelwrights and wagon-builders detailed in the Chou Li (p. 16), and elsewhere something has been said about the technical terms for the parts of wheels (p. 75). There are so many dimensions given in the text of the Khao Kung Chi that quotation would be tedious, but it may be of interest to glance at a sketch of the typical Chhin and Han vehicle based both on textual and archaeological evidence (Fig. 496); it is noteworthy for the great double curve of the shafts. This was the continuation of a tendency already visible in Sumerian and other ancient Mesopotamian pole types, manifesting the connection which there had certainly been. Frequently the shafts narrowed at the top to form a small yoke.

The general specification (which was modified for special purposes, such as war-chariots) provided that the axle (chhu, khi), of a definite length or gauge (hau), should be 3 ft. above the ground. The wheel, whether with spokes (fu) fitting into a rim with fellos (jou, waung?), or solid (chhuan), was thus to be some 6 ft. in diameter.

At the meeting of wheel and axle there was a hollow outer bearing of bronze or iron (hangu, t'ii, huan),4 around which the hub (chhi, chi) projected, strengthened with animal sinews glued together and tightly covered over with leather (thao). There could be a metal hub-cap or nape-band (huan), more usual and more important was the axle-cap (sei') which held the wheels in correct position on the axles by means of a linch-pin (lin, hia) like our cotter-pins. The axle-beam supported the lower frame (chhun, fu, fu), with its side-pieces (chhe), vertical members (chio), and hand-bars (shih, hong). The pole (chou) or shafts (yuan) described a curve 'like water pouring out of a vase'. At the forward end the transverse bar (hau) was first attached medially by a connection (ji, jieh), to the pole and carried two 'yokes' (fe or o, chhi)

The text of the Khao Kung Chi makes clear that the standard vehicle specifications were closely connected with those for standard weapons such as spears and lances. It says also that if the pole is not sufficiently curved it will rise upon the wheel, while the

4 Cf. des Noettes (1), figs. 13, 15; Childe (11), fig. 154 a.

5 Ch. 11, pp. 50-162 (ch. 46, Biot, vol. 2, pp. 493 f.).

6 Modern traditional examples may be seen in Hommel (1), p. 333; we have already had occasion to discuss them (p. 80 above).

7 The Chou foot was about 8 in.; the height of an average man is stated in the text to be some 8 ft.

8 This generally took the form of an elongated slightly tapering cylinder, but the Lanchow Museum examples from the early -7th century are given in Komai (1), vol. 2, pIs. 80, 81; we have already had occasion to discuss them (p. 41 above).

9 Although the actual examples may be seen in Hommel (1), p. 333; we have already had occasion to discuss them (p. 80 above).

10 WeIl, examples from the early -7th century are given in Komai (1), vol. 2, pI. 80; we have already had occasion to discuss them (p. 41 above).

11 A great variety of bronze chariot-fittings are known, cf. Koepf (1), pls. 25, 26, 27, 43.
if the curves are too sharp it will break. To understand the significance of this curving as it applied to shafts it is necessary to realise that the traces of the breast-strap harness (see below, p. 305) were attached to the centre point of the shafts between the two inhections, thereby exerting a direct and efficient traction on the vehicle. Traces from any additional horses were connected to it by special rings (chhau). The high curving shafts forward of the centre point were really unnecessary, but betray the origin of the arrangement from the earlier pole and yokes, that is to say, from a system in which it was essential that the wooden projection should reach as far forward as the necks of the animals. The ancient Chinese chariot lives on, with straightened shafts, in the common country cart of North China today (Fig. 498), though the semi-cylindrical awning or wagon-roof has long replaced the pavilion- or umbrella-shaped canopies of the fashionable vehicles of the Han. But there are a few Han representations of military or goods carts (chan chhê) extraordinarily like the typical vehicles of modern times (Fig. 499).

Though they may have seemed numerous, we have mentioned here only a few of the technical terms which are found in the old texts on chariotry and cart-craft. They have considerable interest and importance, for vehicle-building was one of the oldest occupations of artisans, and a knowledge of the terms which they coined is almost indispensable for the study of much later and more complicated engineering texts concerned with milling, textile or horological machinery.

As regards the gauge of Chinese chariots and carts, we had occasion to notice earlier (Vol. 2, p. 210) the standardisation introduced by Chhin Shih Huang Ti in the 3rd century. So lasting was this tradition in particular parts of the country that when von Richthofen was travelling in China twenty-two centuries later, he found that it was necessary to change the axle-trees of his carts at one point, since in Shensi, Shansi and all North-Western China the gauge was some 20 cm. broader than that of the eastern provinces, and the size of the ruts made a conversion essential. Stores were kept in readiness, however, and the adaptation was quickly effected.

The general history of wheeled transport in Chinese culture, when someone comes to write it, will form a deeply interesting chapter in economic development. In the fairly large literature in Chinese and in Western languages on Chinese economic history we seem to lack studies such as those of Willard (1) on the role of cart and wagon transport in medieval Europe. There are of course some difficulties in their interpretation, and authorities may disagree in certain matters. Some of the founders of modern Chinese archaeology devoted much study to the texts concerning vehicles, notably Tai Chen in his Khao Kung Chi Thu of +1746 (on which see Kondo, 1); and Fung Pao in his Khao Kung Hsi of two years later. Chiang Yung continued this critical work in his Chon Li I Chi Yao (ch. 7, pp. 156 ff.) of +1791. The most complete study perhaps was that of Juan Yuan about 1850, entitled Khao Kung Chi Chhê Chih Thu Chhê (Illustrated Analysis of Vehicle Construction in the Artificers' Record). Diagrams from this appear in Figs. 500 and 501. The dimensions given in the sketch of the chariot in Fig. 496 are only very approximate, but resemble most closely those given by Juan Yuan (2). His contemporary Chhêng Yao-Thien had also worked on the same subject, as in his Khao Kung Chhuang Wu Hsiao Chi of about +1855. A comparison of the ideas of these scholars on a particular subject (wheel-dish) will be found in Lu, Salaman & Needham (1).
Fig. 498. Country cart at Lanchow, Kansu (orig. photo., 1943).

Fig. 499. Baggage-cart (chao chih) of the Han period; rubbing of a moulded brick from Pheng-hsien, in the Chungking Municipal Museum (Rudolph & Wén, 1).

Fig. 500. A diagram from Juan Yuan's archaeological study of vehicle building according to the Chou Li, entitled Khao Kung Chi Chih Chih Thu Chieh (1820). This drawing is an isometric projection (cf. Sect. 28d) of the body of a Chou or Han chariot. The legends say that the boarding outlined at the top of the picture fits in front of the body over the pole as shown by the dotted line in the main diagram. From Huang Chhing Ching Chieh, ch. 1955, p. 190.
This conservatism is outdone only by the carts of the Indus Valley, which possess the same gauge today as their Bronze Age predecessors, to judge by the ruts at Harappa.

(2) WAGONS, CAMP-MILLS AND HAND-CARTS

In what follows we shall take up in order the Chinese invention of the wheelbarrow and the land-sailing carriage, then certain specialised vehicles of much engineering interest involving gear-trains, the hodometer and the south-pointing carriage; ending finally with a disquisition on the development of the efficient animal harness, a process for which China and Central Asia undoubtedly deserve the thanks of the rest of the world. Before proceeding further, however, there are a few remarks to be made on certain later Chinese vehicles, some of large size, on imperial carriages noted for their lack of vibration, and on camp-mills, i.e. machines for grinding and pounding made mobile by being mounted on vehicles and driven by animal-power, either while moving or when brought to rest.

A very large vehicle was built for the emperor Yang of the Sui dynasty about + 610. The Hsi Shih Shuo says:

Yuwen Khaï built for Sui Yang Ti a "Mobile Wind-Facing Palace" (kuan feng hsing tien); it carried guards upon its upper deck, and there was room for several hundred persons to circulate in it. Below there were wheels and axles, and when pushed along it moved quite easily as if by the help of spirits. Among those who saw it there was no one who was not amazed.

This was probably far from the first time that large vehicles for special purposes had been constructed. Towers on wheels for attacking city-walls (chhung), pheng, go back to the treatises on fortification of Mo Tzu’s followers (—4th century), as also do chariots armoured in various ways (chhung). Much later on, we get an echo of giant vehicles in one of the illustrations of the +17th-century Thien Kung Khat Wu, a four-wheeled dray with nine shafts drawn by eight horses, but the use of such vehicles must have been very restricted by the lack of good roads, if not wholly imaginary.

Representations of this kind in paintings of late date showing imperial processions are not uncommon, but the impossibility of the technical details of their harness stamps them as fanciful. Nevertheless, judgment should be reserved on what exactly was constructed in late times in China. In Hadji Muhammad’s account of Cathay,

Footnotes:

a Childe (10).
b On Han wagon-wheels, cf. pp. 80–1 above.
c Ch. 6, p. 118; tr. suct.
d The meaning of this name is not obvious; its dictionary translation is “wind-watching”, but it seems very unlikely that the purpose was either meteorological or folkloristic, and I suspect that what we have here is another reference to the use of sails and the wind as motive power, since just this invention had been made in the time of Liang Yuan Ti half a century earlier (see on, p. 278). Cf. Vol. 4, pt. 1, p. 108.
e Cf. Tso Chuan Pu Chu by Hui Tung (+ 1718), ch. 6, p. 138.
f Ch. 9, pp. 124, 132; cf. TDCC, Kuan heng tien, ch. 174, pp. 250, 258.
g One of this kind, stated to be Yuan in date, is figured by des Noettes (1), fig. 130, and I saw some earlier than that among the cave-paintings at Tunhuang; there is not much to be got out of them.

1 2 3 4 5 6 7 8 9 10
delivered to Messer Giov. Battista Ramusio in +1550, there is a curious passage: 'They get their blocks of stone sometimes from a distance of two or three months' journey, conveying them on wagons that have some forty very high wheels with iron tyres; and these shall be drawn by five or six hundred horses or mules.'

Someone should make a study of the monographs on the imperial fleet of vehicles contained in most of the dynastic histories from the Hou Han Shu onwards, and traditionally entitled Yu Fu Chih. There is much to be learnt from them about the emperors' cars and carriages, but generally their interest centres on the ornamentation and its symbolism. There was something more to the yu lu, however, which attracted great attention in the time of the third Thang emperor, Kao Tsung (+650 to +683), and for long afterwards. Shen Kua tells us about it in the Meng Chi Pi Than thus:

In the time of Thang Kao Tsung a large State carriage was made with jade ornaments, and used by him. Three times it was used to carry him to Thai Shan (for the sacred ceremonies on that venerable mountain), and numerous journeys did he also make in it to distant places, but still today (+1268) it is sound and firm and steady. If a cup of water is placed in the carriage while it is moving, the water does not spill. In the Ching-Li reign-period (+1041 to +1048) all the skilful mechanicians available were called upon to construct another such carriage, but it proved to be too unsteady, so it was left unused. In the Yuan-Feng reign-period (+1079 to +1085) another carriage was built, but in spite of some marvellous workmanship it fell to pieces on its trials before it was ever presented to the emperor. There is still only the Thang vehicle enduring with all its steadiness and freedom from vibration. But no one has been able to discover the methods by which it was made. Some people maintain that supernal spirits protect the carriage and bear it along; all I can say is that when one is walking behind it one hears certain vague noises coming from within.

This is surely interesting. Shen Kua was not the man to say that a cup of water would not spill in the carriage if in fact it did, and the story reminds one of the prophecy of George Stephenson so much later about the future of railway transportation. Without going so far as to suggest that the principle of the gimbal was made use of (as Branca suggested early in the +17th century), it may have been that the Thang engineer whose name has not been preserved employed roller-bearings or leaf-springs, though he must have enclosed them in such a way that his successors could not ascertain the technique without taking the equipment to pieces. If it was rollerbearings, he long anticipated Leonardo (+c. +1495), to whom are attributable in the recent West and if leaf-springs were used (which in view of their ancient application in the recent West) and if leaf-springs were used (which in view of their ancient application in the crossbow would seem more probable) the anticipation of European technique would be even more striking, for Feldhaus was unable to adduce any certain example on vehicles earlier than Faustus Veranus' specification of +1353, and des Noëttes could improve on this only by a picture of +1568. Possibly some kind of suspension was used, with chains or leatherstraps, as in the chariots branslant of the European +14th century.

The learned Beckmann, in his history of inventions, devoted a brief section to camp-mills. Mills mounted on wagons, which could follow armies like field ovens and field forges, must have been an obvious military requirement from early times. We have already seen (p. 187 above) that one of the theories of the origin of handquinns attributes them to the needs of detachments of Roman legionaries. Extension of the idea to wheeled transport was only to be expected towards the end of the medieval period when roads improved, and that is what the European records show. In +1607 Zonca drew a picture of a field mill which was worked by animal-power when the wheels of its carriage were pinned down in camp or near billets; he said that it had been invented in +1580 by a military engineer, Pompeo Targone, famous for his part in the siege of La Rochelle and the Huguenot wars. This was often afterwards reproduced, as by Beyer; and more than one draught of a camp-mill geared to the wheels of the carriage, so that it ground in transit, was published during the first decades of the +17th century. In due course the drawing of Targone's camp-mill (Fig. 502) found its way to China, for we see it in the Chi hi Thu Shu of +1627, along with the other machines offered by the Jesuit Johann Schreck (Fig. 503), where the two mills are worked by gearing from a rotating bar and whippettree harnessed to a single horse.

Presumably neither Schreck nor Wang Ch'eng knew that just about 1300 years before, in +622, a horse-whim was described by a Chinese writer. In the History of the Wei, Shih Chih Chou I, p. 1087, it is mentioned that camp-mills were used in the campaign against the Xianbei. The ancient China was familiar with such devices.

The learned Beckmann, in his history of inventions, devoted a brief section to camp-mills. Mills mounted on wagons, which could follow armies like field ovens and field forges, must have been an obvious military requirement from early times. We have already seen (p. 187 above) that one of the theories of the origin of hand-quirns attributes them to the needs of detachments of Roman legionaries. Extension of the idea to wheeled transport was only to be expected towards the end of the medieval period when roads improved, and that is what the European records show. In +1607 Zonca drew a picture of a field mill which was worked by animal-power when the wheels of its carriage were pinned down in camp or near billets; he said that it had been invented in +1580 by a military engineer, Pompeo Targone, famous for his part in the siege of La Rochelle and the Huguenot wars. This was often afterwards reproduced, as by Beyer; and more than one draught of a camp-mill geared to the wheels of the carriage, so that it ground in transit, was published during the first decades of the +17th century. In due course the drawing of Targone's camp-mill (Fig. 502) found its way to China, for we see it in the Chi hi Thu Shu of +1627, along with the other machines offered by the Jesuit Johann Schreck (Fig. 503), where the two mills are worked by gearing from a rotating bar and whippettree harnessed to a single horse.

Presumably neither Schreck nor Wang Ch'eng knew that just about 1300 years before, in +622, a horse-whim was described by a Chinese writer. In the History of the Wei, Shih Chih Chou I, p. 1087, it is mentioned that camp-mills were used in the campaign against the Xianbei. The ancient China was familiar with such devices.
earlier the history of camp-mills had started in China. In the *Yeh Chang Chi*, an account of affairs at the capital of the Hunnish Later Chao dynasty (c. +340), Lu Hui, after mentioning that the emperor, Shih Hu, had a south-pointing carriage and a hodometer, says:

He also had pounding-carts (or wagons) (*chheng chheth*), mounted on the body of which there were wooden figures pounding all the while with tilt-hammers as the carts moved. Every ten *li* traversed meant that one *hu* of rice was hulled (on each cart). Moreover, he had mill-carts (camp-mills) (*mo chheth*) with rotating millstones mounted on them, and in these also a *hu* of wheat would be ground every ten *li*. All these vehicles were painted red with bright designs. Each was in the charge of one man, and as it moved along all the skill of the

*Fig. 501. The field mill as it appeared in the *Chhi Chhi Thu Shao* of +1627 (ch. 3, pp. 318, 346). At the top: 'The Fifth Diagram' (of the Grinding-Mills Section). The artist added details not in Zonca's picture, suggesting chain or rope drives from the road-wheels (cf. Fig. 465); could he have had in mind a hearse or an ambulance? As for the shafted hand-cart, it doubtless originated as early as the shafted chariot itself, and the special term for it, *niem*, depicts clearly in bronze forms a cart with pole and yokes pulled by two men.

Another version has it that each vehicle had one or more hulling tilt-hammers worked off the right wheel or wheels, with rotary millstones worked off the left. We have not met with any later accounts of the use of these machines, but it is hard to believe that they died out completely, even if they had been forgotten by Wang Chêng's time. One should remember that the capital, Ye-h, was in northern Honan, and so in the North China plain, doubtless more suitable for the use of such almost nomadic devices than other centres such as Hangchow or Chihêng-tu. Indeed, the invention has the air of a cross-fertilisation between Hunnish nomadic needs and Chinese sedentary engineering.

A few words may be added about small vehicles pushed or pulled by men. That wheeled toys existed in the Han we know from carvings on the walls of the tomb of Wang Tê-Yuan, who died in +100; a child in a long-sleeved gown is propelling a two- or four-wheeled object at the end of a stick.\(^4\) Even more remarkable is a scene in one of the Chhien-fo-tung frescoes dating from +851, where a woman is pushing a low cradle-shaped vehicle with four wheels.\(^5\) It seems to contain a person lying down, and as it is not quite long enough for an adult it is probably a perambulator rather than a hearse or an ambulance. As for the shafted hand-cart, it doubtless originated as early as the shafted chariot itself, and the special term for it, *niem*, depicts clearly in bronze forms a cart with pole and yokes pulled by two men.\(^6\) But in its simplest form it must have been much older, for there is a *Shih Chêng* reference\(^7\) and the *Teo Chuan*, describing events of -681, relates how a refugee lord, Nankung Wan, pushed his mother in a hand-cart along the road to safety.\(^8\) In the Han such vehicles seem to have been prominently associated with the internal transport of imperial palaces. Perhaps the reference most interesting to us concerns the Warring States iron-master, Shih shih,\(^9\) already mentioned (p. 26).

The Cho family were men of Chao who became rich by iron-smelting. When Chhin defeated Chao (-228 to -222) they were taken captive and deported to Shu (Szechuan). Both husband and wife walked, pushing a cart...\(^1\)

* a Met with before (pp. 38, 159), and to be met with again (p. 287).
* b This occurs on the balcony outside cave no. 156.
* c Modern Lin-chang, near Anyang in northern Honan, north of the Yellow River.
* d These reliefs are now preserved in the Sian Museum, where I had the pleasure of studying them in 1958. They had been discovered five years earlier at Sui-tê near Yenan. The style may be seen from Anon. (21), pp. 8ff.
* e This occurs on the field mill in the *Chhi Chhi Thu Shao* of +1627 (ch. 3, pp. 318, 346).
* f See Jung Kêng (3), p. 726, or Sowerby (3).
* g Mao no. 217, tr. Karlgreen (14), p. 180. 'Barrow' is not good here (Waley (1), p. 130) as it invites confusion with the wheeledbarrow proper—on which there hangs a tale.
* h Duke Chuang, 12th year; tr. Couvreur (1), vol. I, p. 156.
* i Shih Chi, ch. 120, p. 172; tr. auct. adj. Swann (1), p. 452. Mr Cho was one of the Chhin 'capitalists' to whom we shall return in Sect. 48.

1 王得元 2 耕 3 沈富隆 4 余氏 5 醌
27. MECHANICAL ENGINEERING

They were walking towards the restoration of their fortunes, for in Szechuan Mr Cho found an iron mountain and became much more wealthy than before. Representations of hand-carts on Chhin and Han objects are not very uncommon—one such is shown among the tomb-carvings near Chiating in Western Szechuan (c. + 150), reproduced in the collection of Rudolph & Wên.

All through Chinese history such small two-wheeled vehicles were in use. References to them occur in the Tung Ching Mêng Hua Lu, a description of life at the old Sung capital Kaifêng, written by Mêng Yuan-Lao about + 1140. The ‘rickshaw’ was their late descendant, but little used in China for some generations until reintroduced from Japan. Several representations are to be seen on the Tunhuang frescoes. Thus cave no. 431, of Northern Wei and Thang date (+ 5th to + 8th centuries) has a very clear picture of a two-wheeled hand-cart pushed by one man. But in cave no. 148, the Thang paintings of which may be dated at + 776, there is another man pushing a small cart which might be a single-wheeled wheelbarrow. This brings us to the next phase of our discussion.

The Wheelbarrow and the Sailing-Carriage

Nothing could be more familiar as a vehicle of everyday life than the ordinary wheelbarrow. Perhaps Europeans hardly think of it as a vehicle, since the type used in the West is, as we shall see, very ill-adapted for the carrying of heavy weights, but the Chinese wheelbarrow is still so constructed that as many as six people may ride on it, and it is universally used there for all kinds of freight and passenger transportation. Contrary to what most people would imagine, there is general agreement among historians that the wheelbarrow did not appear in Europe until the late + 12th or even the + 13th century. Builders of castles and cathedrals must have adopted with alacrity a simple device which cut in half the number of labourers required to haul small loads by substituting a wheel for the front man of the hod or stretcher. But from the beginning, the European design placed the wheel at the furthest forward end of the barrow, so that the weight of the burden was distributed equally between the wheel and the man pushing.

That this was not the case with the Chinese wheelbarrow was appreciated by many Europeans who were in China in the + 17th century and afterwards. Thus in + 1797 van Braam Houckgeest wrote:

Among the carriages employed in this country is a wheelbarrow, singularly constructed, and employed alike for the conveyance of persons and goods. According as it is more or less heavily loaded, it is directed by one or two persons, the one dragging it after him, while the other pushes it forward by the shafts. The wheel, which is very large in proportion to the barrow, is placed in the centre of the part on which the load is laid, so that the whole weight bears upon the axle, and the barrow men support no part of it, but serve merely to move it forward, and to keep it in equilibrium. The wheel is as it were cased up in a frame made of laths, and covered over with a thin plank, four or five inches wide. On each side of the barrow is a projection, on which the goods are put, or which serves as a seat for the passengers. A Chinese traveller sits on one side, and thus serves to counter-balance his luggage, which is placed on the other. If his baggage be heavier than himself, it is balanced equally on the two sides, and he seats himself on the board over the wheel, the barrow being purposely contrived to suit such occasions.

The sight of this wheelbarrow thus loaded, was entirely new to me. I could not help remarking its singularity, at the same time that I admired the simplicity of the invention. I even think, that in many cases such a barrow would be found much superior to ours.

In addition to this, I should say that the wheel is at least three feet in diameter, that its spokes are short and numerous, and consequently that the fellos are very deep; and that its convexity on the outer side, instead of being very flat, like common wheels, is of a sharp form. This narrowness of the outer edge (rim) of the wheel appeared to me at first sight very astonishing that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), as was noticed by Lin Yü-Thang (5), p. 34. It is with some astonishment that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), that this vehicle was the invention of an American missionary in 1870.

It is with some astonishment that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), that this vehicle was the invention of an American missionary in 1870.

I was fortunate enough to have the opportunity of studying them again in situ in 1938.

I have a vivid recollection of a long ride in 1943 outside a stretch of the walls of Chhengtu on one of the wheelbarrows there plying for hire. Matteo Ricci also travelled thus in his day (Trigulius, Gallagher tr., p. 372).

No. 3. In another (no. 2) we see a child being drawn along in a kind of perambulator with large solid wheels and upward-curving shafts which imitate those of full-size chariots. Many of these carvings show the general construction of the wheelbarrow, so that the weight of the burden was distributed equally between the wheel and the man pushing.

This narrowness of the outer edge (rim) of the wheel appeared to me at first sight very astonishing that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), as was noticed by Lin Yü-Thang (5), p. 34. It is with some astonishment that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), that this vehicle was the invention of an American missionary in 1870.

It is with some astonishment that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), that this vehicle was the invention of an American missionary in 1870.

I was fortunate enough to have the opportunity of studying them again in situ in 1938.

I have a vivid recollection of a long ride in 1943 outside a stretch of the walls of Chhengtu on one of the wheelbarrows there plying for hire. Matteo Ricci also travelled thus in his day (Trigulius, Gallagher tr., p. 372).

As was noticed by Lin Yü-Thang (5), p. 34. It is with some astonishment that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), as was noticed by Lin Yü-Thang (5), p. 34. It is with some astonishment that we read in Couling (1), p. 262, Sowerby (3) and Chamberlain (1), that this vehicle was the invention of an American missionary in 1870.

I was fortunate enough to have the opportunity of studying them again in situ in 1938.

I have a vivid recollection of a long ride in 1943 outside a stretch of the walls of Chhengtu on one of the wheelbarrows there plying for hire. Matteo Ricci also travelled thus in his day (Trigulius, Gallagher tr., p. 372).
solution of Chuko Liang, the great general of the Kingdom of Shu so noted for his technical interests, to the problem of supplying his armies. The essential passages occur in the San Kuo Chih:

In the 9th year of the Chien-Hsing reign-period (+ 231) (Chuko) Liang again came forth from Chhi Shan, transporting (the army) supplies on 'Wooden Oxen' (mu nü)1.

A page later, the account continues:

In the spring of the 12th year of the same reign-period (+ 234), knowing that the main army would come out from Yeh-ku (Slanting Valley) he used 'Gliding Horses' (liu ma)2 to transport supplies.

And furthermore:

(Chuko) Liang was a man of great ingenuity. By adding some parts and taking others away, he improved the multiple-bolt arcuballista (lien nu). Moreover, the 'Wooden Ox' and the 'Gliding Horse' were both invented by him.

Then the commentary of Phei Sung-Chih (+ 430) on the history goes on to quote the Wei Shih Ch'uan Chhia3 (Spring and Autumn Annals of the (San Kuo) Wei Dynasty), by Sun Sheng,4 as follows:

In the 'Collection of Chuko Liang's Writings' (Chu Liang Chi 5) there is an account of the method of making the 'Wooden Ox' and the 'Gliding Horse'. The 'Wooden Ox' had a square belly and a curved head, one foot (chiao)6 and four legs (tsu); its head was compressed into its neck, and its tongue was attached to its belly. It could carry many things, and made thereby the fewer journeys, so it was of the greatest use. It was not suitable for small occasions, but was employed on long journeys; (in one day) it could go several tens of li if there was special need, or about twenty li if in convoy. The bent part corresponded to the ox's head, the double part7 corresponded to the ox's limbs (chiao); the cross part corresponded to the ox's neck, the revolving part (chuang chi)8 corresponded to the ox's foot (tsu), the covered part corresponded to the ox's back, the square part corresponded to the ox's belly, the hanging part corresponded to the ox's tongue, the curved part9 corresponded to the ox's ribs (le); the carved part corresponded to the ox's teeth, the standing part corresponded to the ox's horn, the thin part corresponded to the ox's halter, the handles (nieh)10 corresponded to the traces and the whippetree (chhiu)11—and each half of the axle faced upwards to the double shafts. In the time taken by a man (with a similar burden) to go 6 ft., the Wooden Ox would go 20 ft. It could carry the food supply (of one man) for a whole year, and yet after 20 li the porter would not feel tired.

6 Ch. 35 (Shu Shu, ch. 2), p. 13a, tr. auct. 8 P. 14a. 10 P. 20a, tr. auct.
7 P. 16a; all tr. auct. 9 The wheel.
8 Side supports to prevent toppling over. 11 The housing separating the wheel from the freight.
9 The wheel. 1 This was a technical term also applied to the swing (p. 376 below). In appropriate contexts it could also mean the breeching or crupper straps of harnessed horses (p. 309 below). Cf. p. 328.
10 This is quite feasible, assuming a ration of 1 lb. a day, which would mean something of the order of 3 cwt. on the vehicle.
11 The whole passage, with variations, is also given, together with the accompanying paragraph on dimensions, in CSHK (San Kuo sect.), ch. 59, p. 7b.
It is not at all difficult to discern the wheelbarrow beneath the somewhat picturesque phraseology, which almost seems as if it might have been a kind of code, for after all, the design was military, and could well have been considered 'confidential'.

There follows a long passage in which minute dimensions and measurements are given. It is too tedious to quote, and at first sight so obscure that some have abandoned hope of reconstructing with its aid the exact wheelbarrow of Chuko Liang's time, indeed Goodrich has doubted even the conclusion that a wheelbarrow is involved at all. We can only say that a careful scrutiny of the text has led us to the view that the passage is not as garbled as it might seem, and that it points quite clearly to a wheelbarrow of a type which remained traditional thereafter. To make the measurements fit, however, it is necessary to adopt certain identifications; for example, the 'ribs' (le) may plausibly be taken to indicate the internal housing which protects the freight from the large revolving wheel. The box of ribs in an animal is, in a sense, a box within a box. Again, the 'bent part' is the front, the 'cross part' the axle, and the 'double part' the bearings. Kang must be taken to mean crossbars, khung mortises, and khan the small piece of the frame carrying the axle-bearings. The upright sides and ends would be dismountable. All these elements can be seen in the picture of the wheelbarrow given by the Thien Kung Khai Wu (Fig. 506), including the internal wheel-housing. There it is called the 'single(-wheel) push-barrow' (tu thui chau), but other terms used at different periods include the nouns khuang, and the verb jung.

Fig. 505. Reconstruction of Chuko Liang's army service wheelbarrow according to the specifications in the Chuko Liang Chi (c. +330), preserved by Sun Sheng (c. +360) and Phei Sung-Chih (+430). The probable meanings of the technical terms are discussed in the text.
Sometimes there was a disposition to regard Chuko Liang's devices as mysterious or supernatural, but in the +11th century Kao Chiâng1 was quite clear that they were wheelbarrows.2 He wrote:3

Chuko Liang, prime minister of Shu, when he took the field, caused to be made the 'Wooden Ox' and 'Gliding Horse' for the transportation of the army supplies. In Pa and Shu the ways were difficult, and these (vehicles) were more convenient for getting over the hills. The 'Wooden Ox' was the small barrow (hsiao chhê) of the present day, and it was so called because it had the shafts projecting in front (so that it was pulled); while the 'Gliding Horse' was the same as that (wheelbarrow) which is pushed by a single person (and so has the shafts projecting behind). Ordinary people nowadays call these 'Chiangchow1 Barrows'.

According to the geographical chapter of the Hou Han Shu, there was a Chiangchow in Szechuan. At that time Liu Pei had occupied the whole of Szechuan, so I suspect that Chuko Liang's invention was originally made at Chiangchow, and thus got the name which was continued by later generations.

Kao Chiâng thus put forward the plausible suggestion that the Wooden Ox had the shafts pointing forward, while the Gliding Horse had them pointing backwards.5 The order of the two inventions would then have occurred exactly according to expectation, since the obvious first thought would be to copy the shaft-chariot, and the transposition of the shafts would have taken place a little later, after some practical experience had been gained. In any case, the essence of the invention was economical, for (as we have seen) there is every reason to think that small hand-carts with two wheels, and shafts, for human traction, had been used several centuries beforehand.

One may pause here to point a moral. In the wheelbarrow we have an outstanding example of those many facts which undermine, and indeed overthrow, the classical European stereotype of China as a civilisation with unlimited man-power incapable of inventing and adopting labour-saving devices. Exactly what the economic situation was in the Han when the wheelbarrow first came widely into use remains for further research to elucidate—it may well be that in various historical periods particular parts of China suffered severe labour-shortages.6 In any case long priority is here Chinese, and the surprised and grateful barbarians were European.

It has long been customary in China to regard Chuko Liang as the actual inventor of the wheelbarrow. When the present section was first drafted we also inclined to this opinion, but since then evidence has become available which strongly indicates a date rather more than two hundred years earlier as the time of the first invention, i.e. about the end of the Former Han. Of course even in the +3rd century others were concerned besides Chuko Liang. One of the leading technicians of the State of Shu was Phu

[1] In later ages, this became traditionally accepted; cf. Lin Chhing's remarks in Ho Kung Chi Chai Thu Shuo, ch. 4, p. 11b.
[2] Shih Wu Chi Yuan, ch. 8, p. 25b., tr. auct. 4 Modern Szechuan.
[3] Though nothing has so far been said concerning the animal traction of wheelbarrows, this became very common in China as we shall shortly see, and the first of these two types would have facilitated it.
[4] The man behind had only to keep the vehicle steady. There are of course other possible interpretations of the two designs of Chuko Liang, as we shall suggest in due course.
[5] As we remark elsewhere (pp. 28, 328), we know of no instance in China of the refusal of technical innovation for economic reasons.

Fig. 306. "The one-wheeled push-barrow of the south", from Thien Kung Khai Wu, ch. 9, p. 14b (+1637).
PLATE CXCI

Fig. 507. A wheelbarrow in a relief of c. +150; the tomb of Shen Fu-Chih at Chhô-hsien near Paoning in Szechuan (Segalen, de Voiens & Lartigue, 1).

Fig. 508. A wheelbarrow depicted on a moulded brick taken from a tomb of c. +18 at Chhengtu, Szechuan. Only the right-hand bottom portion of the picture is shown. Rubbing from the Chungking Municipal Museum.

27. MECHANICAL ENGINEERING

Yuan, whom we shall meet again in connection with iron and steel metallurgy, held military office in the Western Command under Chuko. A fragment of a letter from Phu Yuan to his commander-in-chief has survived, which says:

I and my workmen now entirely understand your excellent suggestion, and have constructed a 'Wooden Ox' with horizontal timbers joined together and double shafts. (In the time taken by) a man (with a similar burden) to go 6 ft., the 'Wooden Ox' will go 20 ft. A man can carry his whole food supply for a year on it.

Another contemporary who may have been concerned was the naturalist and engineer Li Chuan, who like Chuko Liang (and perhaps under his auspices) improved the crossbow and the arcuballista. In any event, the wheelbarrow was indissolubly associated in later Chinese song and story with the military exploits of the State of Shu.

The fact is that all these men were at best improvers of a single-wheeled carrier which had been in use throughout the Hou Han period. Justification for this view, amounting almost to proof, comes from two sources, epigraphic and (in a more complex way) textual. As has long been known, the Wu Liang tomb-shrine reliefs, dating from c. +147, depict the story of Tung Yung, depicting the manner in which he was redeemed by the remarkable skill of the girl he had married, who after weaving three hundred rolls of silk in a single month revealed that she was in fact the 'Weaving Girl' and disappeared. According to Tuan Shih, the Sou Shen Chi says that Tung Yung tilled the fields and pushed his father about on a kind of barrow called a lu chhe. We shall have more to say about this expression, but the Wu Liang relief does indeed show the father sitting on the shafts of a small vehicle (Fig. 509).
on the left' Tung Yung's father sitting on a wheelbarrow; a scene from the Wu Liang tomb-shrine and sarcophagus, but by this time the vehicles have become housing of the large Chinese wheelbarrow wheel, and resting on it is a pot of some kind exactly as objects do today (cf. Fig. 509). Greater certainty is provided by another carving of about the same date. A wheelbarrow appears sculptured at Chhü-hsien near Paonom on one of the pillars of the tomb of Shen Fu-Chün, a Szechuanese notable of about +150. One can see from Fig. 507 that the shafts and bearings are unmistakably outside the single wheel. Segalen, de Voinsins & Laritg, to whom we owe a description of this tomb, themselves interpreted the relief in this way. More recently a Han brick of c. +118 was excavated at Chhêngtu which shows a man pushing a wheelbarrow with a load, in front of a horse-cart with a barrel-vault roof (Fig. 508). Perhaps the load is a dowry box, for this kind of cart is known to have been used by women. Again the housing of the single wheel is clearly to be seen. Thus the pictorial evidence takes us back to the beginning of the +2nd century.

What the texts say is equally important but much more difficult to analyse, and Tuan Shih (1) has done well to raise the question of what exactly the lu chhê (2) was. Is the wheelbarrow concealed behind this ancient and soon obsolete term? As we shall see, the problem essentially consists in determining the nature of what at first sight might be translated 'deer-cart', but which in fact can only be correctly translated 'pulley-barrow'. In order to understand this we have to find our way through a maze of definitions and long-disused technical terms in the ancient dialectal dictionaries—an operation unexpectedly rewarding. But first it is necessary to demonstrate the existence and use of this small vehicle and its circumstantial description. The Shih Chi has no mention of it, and it is also seemingly absent from the Chhien Han Shu, but from the beginning of the +1st century it is constantly turning up. Pao Hsian, an upright censor who lost his life under Wang Mang in +3, married when young Huan Shao-Chün, the daughter of a wealthy scholar whose disciple he had been. Since Pao's family was poor he was rather embarrassed when the time came to go home, but the excellent girl 'changed into rough and short clothes, and helped him to push a lu chhê back to his village in the country'. This would have been about +30. Fifty years later, when the Red Eyebrows rebellion was threatening the Hsin and preparing the way for the Later Han, a certain official Chao Hsi and his friends were caught in it and surrounded. One of them, Han Chung-Po, had just married a beauty and was much afraid that the rebels might harm her. His companions talked of leaving her behind somewhere on the road, but he angrily rejected the idea and smearing her face with mud, set her on a lu chhê which he pushed himself. When they met the 'brigands' he said that she was ill, so they all got safely through. On other occasions, at need, the dead were borne on a lu chhê. A virtuous official, Tu Lin (3) (d. +47), pushed a lu chhê at his brother's funeral, and when a friend of Jen Mo (4) died at

Fig. 509. Tung Yung's father sitting on a wheelbarrow; a scene from the Wu Liang tomb-shrine reliefs of c. +147. A rubbing from Jung Keng (1). The inscription at the top says 'Yung's father', and on the left 'Tung Yung was a young man from Chhien-chêng' (in northern Shantung). Cf. Fig. 510f.

In the Chhin Shih So (5) the Feng brothers clearly represented the only wheel visible as outside the shafts, and the sides of the cart solid, but as in other cases they were here drawing somewhat on their imagination since the relief itself shows a space between the wheel and the upper parts. Indeed these resemble very closely the typical housing of the large Chinese wheelbarrow wheel, and resting on it is a pot of some kind exactly as objects do today (cf. Fig. 510f).

Greater certainty is provided by another carving of about the same date. A wheelbarrow appears sculptured at Chhü-hsien near Paonom on one of the pillars of the +4 and century. Sirên (6), pls. 22 and 28, figures two pictures of Tung Yung of the +6th century, engraved on the walls of tomb-shrine and sarcophagus, but by this time the vehicles have become distorted chariot forms.

Loyang, he wheeled his corpse many li to the tomb. The independent-minded Fan Jan (d. +185), when surrounded by enemies, himself pushed his wife on a lu chhe and sent his son out to gleen. Many other examples from the Han and somewhat later periods could be given, the term surviving longest naturally enough in poetry. It will suffice to quote what Ying Shao says of the lu chhe in his Feng Su Thang I (The Meaning of Popular Traditions and Customs), written in +175.

The ‘pulley-barrow’ is narrow and small, and its design follows that of a pulley-wheel (lu). Some call it the ‘carefree barrow’ (lo chhe). It may be drawn by an ox or a horse, for which one cuts grass and fodder at stopping-places. Although pushing it is hard work one can lie down when one comes to a rest-house without further worry, hence the name ‘carefree barrow’. If you don’t have an ox or a horse to attach to it, one man alone can push it wherever he wants to go.

So much for the passing mentions of something which was so familiar that it needed no explanation. When we turn to the ancient lexicographers for further help, we find a vital passage in the Kuang Ya (Enlargement of the Literary Expositor), a dictionary of dialect synonyms compiled by Chhing I in the northern State of Wei during the very same years (+230 to +232) which saw Chuko Liang organising his trains of wheelbarrow porters for the supplies of the rival armies of Wei. What the Kuang Ya says is as follows:

The nui chhe is also called the li-ju (nui chhe wei chih li-ju). The tao haei is also called the lu chhe (tao haei wei chih lu chhe).

The, being rightly interpreted, is as much as to say:

The silk-winding (or quilting, or twisting and doubling, i.e. throwing machine) is also in some places called the ‘pulley-machine’. The ‘rut-maker’ is also in some places called the ‘pulley-barrow’.

Good and sufficient grounds for this understanding were provided by Chhing scholars such as Wang Nien-Sun in his commentary of +1796, and it is well worth while to look over his material. First, the Shuo Wen says (121) that the nui chhe is the (stationary) machine used for winding silk on to the bobbin (fu chhe). The agricultural encyclopaedists, from Wang Chên in +1313 onwards, understand the nui chhe of old to be identical with the weih chhe, the ‘weft-machine’ or quilting-wheel, an apparatus similar to the familiar spinning-wheel but used for winding textile fibres on to the bobbins in the weavers’ shuttles. Here of course a large wheel, a driving-belt (huan sheng) and a small pulley are all required, the value of the invention consisting in the speed given to the little spindle by the mechanical advantage of the disparate sizes of the wheels.

Of this simple machine more later; meanwhile li-ju is but a variant of li-ju, identical in meaning and nearly homonymous in sound with the most widespread expression for a pulley-wheel, li-ju, already discussed above.

Yang Hsiung’s Fang Yen (Dictionary of Local Expressions) next confirms that at its much earlier date (−15) the nui chhe was called the li-ju chhe in the regions of Chao and Wei—another way of saying ‘the pulley-machine’. That it had to have at least one pulley, rapidly rotated by the belt from the driving-wheel, follows from the nature of the case. While in some spinning-wheels (probably much later), five or as many as seven spindles were simultaneously rotated, it was the singleness of the shuttle-bobbin pulley (if not indeed of the large driving-wheel itself) which in early times invited the confusion with the wheelbarrow. The basic linguistic difficulty which we are facing is that the word chhe was always ambiguous in that it could mean indifferently a stationary apparatus or a mobile vehicle. It is as if one should speak of a ‘single-wheeler’ without giving any clue as to what it did. Moreover, both the components li and lu could also mean the rut or track left by a vehicle-wheel. We are not at all surprised therefore when the Fang Yen goes on to say that in Eastern Chhi and in Hai-Tai the silk-winding machine was called tao haei or ‘trace-maker’.

In fact the silk fibre being wound on to the bobbin (or the driving-belt endless leaving the driving-wheel) was analogised in popular parlance with the track on sand or mud being ‘wound off’ the vehicle wheel, and what these ancient name-coiners really had in mind was simply the geometrical pattern of a circle and a tangent line.

So returning to the Kuang Ya’s second statement, we see that the lu chhe, which we know from a mass of other evidence was sometimes a small vehicle, and had nothing whatever to do with deer, could be either a ‘pulley-barrow’ or a ‘pulley-machine’, in the first case a ‘rut-maker’, in the second a ‘trace-maker’ (both tao haei), but in all cases a ‘single-wheeler’. Hence what Pao Hsiian and his excellent wife were pushing in the last years of the Former Han dynasty was nothing other than that new-fangled device, the wheelbarrow.

Here we could take leave of Wang Nien-Sun and go on our way, but the most ancient origin of the words li-ju or lu-ju remains intriguing, and this terminological
rubbish-heap is worth more turning over. In one of the Shih Ch'ing odes a chariot description includes the words tuu wu hbang tsu-i—the pole is curved like a roof-ridge and has five tuu. This last word is usually taken to mean ornamental bands of leather, but the ancient commentary of Mao Heng (—3rd or 2nd century) explains that the five bands (shu) each had a tuu and that this was in fact a li-lu. Here rings to guide traces or reins must be meant, so that the earliest form of the phrase was the simplest possible kind of pulley-block (c. —7th century). Another usage occurs in one of the fortification chapters of Mo Tsu (c. —320), where javelins hurled by the multiple-bolt arcballista (lien wu) are attached to a cord and retrieved by the aid of a reel or windlass (li liu chin shou). What follows is more interesting. In another place the Fang Yen (—15) says that the 'cord (chh)' underneath the machine is called in Chhen, Sun, Huaui and Chhu a pi, while thicker (or longer) ones are called chi. Kuo Pho's commentary (about +300) says that this refers to the lu chh (<7th century); hence it is evident in its sense of the silk-winding machine, and the +6th-century Yü Phien identifies chhi as a cord or belt, so. Thus in pursuing the roots of wheelbarrows we come unexpectedly upon fresh evidence that not only the quilting-wheel but the +12th century, but also that of the +18th, possessed a belt-drive.

Further confirmation arises from a passage in the Chou Li (Khao Kung Chh). In the entry for the jade-workers (Yü jen) the text says that the hsiu or sceptre of the emperor has a pi in the middle (Thien tsu hsei chang pi). Whereupon Chung Hsiao's +2nd-century commentary says that the word pi should be interpreted as identical with the pi (i.e. pi) of the lu chh, that is to say, 'what has the central function in the design of the silk-winding or quilting machine (tsu yo chi chang yang). It's object is to prevent any chance of mishap or loss of control. Now the emperor's safety device was a loop of cord passed through the hole in the sceptre in such a way that he could have it round his wrist, thus avoiding any danger of the jade object being inadvertently allowed to slip or fall. To which Wang Nien-Sun adds: 'The pi of the sceptre (hsueh) is an (endless) band (tsu) which has the same sort of function as the cord (pi) or rope (so) of the (silk-quilling) single-wheel pulley-machine (lu chh), because they are both for the control and discipline (yo shu) of the thing; hence it is that the pi is to be understood as pi.' The only possible conclusion we can draw is an alternative—if (as is by far the most likely) the shuttle-bobbin silk-winder was meant, then it looks as if we must admit the invention of the driving-belt by the end

at least of the Former Han (+1st century); but if by any chance a vehicle is intended then again the wheelbarrow shakes out, for the cord or rope could only be the sling so often attached to the shafts and passing over the porter's shoulders (cf. Figs. 326, 512), an aid to stabilisation superfluous for any two-wheel vehicle.

Thus when we return to the statement in the Kaqm Ya we may feel safe in rephrasing it as follows: 'The silk-winding (trace-maker) for the bobbins is also called the "pulley-machine"; the (mobile) rut-maker is also called the "pulley-barrow".' We shall probably not go far astray in believing that the semantic unity lay in the circle-and-tangent pattern, and that li-lu, liu-lu, liu-lu, etc., were originally onomatopoetic terms deriving from the creaking and squealing of primitive bearers. There were stationary 'single-wheelers' which made a rumbling noise of turning wheels, and there were mobile 'single-wheelers' which groaned and travelled under their loads. Of the two, we may suspect that the silk-winder was much the earlier in view of the great antiquity of silk technology in China (though it may not have had its driving-belt until late in the Former Han); in this case when the 'pulley-barrow' developed it acquired its name from the stationary machine which also seemed to have only one operative wheel.

The foregoing philological long-shots may perhaps have looked like wild fire to some readers. But in fact they have proved to be dead on the target, for since their conclusions were reached, no less than four stone reliefs of Han date depicting quilting-wheels along with looms have been studied and published by Sung Po-Yin & Li Chung-I (2), and Tuan Shih (2), in brief but brilliant contributions to the history of textile technology. To reproduce these reliefs here would anticipate unduly Sect. 31 on textiles in our fifth volume, for which we shall therefore reserve them.

What the difference was between the 'Wooden Ox' and the 'Gliding Horse' of Chuiko Liang remains unsolved. As we have seen, Kao Chêng in the Sung thought that it depended on whether the shafts were before or behind. Certainly the tradi-

—— MECHANICAL ENGINEERING

27. MECHANICAL ENGINEERING

269

27. MECHANICAL ENGINEERING

269
the load. One of these types, common at Kuang-yuan (Fig. 510b), is regarded by Chinese historians as particularly likely to preserve the pattern used by Chuko Liang. Another (Fig. 511, Fig. 510c) is very much in evidence on contemporary public works sites. But the wheel-bearings are also often very far forward; Fig. 512 (cf. Fig. 510f) shows a barrow of this kind—particularly interesting since it resembles so closely the barrow on which Tung Yung’s father is sitting in the Wu Liang relief (Fig. 509).

Often however the wheel-housing is curved rather than rectangular, as in the Szechuanese form shown in Fig. 513 (cf. Fig. 510g, h), with the wheel less far forward. And the two main types may even be combined (Fig. 510b).

Of the transmission of the technique to Europe about the beginning of the +13th century nothing whatever is known, nor is information easily obtained about the wheelbarrow in the geographically intermediate cultures. But the fact that the wheel in the European types was invariably very far forward, as if to replace one man out of two carrying a hod or stretcher, and therefore taking only half the load, may mean that this was another case of 'stimulus diffusion'. Perhaps Westerners simply heard that something of the kind had been done, and proceeded to imitate it according to their lights without knowing any exact specifications. At the same time it is not possible to exclude Western influence on contemporary Chinese designs, and one might be inclined to see it in the 'half-stretcher' rather than the 'pack-horse' types, though if the Wu Liang tomb-shrine is any indication the former was in China from the beginning, and Chuko Liang’s innovation might have been precisely the latter.

Among the most curious designs are those which raise the carrying surface high above one (or even two) small but broad-rimmed wheels (Fig. 510d, e) with the aid of oblique stays. Those which we have seen in West China always have the wheels well forward also, in a neighbouring culture the principle of the central wheel is applied to these forms also. This occurs in an interesting vehicle taken note of by Horwitz (6), namely the traditional Korean ceremonial chair-litter, in which the four handles are guided, not carried, by four 'bearers', and the main weight is taken on a central wheel with struts and stays remarkably reminiscent of aeroplane landing-gear (see Fig. 514). This is perhaps an archaic intermediate form between the four-handled hod or stretcher (or the draw-sled) and the wheelbarrow proper. What may be a

This statement is due to a conversation with Prof. Hsi Cheng-Shu and other friends at Szechuan University, Chhengtu, in the summer of 1938.

c Cf. Osgood (1), pl. 141.

d See Oswood (1). This dates from 1126 (see on, p. 273). This was painted a century or so before there were any wheelbarrows in Europe at all.

* Further references will be found in Osgood (1), p. 141.

Reprinted from “Mechanical Engineering” Volume 27, Issue 5, May 1935
272. MECHANICAL ENGINEERING

literary reference to this occurs in Chang Shun-Min’s 1 Hua Man Chi, 2 a book of about +1110, where we hear of a chuan chu chiao tzu 3—a litter mounted on a turning wheel. 8 It is noteworthy that even the normal character for litter contains the wheel radical. Indications exist that the wheeled litter may go back to the Former Han, for the biography of Yen Chu, 4 describing the expeditionary force sent to Nan Yüeh in –135, says: b "Charriot-litters (with supplies) passed through the mountains (yü chiao erh yü long)." This puzzled the commentators. Fu Chhien supposed the word chiao to refer to mountain paths as narrow as plank bridges, but Chhen-Tsan thought that the vehicles must have been like the ‘bamboo-chariots’ (chu yü) 6 of his own time (c. +300) (whatever they were), and Hsiang-Chao believed that the things were in some way ‘carried’ (tan). We probably have here an interesting, though still very obscure, chapter in the early history of the Chinese wheelbarrow.

A few later references to wheelbarrows may be appended. In a previous subsection c mention was made of Ko Yu, 8 a semi-legendary personage, Szechuanese of course, variously attributed to Chou or Chin times, who rode away into the mountains on a wooden sheep (mu yang) of his own invention. 6 I should not be surprised if this was a piece of folklore which had the real wheelbarrows of Chuko Liang for its basis. It is interesting to see how the range of wheelbarrows had spread far beyond Szechuan, for Lu Yü, who travelled there in +1170, mentions the tu yuan hsiao chhe 10 as a feature of Lü-chheng in Chiangsu. 6 Six years later Tseng Min-Hsing alluded to the military use of the wheelbarrow in forming protective laagers. He wrote: 7

In Chiang-hsiang 11 there is a kind of small vehicle called i têng chhe, 12 with only one wheel and two shafts. A bamboo basket is fastened on each side by ropes. This device is so efficient that it can take the place of three men; moreover it is safe and steady when passing along dangerous places (cliff paths, etc.). Ways which are as winding as the "bowels of a sheep will not defeat it. Not only is it useful for transporting army rations, but at need it can be employed as a defensive obstruction against cavalry. Since the digging of trenches and moats, the building of forts, take time, the wheelbarrows can be deployed round the perimeter so that the enemy’s horses cannot easily pass over. This kind of vehicle can readily go forward and withdraw, and can be used for any purpose. It might well be called a ‘mobile fort’. 8

Fig. 511. Wheelbarrow of type (c) on an irrigation project site near Wukung, Shensi (orig. photo., 1958).

Fig. 512. Wheelbarrow of type (f) on the road between Sian and Lintung, Shensi (orig. photo., 1958).
Not long afterwards Chu I tells us that in the Thang, when Liu Meng went to pacify the region which is now Ninghsia, he relied on wheelbarrows for the transportation of his supplies. According to the Japanese monk Ennin, however, there was in +845 a Taoist-inspired edict against the use of wheelbarrows (tu chiao chhe), which were said to break up the road surface. It certainly cannot long have been in force.

The mention of Chiang-hsiang by Tseng Min-Hsing reminds us of Kao Chheng's appellation 'Chiangchow barrows'. This is a little town in the extreme south-west corner of Szechuan, lying in mountainous regions on the road between Hui-li and Hui-tse in Yunnan which crosses the Yangtze by a ferry near Ta-chhiao almost due north of Kunming. Now in the sources Ko Yu is described as a Chhiang, i.e. a member of one of the tribal peoples indigenous to just this region. We shall probably not go far astray then if we accept it as the original home of the invention in the 1st century, and regard Ko Yu either as the first inventor or perhaps the canonised 'technic deity' of the makers of wheelbarrows.

Animal traction was applied to one-wheel vehicles from an early date in China, as the passage from the Feng Su Thung I is alone sufficient to witness. Perhaps our best illustrations of this may be seen in the famous painting of Chang Tse-Tuan, finished by +1126, which depicts the popular life of the capital Khaifeng at the time of the Spring Festival (Chhing-Ming Shang Ho Thu). As Figs. 515 and 516 show, many wheelbarrows are moving or stationary in the streets of the city. All but one have the large central wheel and some are very heavily laden: during the loading and unloading they rest on their side-legs. One is being pushed by a single man, and in all cases a porter steadies the vehicle by the shafts behind, while traction is effected either by one man in shafts and one mule or donkey with collar-harness and traces, or by two animals side by side similarly attached. This last system is shown again in a famous picture in the Thien Kung Hai Wu (+1637), where in the text we read:

The northern one-wheeled barrow (tu yuan chhe) is pushed by one man from behind, with (one or more) donkeys pulling it from the front; it is hired by those who dislike riding (on horseback). The travellers sit on opposite sides to balance it, and a mat roof shields them from sun and wind. This kind of conveyance goes as far north as Chhang-an and Chi-ning, and also comes to the capital. When not carrying passengers these barrows will take as much as 4 or 5 tan of goods...
27. MECHANICAL ENGINEERING

The new wheeled barrow (tun thu cihed) of the south is (also) pushed by one man (but without animal aid), and carries only 2 tan. When it meets deep holes (in the road) it has to stop; in any case it seldom goes more than 100 li..

But perhaps the most original invention was the use of sails, so that wheelbarrows like ships could be borne along by the force of the wind. This admirable device, the chia fan cihed, is still widely used in China, notably in Honan and the coastal provinces such as Shantung, and has often been described and illustrated. I reproduce (Fig. 518) a little sketch from Lin-Chhing's Hung Hsiieh Yin Yuan Thu Chi (Memoirs of the Events which had to happen in my Life) of 1849, which shows an animal being assisted by the sail; and also (Fig. 519) the careful diagram published by van Braam Houckgeest in +1797, from which one can see that the sails are typical junk fore-and-aft slat-sails with their multiple sheets. The words of van Braam, too, are worth quoting.

Near the southern border of Shantung one finds a kind of wheelbarrow much larger than that which I have been describing, and drawn by a horse or a mule. But judge of my surprise when today I saw a whole fleet of wheelbarrows of the same size. I say, with deliberation, fleet, for each of them had a sail, mounted on a small mast exactly fixed in a socket arranged at the forward end of the barrow. The sail, made of matting, or more often of cloth, is five or six feet high, and three or four feet broad, with stays, sheets, and halyards, just as on a Chinese ship. The sheets join the shafts of the wheelbarrow and can thus be manipulated by the man in charge.

One had to grant that the apparatus was not a freak, but an arrangement by which, with a favourable wind, the wheelbarrow porters could be greatly assisted. Otherwise such a complicated thing would have been only a bizarre curiosity. I could not help admiring the combination, and was filled with sincere pleasure in seeing twenty or so of these sailing-wheelbarrows setting their course one behind the other.

Unfortunately there are very few references in Chinese literature to sailing wheelbarrows, so that it is as yet not possible to determine the time of their introduction. The impact which this ingenuity made upon the first European visitors to China in the 16th century, however, can hardly be imagined. In +1585 Gonzales de Mendoza wrote that the Chinese are great inventors of things, and that they have amongst them many cochés and wagons that goe with sailes, and made with such industrie and policie that they do governe them with great ease; this is crediblie informed by many that have seene it; besides that, there be many in the Indies, and in Portugall, that have seene them painted upon clothes, and on their

Notes:

1. A modification doubtless due to such difficulties was the addition of a small auxiliary wheel at the front of the vehicle to assist in getting over obstacles (cf. Fig. 517 from Franck (1), p. 612). Cf. Fig. 5102, and Anon. (18), pt. 4, no. 114.

2. See e.g. S. W. Williams (1), vol. 2, p. 8; Liu Hsien-Chou (1), p. 79; Wagner (1), p. 162; Cable & French (a), p. 80; Dinwiddie in Proudfoot (1), p. 41; Bauchan et al. (1), vol. 2, pt. 1, pl. xxx, fig. 2.

3. Lin-Chhing (+1791 to 1846) was a Manchu of the Wanyen family descended from the emperors of the Jurchen Chin dynasty (+12th century). We shall often meet with him again in connection with hydraulic engineering, a field in which he was notably expert. Cf. his biography in Hummel (2), vol. x, p. 506.

4. Cf. Sect. 29g below.

5. See Sect. 29g below.
Fig. 517. A train of intermediate-type wheelbarrows with auxiliary wheels at the forward end for surmounting small obstacles (type i); on one of the paths through the Nan Ling hills between the Yangtze Valley and Canton (Franck. 1).

Fig. 518. Sketch of a sailing wheelbarrow, the sail assisting animal traction; from Lin-Chhing's *Hong Hsiêh Yin Yuan Thu Chi* (1849).

Fig. 519. Diagram of a sailing wheelbarrow from van Braam Houckgeest (+1797), showing the batten sail and multiple sheets so characteristic of Chinese nautical practice (cf. Sect. 29g below).
earthen vessel that is brought from thence to be sold; so that it is a signe that their painting hath some foundation.

So also said van Linschoten a dozen years later: a

The men of China are great and cunning workmen, as may well be seen by the Workmanship that cometh from thence. They make and use (waggons on cartes with sayles (like Boates) and with wheeles so subtilly made, that being in the fields they goe and are driven forwards by the Wind as if they were in the Water.

These relations and others ℃ caught the imagination of the European mapmakers, so that one finds small vignettes of the land-sailing carriages on almost every atlas published in the +16th and +17th centuries where a map of China is provided. ℃ In the Speculum Orbis Terrarum of de Jode (+1578) they seem to be lacking, but they figure prominently in the atlases of Ortelius (Theatrum Orbis Terrarum, +1584), ℃ Mercator (Atlas, +1613), see Fig. 520; and J. Speed (Kingdome of China, +1626), Fig. 521; to mention only some of the most important. ℃ In the following years John Milton immortalised the respect which Europeans could still feel for the strange techniques of China:

As when a vulture on Imaus bred
Whose snowy ridge the roving Tartar bounds,
Dislodging from a Region scarce of prey
To gorge the flesh of lambs or yeanning Kids
On Hills where flocks are fed, flies toward the Springs
Of Ganges or Hydaspes, Indian streams;
But in his way lights on the barren plains
Of Sericana, where Chinese drive
With Sails and Wind their canie Waggons light...

This was in 1665, but the whole century was fascinated by the story, and puzzled interest in what the Chinese really did continued long after the time of Ortelius. In Campanella’s City of the Sun (+1623) his Ceylonese Utopians used ‘waggons fitted with sails, which are borne along by the wind even when it is contrary, by the marvellous contrivance of wheels within wheels’. ℃ In Birch’s History of the Royal Society we find the following somewhat cryptic entry: ℃

Apr. 1st. 1663: Mr Hooke’s paper concerning the Chinese cart with one wheel, mentioned by Martinius in his Atlas Sinensis, was read, and discoursed upon, that the said cart was like a wheelbarrow; and the paper was ordered to be filed up.

Fig. 520. Vignette of an imagined Chinese land-sailing carriage; from Mercator’s Atlas of +1613.

Fig. 521. Another vignette of the imagined Chinese land-sailing four-wheeled waggons navigating at will per terras; from Speed’s Kingdom of China, +1626.
Then on 23 November of the same year, Mr Robert Hooke displayed 'a paste-board model of his engine with one wheel, to travel in with ease and speed...'. Thomas Hobbes had also been experimenting. In his *Elements of Philosophy* (+1655), which included natural philosophy, he discussed the forces which act upon a sailing-ship of a sailing-carriage. In +1684 the French Academy of Sciences prepared a questionnaire for the Jesuit Philippe Couplet to take back to China with him, in which details of the sailing-carriages were requested. But *The Sacrifice*, Sir Francis Fane's tragedy about Tamerlane, published in London two years later, engagingly ridiculed Chinese antiquity and inventions, including the sailing-carriage. On the other hand Leibniz, when projecting a kind of science museum, suggested that the exhibits should certainly comprise 'le chariot à voiles de Hollande — ou plutot de la Chine'.

What did he mean by the sailing-carriage of Holland? Here the plot thickens. But before elucidating this point we may notice how odd it was that the early European travellers spoke of sailing-carriages rather than sailing wheelbarrows. Whether any of them could actually have seen four-wheeled wagons fitted with sails remains conjectural, for Chinese literature itself is quite silent concerning the use of sails on land in the Ming. Most probably travellers saw sailing wheelbarrows so heavily loaded that their wheels were hidden, and assumed that they must each have at least two.

There are one or two rather important references much earlier, however, indeed in the +6th century. The emperor Yuan of the Liang, in his *Chin Louu T'au*, wrote: icketang Wu-Shu succeeded in making a wind-driven carriage (*feng chhi*) which could carry thirty men, and in a single day could travel several hundred li. Nothing else is known of this engineer or his sailing-car, but its performance would not be at all impossible, as we shall see in a moment. This would be about +510, and then comes around +610 the 'Mobile Wind-Facing Palace' (*hsun fang hing tien*) of Yuwên Khai, a Vol. 1, p. 333. It is not distinctly stated that Hooke was occupying himself with a sailing-wheelbarrow, but it seems probable, for Martin Martini (+1655, p. 26) after describing Peking wheelbarrows in which 12 persons had added that this was probably the origin of the stories in Europe about the sailing-carriage.

In Molerowski’s edition of the *English Works*, vol. 1, p. 340. On the theory of sailing-ships see further in Sect. 24 below. Sailing-carriage models still attract talented inventors; one such was made by the Russian engineer K. E. Tsilokovsky (+1875 to 1930), who later pioneered rocket flight (private communication from Mr D. R. Bentham).

Pinot (a), p. 8. Some travellers, e.g. de Navarrete (+1768), had been sceptical (Cummins (1), vol. 2, p. 212).

For this and for some of the other 17th-century references I am much indebted to the kindness of Mr Jasper Rose of King’s College.

Ch. 6, p. 184, ch. 19. The connection of this emperor (reigned +29d) is also demonstrated by van Linschoten, and probably also Mendoza; we may probably consider it almost sure that Stevin too was acquainted with these works.

His successful trials were therefore a direct result of the contact of Europeans with China.

*Fig. 522, from a contemporary print by de Gheyn, shows the 'fleet' of vehicles. Now Grotius refers to the sailing-carriages of China, and it has been established that he had read van Linschoten, and probably also Mendoza; we may therefore consider it almost sure that Stevin too was acquainted with these works.

P. 253 above. The normal meaning of the words would of course be 'a temporary palace hall for viewing the scenery and local customs'. But the description which follows authorises the interpretation adopted by Sickman & Soper (1), pp. 236, 239, makes the thing a rotating pavilion, something like Bernard Shaw’s summerhouse on a large scale. There certainly was in several cultures a tradition of an imperial throne or dinner-table set within a baldachin or cupola of astrological ornament and cosmological significance, all being rotated by animal-power in a basement. Such were Nero’s Domus Aurea and the Sassanian Throne of Chosroes, carefully studied by Lehrmann (1). Cf. the dome of Quasir Amrah (Vol. 3, p. 398). Yüwên Khai’s construction needs further research.

Q. There has been some discussion of ritual sailing-carriages in ancient Egypt, but we think that the case for them has not been made out. In the excavation of the temple of Medinet Madi, built about +1600, by an Italian expedition in 1936, a kind of wooden frame chassis with four very small solid wheels and numerous holes in its members was discovered. Hellenistic hymns in the temple inscriptions show that there certainly was a legend of kings or gods sailing on the land. Borchardt (3) has also reported the occurrence of this kind of ceremonial carriages (ihn mirt-x) in much more ancient inscriptions recorded on much larger boats. For further details see Forbes (24).

D. On the other hand Leibniz, the great Dutch mathematician and engineer, constructed a sailing-carriage with a quite different invention also demonstrably based on Chinese antecedents, that of equal temperament in acoustics and music.
Long were the reverberations of that exhilarating day. Stevin's land-ship was copied and recopied through the following couple of hundred years, first by John Wilkins, in his Mathematical Magick of +1648 ('That such Chariots are commonly used in the Champain plains of China is frequently affirmed by divers credible Authours'), and then by many writers such as Emerson (+1758) and Hooper (+1774). Wilkins absorbed also a separate tradition, namely the idea of imparting motion to a carriage by means of a windmill and gearing; this went back to the European 14th century, when it had occurred to Guido da Vigevano in +1335, as later to Roberto Valturio about +1460. The Valturian windmill-carriage embodied two vertical windmills but Branca in +1629 had proposed a horizontal windmill, anticipating in form the rotor, and it was this which Wilkins popularised. There is no reason to suppose that anything like it was ever built, but during the 18th century quite a number of wagons with sails like Stevin's were used in practice where conditions permitted.

Indeed, they continue to this day in many places on the north coasts of Belgium and France, and in California, where the sport of 'land yachts' is widely carried on. I myself saw and rode in them on the beach at La Panne as a small boy just about the time (1907) when Coppens de Houthulst was modernising them by the introduction of the tricycle-wheel system, pneumatic tyres, and light tubular construction. Today they are capable of speeds as high as the fastest express train, especially when they sail upon ice rather than sand. Fig. 523 shows some of these ice-yachts in Kaotshang Wu-Shu's own country, on the Liao River in Manchuria.

It might be thought that the sailing carriage (like the south-pointing carriage, on which see below, pp. 286 ff.) was merely one of the curiosities of history. Even Duyvendak esteemed the practical value of Stevin's 'invention' as nil. But these things have to be placed correctly in the perspective of technological development as a whole. Duyvendak himself pointed out that the sailing-carriage was able to travel with what was, in +1600, almost incredible speed. And here is the root of the matter, for we may say that this transmission from Chinese technology (strange as it may seem) was the first to accustom the European mind to the possibility of high-speed transit on land. A distance of nearly 60 miles was now covered in less than 2 hours, which must have meant that some stretches were travelled over at a speed higher than 30 m.p.h., perhaps in the neighbourhood of 40. When one remembers the excitement caused by modest speeds in the first days of railways, one is not inclined to underestimate the impact on European culture of what was really the first essay at rapid transport. The Chinese stimulus, if it was no better, cannot be ignored, and the results were overwhelming.

* As late as 1854 a set of engravings by B. Rossaspina included one entitled 'Vetturaolandese a vela di Simone Stevin Anno 1600.' This has two masts.
* (3), pp. 154 ff.
* PIs. 18, x.
* Feldhaus (4), fig. 11, (1), col. 1274. Paradoxically, da Vigevano's picture of his windmill-driven carriages antedates by about a decade the second earliest remaining illustration of the windmill itself (see on, p. 555).
* References in Feldhaus (1), col. 1276. There is also the curious question of the application of sails to ploughs; on this see Leser (1), pp. 441, 459, (2), p. 451; Chevalier (1), p. 479.
Fig. 524. A drum-carriage of the Han dynasty, used in imperial processions; from the Hsiao Thang Shan tomb-shrines, c. +125 (Chin Shih So (Shih sect.), ch. I, p. 133). Rubbing in the collection of Mr E. Bredsdorff from a relief now in the Imperial Palace Museum, Peking. Four musicians are playing on the pan-pipes (hsiao, cf. Vol. 4, pt. I, p. 182 et passim, and Fig. 308) below; two others above strike the stand-drum (chien hu, cf. Vol. 4, pt. I, Figs. 30r, 303), which has two small clapper-bells (ling, cf. Vol. 4, pt. 1, p. 104) hanging from it. There is no doubt that the hodometer or 'automatic mile-measuring drum-chariot' (chi li ku chhe) with its puppet figures developed from the vehicle for living musicians, at some time between the beginning of the +1st and the end of the +3rd centuries.

27. MECHANICAL ENGINEERING

When the foregoing paragraph was first written, its conclusion lacked the support of contemporary 17th-century testimony. But later on, a voice from the past provided it—that of the celebrated Gassendi, writing the life of his friend Fabri de Peiresc. Speaking of the year +1606, Gassendi says:

Also he stept aside to Scheveling, to make triall of the carriage and swiftnesse of the waggon, which some years before was made with such Art, that it would run swiftly with sails upon the land, as a ship does in the sea. For he had heard how Grave Maurice, after the victory at Nieuport, for triall sake, got up into it, with Don Francisco Mendoza taken in the fight, and within two hours was carried to Putten which was 54 miles from Scheveling. He therefore would needs try the same, and was wont to tell us, how he was amazed, when being driven by a very strong gale of wind, yet he perceived it not (for he went as quick as the wind), and when he saw how they flew over the ditches he met with, and skinned along upon the surface only, of standing waters which were frequently in the way; how men which ran before seemed to run backwards, and how places which seemed an huge way off, were passed by almost in a moment; and some other such like passages.

(4) THE HODOMETER

The idea of a vehicle which would register the distance traversed appealed to mechanical engineers in more than one ancient civilisation. The hodometer, or 'way-measurer', was quite a simple proposition mechanically. All that was necessary was to make one of the road-wheels drive a system of toothed wheels constituting a reduction-gear train, so that one or more pins revolved slowly, releasing catches at predetermined intervals and striking drums or gongs.

Under the name of chi li ku chhe (li-recording drum carriage), ta chang chhe or chi tao chhe, this apparatus is mentioned in most of the official dynastic histories from the Chin onwards. None of these references describe the mechanism, except that in the Sung Shih, which we shall examine in a moment. Some of them say, however, that at the end of each li traversed a wooden figure struck a drum (ku) while at the end of each ten li another figure struck a gong (cho). If the text of the Ku Chin Chu of Tshui Pao is to be trusted, this double arrangement existed already in the +3rd century, but since its genuineness is a little uncertain, Wang Chen-To, who has carefully studied the subject, prefers the view that the more complex machine did not come in till the Sui or Thang. The names of certain engineers who constructed such hodometers with conspicuous success have been preserved, notably Chin Kung-Li in the Thang (+9th century), Su Pi' in Wu Tai or Sung (+10th or +11th), etc.
Lu Tao-Lung\(^1\) in +1027 and Wu Tê-Jen in +1107. In +1171, the Chin Tartars captured one or more hodometers belonging to the Sung.\(^3\)

On the above evidence, the invention probably dates at least from the time of Ma Ch'un\(^7\) (fl. +220 to +285). This conclusion is strengthened by the fact that the Sun Tzu Suan Ching (Master Sun's Mathematical Manual), which dates from the 3rd to the 5th century, contains a hodometer problem:\(^6\)

The distance between Chiang-an and Loyang is 900 li. Suppose a vehicle the wheel of which covers in one rotation \(1\) chang and \(8\) chhê (18 ft.). How many rotations of the wheel will there be between the two cities?\(^5\)

Apart from the book of Tshui Pao, the oldest description is in the Chih Shu (+635) which says:\(^9\)

The \(chi\ li\ hu\ chê\) (mile-measuring drum-carriage) is drawn by four horses. Its shape is like that of the south-pointing carriage.\(^d\) In the middle of it there is a wooden figure of a man holding a drumstick in front of a drum. At the completion of every \(li\) the figure strikes a blow upon the drum.

Tshui Pao's own words (c. +300) are as follows:

The Ta Chang Chê was for knowing the distance along a road. It began in the Western Capital. It is also called the mile-measuring carriage (\(chi\ li\ hu\ chê\)). It has two storeys both with a wooden figure. After every \(li\) traversed the lower figure strikes a drum; after every ten \(li\) the upper one rings a small bell. The Shang Fang Ku Shih\(^7\) (Traditions of the Imperial Workshops) has recorded the method of construction.

An interesting point here is that the invention is clearly attributed to the Early Han period rather than the Later. The book referred to is listed in the Hou Han bibliography, but perished, alas, long ago.

'Drum-carriages'\(^1\) were also known in the Han and perhaps earlier, though they are not positively called 'mile-measuring drum carriages' until the San Kuo. It is probable, therefore, that such carriages in the Early Han were at first simply musical, intended for bands of musicians and drummers in state processions. The earliest seems to be that mentioned in the biography of Tan, prince of Yen Tzhu,\(^4\) where we are only told that flags and banners were carried before and behind it; this would be about \(-110\) for he was the fourth son of Han Wu Ti. About \(-80\) an important official, Han Yen-Shou,\(^3\) also had a drum-chariot in his processions.\(^5\) So did the Shanyu of the Southern Huns,\(^5\) and in +37 horses of particular\(^c\): fine quality presented by foreigners were harnessed to the Han emperor's drum-chariot.\(^a\)

The chapters on the imperial fleet of vessels in the dynastic histories\(^d\) naturally associate the drum-chariot with \(huang\ mên\) people, i.e. eunuchs, palace officials, attendants and familiars, actors, acrobats, conjurers, etc.\(^2\) While at first sight this would seem to strengthen the view that the early Han drum-chariots were purely musical, in fact it almost does the opposite, for we have already seen the intimate connection in ancient times between such entertainers and the makers of mechanical toys.\(^d\) The most reasonable supposition is that the drum-chariot was indeed originally a vehicle for musicians, but that some time in the Early Han (\(-1^st\) century) the beating of drums and gongs was arranged to work automatically off the road-wheels—Lohsia Hung (c. \(-110\)?) may perhaps have been involved—and that only then were the possibilities of such an instrument for surveying and charting itineraries realised. One pictorial representation has survived from the Han, namely that in the Hiaö Thang Shan tomb series, dating from about +125 (Fig. 524).\(^d\) Carriages for musicians, whether mechanised or not, survived in imperial processions through many subsequent dynasties.\(^e\)

The question of the date of the origin of the hodometer is important because parallel developments were occurring in Europe, especially in Alexandria, with Heron (c. +60).\(^f\) Before glancing at these, however, let us examine the only extant specification. The Sun Shih says:3

The Hodometer.

It is painted red, with pictures of flowers and birds on the four sides, and constructed in two storeys, handsomely adorned with carvings. At the completion of every \(li\), the wooden figure of a man in the lower storey strikes a drum; at the completion of every ten \(li\), the wooden figure in the upper storey strikes a bell. The carriage-pole ends in a phoenix-head, and the carriage is drawn by four horses. The escort was formerly of 18 men, but in the 4th year of the Yung-Hsi reign-period (+987) the emperor Ts'ai Ts'ang increased it to 30. In the 5th year of the Thien-Shing reign-period (+1028) the Chief Chamberlain Lu Tao-Lung\(^1\) presented specifications for the construction of hodometers as follows:

'The vehicle should have a single pole and two wheels. On the body are two storeys, each containing a curved wooden figure holding a drumstick. The road-wheels are each 6 ft. in diameter, and 18 ft. in circumference, one revolution covering 3 paces. According to ancient standards the pace was equal to 6 ft. and 300 paces to a \(li\); but now the \(li\) is reckoned as 360 paces of 5 ft. each. A vertical wheel (\(li\) lun)\(^3\) is attached to the left road-wheel; it has a diameter of 13 ft. with a circumference of 414 ft., and has 18 cogs (\(chhê\ jin\)) 2 3/4 inches apart.

There is also a lower horizontal wheel (\(hsia\ pching lun\)) of diameter 41 ft. and circumference 1242 ft., with 54 cogs, the same distance apart as those on the vertical wheel (2 3/4 inches). (This engages with the former.)

\(^a\) Cf. Yang Hsiung and the \(huang\ mên\), Vol. 3, p. 358.
\(^b\) Cf. Vol. 1, p. 197ff.
\(^c\) Astronomer and maker of astronomical instruments; cf. many refs. in Vol. 3.
\(^d\) Chun Shi, 20, Shih sect., ch. 1 (p. 133), interpreted by the Fang brothers as a cartload of musicians for an imperial cortège. See also Harada & Komai (1), vol. 2, pl. XVII, 1, and Chavannes (11), pi. XXVII, who did not himself think that it was a hodometer. Cf. Giles (3), vol. 1, pp. 271ff. The stone is now in the Imperial Palace Museum at Peking.
\(^e\) Much information is collected in Yu Han, ch. 79, pp. 208, 344, 411, 424, etc.
\(^f\) Vaest (1) and others have conjectured that the Han hodometers were inspired by those of Alexandria. This might depend upon the exact time at which the mechanisation of the 'band-wagons' took place in China, but in any case this process itself, if we are right in assuming it, points to an indigenous development.
Upon a vertical shaft turning with this wheel, there is fixed a bronze "turning-like-the-wind wheel" (hsian feng lun) which has (only) 3 cogs, the distance between these being 1.2 inches. (This turns the following one.)

In the middle is a horizontal wheel, 4 ft. in diameter, and 12 ft. circumference, with 100 cogs, the distance between these cogs being the same as on the "turning-like-the-wind wheel" (1.2 inches).

Next, there is fixed (on the same shaft) a small horizontal wheel (hsiao phing lun), 3.3 inches in diameter and 1 ft. in circumference, having 10 cogs 1.5 inches apart.

(Engaging with this) there is an upper horizontal wheel (shang phing lun) having a diameter of 3.3 ft. and a circumference of 10 ft., with 100 cogs, the same distance apart as those of the small horizontal wheel (1.5 inches).

When the middle horizontal wheel has made 1 revolution, the carriage will have gone 1 li and the wooden figure in the lower story will strike the drum. When the upper horizontal wheel has made 1 revolution, the carriage will have gone 10 li and the figure in the upper storey will strike the bell. The number of wheels used, great and small, is 8 in all, with a total of 285 teeth.

Thus the motion is transmitted as if by the links of a chain, the "dog-teeth" mutually engaging with each other, so that by due revolution everything comes back to its original starting-point (ti hsiang kou so, chhuan ya hsiang chih, chou erk fu shih).

It was ordered that this specification should be handed down (to the appropriate officials) so that the machine might be made.

[The passage concludes by giving a similar specification prepared by Wu Tê-Jen in + 1107.]

This description brings out clearly enough the reduction train of gearing and omits only the pegs on the shafts which tripped the wires to operate the puppets. Following its words as closely as possible, model hodometers have been constructed by Bertram Hopkinson (in Giles, 5) and Wang Chen-To (3). That of the latter, elegantly copying the vehicle shown in the Haio Thang Shan tomb relief, is shown in Fig. 525. Part of the model's mechanism, opened, is seen in Fig. 526. The canopy of the carriage looks as if it may have been intended to revolve while the vehicle was in motion, and it would have been easy enough to make it do so.

A moment's attention to the last sentence of Lu Tao-Lung's report is worth while. It seems almost the fragment of a poem or essay, but the reference to 'dog-teeth' cogs in + 1027 is important, since it shows that the Sung engineers were conscious of the necessity of rounding them off, empirically foreshadowing the kind of shapes used to-day in mathematically defined involute and epicycloid gear teeth. Perhaps a more extended treatment of this problem of form will be discovered in Sung techno-

* The name for this extremely small wheel shows that the Sung engineers fully understood the principle of velocity ratio, i.e. that the speed of a small wheel will be much faster than that of a large one with which it engages.

+ One senses here the same lack of development of an adequate technical terminology which has been noted in other connections (cf. Vol. 2, pp. 43, 260, etc.).

b Late Professor of Engineering in the University of Cambridge.

d There were essays on the hodometer by various authors, such as Yang Wei-Chen of the Yuan (G2412) and Chang Yen-Chen of the Thang, but they are not informative from the engineering point of view (see TSCC, Khao hung tien, ch. 175).

Fig. 525. Working model of a Han hodometer (Wang Chen-To, 3).
Historians of engineering in Europe do not seem to know of any attention paid to cog shape before the time of Leonardo da Vinci (+ 1490). The oldest European MS. representation of gear teeth is about + 1335, in the treatise of Guido da Vigevano, where the teeth are shown rounded, but this is later than those in Arabic and Chinese books. Empirically, wheelwrights must have known that gear teeth had to be rounded off, and some late + 15th-century gear-wheels still extant at the Pile Gate at Dubrovnik show this (Kammerer). The mathematics of the form of gear teeth were first discussed in + 1557 by Jerome Cardan. About + 1720 empirical rules for shaping teeth were published by Sturm & Leupold, and meanwhile the theoretical geometrical treatment had been begun by P. de la Hire (+ 1694) in his work on epicycloids.

The classical description of a hodometer in Europe was that of Heron of Alexandria (+ 60), though he did not claim it as a new invention. The more complex of his models recorded the distance travelled by the dropping of balls into receptacles. The machine was also described by Vitruvius, and used in the time of the emperor Commodus (+ 192), but after that there follows a very long gap, the next appearance of it being at the end of the + 15th century in Western Europe. The pattern is therefore the same as that which we have repeatedly met with, i.e. Greek antecedents, paralleled or followed at short distance by Chinese developments which continue throughout the medieval period, and then a reawakening of the subject in Europe. Most famous of the European Renaissance hodometers is doubtless that proposed by Leonardo da Vinci, illustrated by Uccelli and Beck and modelled by Guatelli. The actual use of the instrument in + 16th- and + 17th-century surveying has already been mentioned. Whether it was ever employed by the Chinese cartographers we do not know.

In general one may say that the hodometers of China were quite worthy ancestors of such remarkable modern machines as the vehicular hodograph (McNish & Tuckerman), which makes a complete plot, with compass-bearings, of the course which it traverses. As Liu Hsien-Chou (6) has pointed out, however, they are also very relevant...
to the history of clockwork. For besides the method of construction, in which the gear-train driven by the road-wheel included pinions of one or three, the signalisation was auditory by means of jack figures beating on drums or gongs. The hodometer was thus undoubtedly one of the precursors of all horological jack-work.

(5) THE SOUTH-POINTING CARRIAGE

If hodometers were widely spread, another kind of vehicle with gearing was peculiar to the Chinese culture-area. Allusion has already been made to the 'south-pointing carriage' (chih nan chièh1) in Sect. 261 on magnetism, since it was long confused, both by Chinese and Westerners, with the magnetic compass.2 We know now, however, that it had nothing to do with magnetism, but was a two-wheeled cart with a train of gears so arranged as to keep a figure pointing due south, no matter what excursions the horse-drawn vehicle made from this direction. Yet it is none the less interesting for being mechanical and not magnetic; and if it was probably of little practical use (though we might be unwise to exclude attempted applications in surveying, as for its companion vehicle the hodometer), it has not deserved the summary liquidation which some modern scholars adopt in other fields have given it.3

The most important passage concerning the history of the south-pointing carriage is that in the Sung Shu,4 written c. +500.

The south-pointing carriage was first constructed by the Duke of Chou (beginning of the -1st millennium) as a means of conducting homewards certain envoys who had arrived from a great distance beyond the frontiers. The country to be traversed was a boundless plain, in which people lost their bearings as to east and west, so (the Duke) caused this vehicle to be accompanied by the imperial bodyguard.5 This again was lost during the troubles attending the establishment of the Chin dynasty.

Later on, Shih Hu6 (emperor of the Hunnish Later Chao dynasty)7 had one made by Haie Fei,2 and again Linghu Shêng2 made one for Yao Hsing4 (emperor of the Chiang Later Chin dynasty).1 The latter was obtained by emperor An Ti of the Chin in the 13th year of the I-Hsi reign-period (+417), and it finally came into the hands of emperor Wu Ti of the (Liu) Sung dynasty when he took over the administration of Chiang-an. Its appearance and construction was like that of a drum-carriage (hodometer). A wooden figure of a man was placed at the top, with its arm raised and pointing to the south, (and the mechanism was arranged in such a way that) although the carriage turned round and round, the pointer-arm still indicated the south. In State processions, the south-pointing carriage led the way, accompanied by the imperial bodyguard.4

These vehicles, constructed as they had been by barbarian workmen, did not function particularly well. Though called south-pointing carriages, they very often did not point true, and had to negotiate curves step by step, with the help of someone inside to adjust the machinery.

That ingenious man from Fanyang,7 Tao Chhng-Chh,8 frequently said, therefore, that a new (and properly automatic) south-pointing carriage ought to be constructed. So towards the close of the Shêng-Ming reign-period (+477 to +497) the emperor Shun Ti, during the premiership of the Prince of Chhi, commissioned (Tao) to make one, and when it was completed it was tested by Wang Sêng-Chhien,9 military governor of Tanyang, and Liu Hsîu,10 president of the Board of Censors. The workmanship was excellent, and although the carriage was twisted and turned in a hundred directions, the hand never failed to point to the south.11

Under the Chin, moreover, there had also been a south-pointing ship.12 The pigtailed barbarian8 Tho Pa Tso,8 (third emperor of the Northern Wei dynasty) caused a south-pointing carriage to be constructed by an artificer called Kuo Shan-Ming,9 but after a year it was still not finished. (At the same time) there was a man from Fu-fêng, Ma Yo,10 who succeeded in making one, but when it was ready he was poisoned by Kuo Shan-Ming.11 The first thing needing discussion here is the legendary material. The apparatus came in the course of time to be associated with two able events: (a) the battle between Huang Ti and the great rebel Chhih-Yu11 when the latter made a smoke-screen of fog through which the imperial army had to find its way,12 and (b) the sending home by Chou Kung of the ambassadors of the Yieh-Shang12 people to some place in the far south, for which guidance was necessary. In Klaproth's time it was thought...

1. Lo Chih
2. Tâo Shên
3. Hsiang-Lung
4. Li Yu
5. Yü Hsing
6. Shih Hu
7. Hsüan-Chhieh
8. Tao Tso
9. Kuo Shan-Ming
10. Ma Yo
11. Chhih-Yu
12. Tung-Shang
It may be remembered that we referred above (Vol. 4, pt. 1, p. 295) to the fact that at least one of the south-pointing carriages made by the northern barbarian dynasties had lost its machinery when the Sung people captured it, and had to be turned by a man inside. This is from the biography of Tsu Chhung-Chih, a great mathematician, who successfully constructed a new one in +478.

When emperor Wu of the (Liu) Sung subdrew Kuan-chung he obtained the south-pointing carriage of Yao Hsing, but it was only the shell with no machinery inside. Whenever it moved it had to have a man inside to turn to (the figure). In the Sheng-Ming reign-period, Kao Ti commissioned Tsu Chhung-Chih to reconstruct it according to the ancient rules. He accordingly made new machinery of bronze, which would turn round about without a hitch and indicate the direction with uniformity. Since Ma Ch'in's time such a thing had not been. In the +7th century the invention reached Japan, as we hear of two monks, Chih-Yu and Chih-Yu, constructing such vehicles for the Japanese emperor in +659 and +666. In all probability these ecclesiastical engineers had themselves come from China. The south-pointing carriage was naturally combined sometimes with the hodometer. Later books mention model south-pointing carriages only 15 inches high. Such a one it must have been that Chu Tê-Jun saw at the house of a friend early in the +14th century, and described in his Ku Yu Thu (Illustrated Record of Ancient Jade Objects) of +1341. The passage was copied into the San Tsai Thu Hui encyclopedia, where we read:

The picture on the right (see Fig. 527) is the ornamental (figure) on a (model) south-pointing carriage. By standard measure it was 1.42 ft. high and 7.4 inches long. The vertical shaft rose through a hole 3.7 inches in diameter, its own diameter being 3.4 inches. At the top it carried a human figure carved in jade, with one hand constantly indicating the south. The shaft penetrated down through the hole and turned around on its axis. The figure (was represented as) treading upon (an image of) Chihu-Yu. In the Yen-Yu reign-period (+4714 to +1320) I myself saw this (model) at the house of the Senior Academician Yao Mu-An. The colour of the jade was pale reddish-yellow. . . .

This was the figure which so much attracted the attention of occidental sinologists, and which was so often reproduced. What had been a symbol of magic power in the

6 The only books then available being late historical compilations. For instance, the Tsu Chi Hung Chien Kung Mu (Ch'ien Pien), ch. 15, p. 559.
7 Ch. 1, p. 38. (Chavannes (1), vol. 1, p. 29).
8 Discourse on the Hung Fan Chapter of the Shu Ching, in relation to the Five Elements; passage preserved in T'YuL, ch. 775, p. 18. There is also a passage in the K'uei Ku Tzu book about the story of the guidance of ambassadors (ch. 10, p. 196), repeated in Yu Hsi (ch. 78, p. 348) and elsewhere, but modern editors regard this as an interpolation from a later commentary. A delightful 15th-century echo of this legend occurs in the memoirs of John Bell of Antermony (vol. 2, p. 49), the Scots physician who went to Peking in the train of the Russian ambassador I. V. Izmailov—and he heard it from the lips of the Khang-Hsi emperor himself. On 2 January 1721, at a private audience, [the emperor] discoursed of the invention of the lodestone—which, he said, was known in China above two thousand years ago; for it appeared from their records that a certain ambassador from some distant island to the coast of China, missing his course in a storm, was cast on the Chinese coast in the utmost distress. The then Emperor, whose name I have forgotten, after entertaining him hospitably, put him back to his own country, and to prevent the like misfortunes in his voyage homeward gave him a compass to direct his course.
9 Both translated in Klaproth (1), pp. 74, 78, 80, 82.
10 The genuineness of this book has often been attacked, but Hashimoto's defence of it seems rather convincing. The passage in question is repeated in Ma Kaó's 5th-century Chung Hua Ku Ch'iu Chun, Ch. 1 in both cases.
11 There is no mention of it in Chang Hsing's biography (Hou Han Shu, ch. 86).
12 Sam Kuo Chih (We Shu), ch. 29, p. 94.
13 Cf. Ch'un Shu, ch. 25, p. 38, from which it is clear that the Ch'in emperors had at least one.
14 This is, as we have seen, in the Hou Han Shu bibliography.

The Sung Shih gives a historical account similar to the Sung Shu, adding that between +806 and +821 Chin Kung-Li a presented a south-pointing carriage and a hodometer to the Thang emperor,\(^a\) and that in +987 the escort was increased from 18 to 30 men. But its main importance is that it gives the only detailed description of the machinery involved, as constructed by two engineers, Yen Su\(^b\) in +1027, and Wu Te-Jen\(^c\) in +1107. The text says:\(^b\)

In the 5th year of the Thien-Sheng reign-period of the emperor Jen Tsung (+1027), Yen Su, a Divisional Director in the Ministry of Works, made a south-pointing carriage. He memorialised the throne, saying, [after the usual historical introduction]:

'Throughout the Five Dynasties and until the reigning dynasty there has been, so far as I know, no one who has been able to construct such a vehicle. But now I have invented a design myself and have succeeded in completing it.

The method involves using a carriage with a single pole (yuan) (for two horses). Above the outside framework of the body of the carriage let there be a cover in two storeys. Set a wooden image of a hsien (immortal) at the top, stretching out its arm to indicate the south.

Use 9 wheels, great and small, with a total of 120 teeth, i.e.

2 foot-wheels (i.e. road-wheels, on which the carriage runs) 6 ft. high and 18 ft. in circumference, attached to the foot-wheels, 2 vertical (ching) subordinate (tsu) wheels, 2 4 ft. in diameter and 7 2 ft. in circumference, each with 24 teeth (chhih), the teeth being at intervals of 3 inches apart, then below the crossbar (heng mu) at the end of the pole (yuan) two small vertical wheels [a] 3 inches in diameter and pierced by an iron axle, to the left 1 small horizontal (phing) wheel, 1 2 ft. in diameter, with 12 teeth, to the right 1 small horizontal wheel, 1 2 ft. in diameter, with 12 teeth, in the middle 1 large horizontal wheel, of diameter 4 8 ft. and circumference 14 4 ft., with 4 8 teeth, the teeth at intervals of 3 inches apart.

in the middle a vertical shaft piercing the centre (of the large horizontal wheel) 8 ft. high and 3 inches in diameter; at the top carrying the wooden figure of the hsien.

When the carriage moves (southward) let the wooden figure point south. When it turns (and goes) eastwards, the (back end of the) pole is pushed to the right; the subordinate wheel attached to the right road-wheel will turn forward 12 teeth, drawing with it the right small horizontal wheel one revolution (and so) pushing (chhu)\(^d\) the central large horizontal wheel to revolve a quarter turn to the left. When it has turned round 12 teeth, the carriage moves eastwards, and the wooden figure stands crosswise and points south. If (instead) it turns (and goes) westwards, the (back end of the) pole is pushed to the left; the subordinate wheel attached to the left road-wheel will turn forward with the road-wheel 12 teeth, drawing with it the left small horizontal wheel one revolution, and pushing the central large horizontal

\(^{a}\) There is more in Thang Liu Tien, ch. 17, and Yu Hai, ch. 79, pp. 40b, 46b, 49b. Cf. Sui Shu, ch. 10, p. 3 b.

\(^{b}\) Ch. 149, pp. 14ff., tr. Moule (7), mod. auct., adjuv. Giles (5), vol. 1, p. 219. The Jurchen Chin emperor had both machines in +1171 (Chin Shih, ch. 43, p. 15).

\(^{c}\) Ch. 150, pp. 14ff., tr. Moule (7), mod. auct., adjuv. Giles (5), vol. 1, p. 219. The Jurchen Chin emperor had both machines in +1171 (Chin Shih, ch. 43, p. 15).
wheel to revolve a quarter turn to the right. When it has turned round 12 teeth, the carriage moves due west, but still the wooden figure stands crosswise and points south. If one wishes to travel northwards, the turning round, whether by east or west, is done in the same way.

It was ordered that the method should be handed down to the (appropriate) officials so that the machine might be made.

In the first year of the Ta-Kuan reign-period (+1107), the Chamberlain Wu Tê-Jen presented specifications of the south-pointing carriage and the carriage with the b-recording drum (hodometer). The two vehicles were made, and were first used that year at the great ceremony of the ancestral sacrifice.

The body of the south-pointing carriage was 11'15 ft. (long), 9'5 ft. wide, and 10'9 ft. deep.

(A) The carriage wheels were 5'7 ft. in diameter, the carriage pole 12'5 ft. long, and the carriage body (hsiang) in two storeys, upper and lower. In the middle was placed a partition. Above there stood a figure of a kien holding a rod, on the left and right were tortoises and cranes, one each on either side, and four figures of boys each holding a tassel.

In the upper storey there were at the four corners trip-mechanisms (huaun-li), and also 13 horizontal wheels (no lan?), each 1'8 ft. in diameter, 5'5 ft. in circumference, with 32 teeth at intervals of 1/8 inches apart. A central shaft, mounted on the partition, pierced downwards.

In the lower storey were 15 wheels. In the middle was the largest horizontal wheel, 3'8 ft. in diameter, 11'4 ft. in circumference, and having 100 teeth at intervals of 1'25 inches apart.

(D) (On vertical axles) reaching to the top (of the compartment) left and right, were two small horizontal wheels which could rise and fall, having an iron weight (attached to) each. Each of these was 1'1 ft. in diameter and 3'7 ft. in circumference, with 17 teeth, at intervals of 1'9 inches apart.

(B) Again, to left and right, were attached (fu) wheels, one on each side, in diameter 1'55 ft., in circumference 4'65 ft., and having 24 teeth, at intervals of 2'1 inches.

(F, G) Left and right, too, were double gear-wheels (lit. tier-wheels; tieh lan), a pair on either side. Each of the lower component gears was 2'1 ft. in diameter and 6'3 ft. in circumference, with 32 teeth, at intervals of 2'1 inches apart. Each of the upper component gears was 1'2 ft. in diameter and 3'6 ft. in circumference, with 32 teeth, at intervals of 1'1 inches apart.

(I) On each of the road-wheels of the carriage, left and right, was a vertical wheel 2'2 ft. in diameter, 6'6 ft. in circumference, with 32 teeth at intervals of 2'5 inches apart.

(E) Both to left and right at the back end of the pole there were small wheels without teeth (pulleys), from which hung bamboo cords, and both were tied above the left and right (ends of the) axle (of the carriage) respectively.

If the carriage turns to the right, it causes the small pulley to the left of the back end of the pole to let down the left-hand (small horizontal) wheel. If it turns to the left, it causes the small pulley to the right of the back end of the pole to let down the right (small horizontal) wheel. However the carriage moves the kien and the boys stand crosswise and point south.

The carriage is harnessed with two red horses, bearing frontlets of bronze. . .

a Presumably to actuate the boys to wave their tassels. On the term kuan-li see p. 485 below. Or a hodometer signal may have been incorporated in the design, though nothing is said of drums or gongs.

b Italics inserted.

c The sense necessitates the inversion of the words for left and right in the text. The characters could easily be confused. Moreover, the dimensions given throughout the passage cannot all be correct, as they will not fit together.

Fig. 528. Reconstruction of the mechanism of the south-pointing carriage according to Moule (7) and Wang Chen-To (2); back elevation. As the rear end of the vehicle's pole (5) moves to the left or right, it engages and disengages the suspended gear-wheels to the left and right respectively, thus connecting or disconnecting each road-wheel with the central gear-wheel carrying the pointing figure.
Fig. 529. Plan of the Moule-Wang reconstruction (from Wang Chen-To, 3). The vehicle's pole rotates about the lower bearing of the vertical shaft carrying gear-wheel and pointing figure.

It will be admitted that this is a document distinctly precious for our knowledge of +11th- and +12th-century engineering. Explanations and reconstructions of the mechanism have been given by Moule (7) and Wang Chen-To (3), and I have no doubt that they apply to the second part of the text above, namely the machine constructed by Wu Tê-Jen. This we must examine first. Consider the back elevation (Fig. 528) and the plan (Fig. 529), taken from Wang Chen-To, but embodying the

a The Sung Shih version may not be the earliest, however, for a passage in almost identical wording occurs in the Khuet Tham Lu (Thinking of Confucius Asking Questions at Than), a record of governmental matters during the Sung (ch. 13, pp. 14ff.). This was written by Yo Kho, who was already an important official between +1208 and +1224, i.e. more than a century before the Sung Shih was compiled (+1345). Yo Kho gives Wu Tê-Lung instead of Wu Tê-Jen, probably erroneously.

b We may leave on one side the 13 wheels in the upper chamber which were purely concerned with the puppet mechanism of the tortoises and cranes, and ensured that the four corner-boys behaved in the same way as the central figure. Cf. here Liu Hsien-Chou (7), p. 104.
same solution as that of Moule. The essence of the mechanism was that the subsidiary or inner gear-wheels fixed to the road-wheels engaged with small horizontal toothed wheels which rotated the central large one attached to the same shaft as the main figure. But the small horizontal toothed wheels were never both in gear at the same time; mounted on weights sliding up and down vertical shafts, they were hung on cords passing over pulley-wheels above and attached to the rear end of the carriage-pole below. This is well seen in Wang’s model (Fig. 530). Supposing that the carriage, going south, should deviate to the west (i.e. turn to the right), the horses would carry round the pole to the right and hence its rear end would move to the left. This would raise the right small gear-wheel and lower the left one so that it enmeshed with the inner gear of the road-wheel and with the central wheel. As the left road-wheel would be moving while the right one would be out of gear, this train would obviously have the effect of compensating for the change in direction of the carriage and so maintaining approximately the south-pointing direction of the wooden figure. Upon resumption of a straight course, both gear-wheels would again be disengaged.

Wu Tê-Jen’s machine was in fact more complicated than this, since he introduced additional components in the gear-train, including (a feature of much interest for the history of technology) two-tier or double-gear wheels. His system can be appreciated from Fig. 531, adapted from Moule (7). The gear-wheel (a) engaged with another gear-wheel (b) immediately above it, and this in turn engaged and disengaged at a right angle with the vertically movable cogwheel (d), seen below its suspension pulley. This in turn moved (when in action) the lower component (f) of the double gear-wheel, the upper part (c) of which moved the central wheel (c).

The object of thus multiplying the cogwheels is not very clear. That these reconstructions do, however, represent Wu Tê-Jen’s mechanism, is sufficiently convincing, seeing that he specifically states that two of the wheels could rise and fall, that the cords controlling this were fixed to the rear end of the carriage-pole, and that two of the wheels were pulleys without teeth. Wu Tê-Jen’s machine was in fact more complicated than this, since he introduced additional components in the gear-train, including (a feature of much interest for the history of technology) two-tier or double-gear wheels. His system can be appreciated from Fig. 531, adapted from Moule (7). The gear-wheel (a) engaged with another gear-wheel (b) immediately above it, and this in turn engaged and disengaged at a right angle with the vertically movable cogwheel (d), seen below its suspension pulley. This in turn moved (when in action) the lower component (f) of the double gear-wheel, the upper part (c) of which moved the central wheel (c).

The object of thus multiplying the cogwheels is not very clear. That these reconstructions do, however, represent Wu Tê-Jen’s mechanism, is sufficiently convincing, seeing that he specifically states that two of the wheels could rise and fall, that the cords controlling this were fixed to the rear end of the carriage-pole, and that two of the wheels were pulleys without teeth.

Moule assumed that this reconstruction applied also to the mechanism of Yen Su,b and perhaps to that of others such as Ma Chün. But this is not at all sure. Though scrupulously careful to adjust the text as little as possible, Moule had to insert the words ‘(without teeth)’ at the place marked [a] in the exposition of Yen Su.e Yet if these wheels were in fact cogwheels the situation would be very different. Now although the solution of Moule and Wang is theoretically feasible, it is mechanically very inelegant, and the amount of play likely to have been involved, together with the difficulty of inducing the wheels to engage and disengage properly, would have made it hardly workable.d Moule always dismissed such arguments by saying that the

[a] So far as we know, these had appeared first in Heron (+ 1st century; cf. Beck, 2) or more probably Pappus (c. +300; Tshui Pao’s contemporary; cf. Beck (2), p. 29). One of their most important ultimate applications was in the fusee of spring clockwork (cf. pp. 444, 526 below, and Ward, 2).

[b] Another solution for this by Pao Ssu-Ho is given by Liu Hsien-Chou (7), p. 102.

[c] This applies both to the Sung Shih and to the Khuei Than Lu.

[d] As Dr Frank Malina has pointed out, it could have been improved by the use of wire cable tautly stretched between the gear-wheels underneath the carriage floor to form a continuous system, as also by the use of cam-shaped pulleys, but there is no evidence that such devices were employed.
machine was never intended to serve any practical purpose, but even if, as is probable, it was primarily a symbolic imperial prestige gadget, there is no reason to assume that it never worked properly. Otherwise envoys and tribute-missions, watching it on parade-grounds and in State processions, would not have been impressed. An entirely different solution was therefore suggested by George Lanchester, himself an eminent engineer, who proposed that the machine (in some cases, at any rate) embodied a simple form of differential gear.¹

The differential drive is an important element in the modern automobile. As has already been evident, when any wheeled vehicle rounds a corner, the outer wheels travel much further than the inner. The dead axles of carts or wagons permit each wheel to revolve independently, but on a live axle, through which power is transmitted, some device which allows the wheels to move independently while at the same time conveying the torque is essential. The usual type of motor-car differential gear is shown in Fig. 531. The driveshaft A ends in a bevelled pinion B, which drives the broad bevelled gear C, but though concentric with the left road axle, C is not fixed to it. On the contrary, it carries a spider or differential case, D, rigidly fixed to it and carrying bevel gears, E, E' on a transverse arm. The spider is of course also free of the right axle. The drive or torque is transmitted through the stationary teeth of these 'idling wheels' to the bevel gears F, F' on the two half-axles, and E, E' do not move on their own arm or 'stub-shaft' at all, so long as the vehicle is going straight forward. In other words, E, E' and F, F' revolve with the spider and have no motion relative to one another. But if one road-wheel is held back or accelerated relative to its companion, it can move independently, drive being maintained, all that happens being that E and E' change their position, running round relative to F and F'.

So much for the 'differentials' of our motor-cars. This nest of gear-wheels used to be called the Starley gear, after the name of the inventor who first applied it to vehicles in 1879. Many have thought that this was the beginning of it, but in an interesting series of papers von Bertele (4, 5) has shown that it was used much earlier, in 18th-century horology.

In order to understand its development in Renaissance Europe one must remember that differential gear, since it embodies right-angle gearing (whether bevelled or not), is a more complicated 'three-dimensional' form of epicyclic gearing.⁴ All such gear-trains however differ from conventional gear-wheel assemblies in that the axis of at least one toothed wheel revolves in a circular orbit with respect to the axes of the other wheels. They have proved extremely valuable as constructional elements of many machines (computers, effector mechanisms, etc.) because they permit of numerical changes in relative position, running round relative to one another.

Many uses of differential gearing, in speed-changing and regulating mechanisms in control and governing devices for valve gear, turbines, cranes and hoists, etc., will be found described in Jones & Horton (1), vol. 1, pp. 329ff., 336ff., and for the automobile drive in particular, vol. 1, pp. 379ff.

Fig. 531. Diagram to illustrate the principle of the differential drive of motor-vehicles.
of a very small velocity difference (366/365). After this it was quite widely used in astronomical clocks, though it seems to have been reinvented several times.\(^b\)

True differential gearing was introduced by Joseph Williamson about +1720 for correcting the equation of time.\(^a\) To add this component to the train he made the arm bearing the 'idling wheels' swing back and forth by means of a lever operated by a cam actually cut in the shape of the graph—the 'equation kidney'. Thus the clock showed both mean and solar time.\(^d\) However, since bevel-gears were not yet known in Europe,\(^b\) the mechanism was made with a right-angle crown-wheel. It will be noted that in this first application the main driving force was transmitted through the main wheels and not (as in the automobile) through the idling wheels, which here only added or subtracted a small velocity difference. For a long time after Williamson's achievement the properties of differential gear were little appreciated, and a century elapsed before James White called attention to it in his *Century of Inventions* (1822).\(^e\)

Among other proposals, in his dynamometer he inserted a differential in a transmission-shaft, at the same time balancing the arm by a weight which indicated in conjunction with the lever length the torque transferred. This application also differed from the automobile in that all the driving force came through one of the main wheels.\(^f\) Finally the first analytical treatment of epicyclic and differential gearing was given by Robert Willis\(^b\) in 1841.

Thus the history of the differential train would seem to have begun in the early 18th century. The question now opened is whether in its earliest form it does not go back more than a thousand years earlier. If indeed this was really the secret of some at least of the Chinese south-pointing carriage designs, it is interesting to reflect that while in the modern automobile the differential gear fulfills a locomotive and ad-terrestrial function, in the medieval south-pointing carriage its role was precisely the opposite—ex-terrestrial. The close (and natural) connection of the latter with the hodometer, the camp-mill,\(^g\) and the mechanised 'band-wagon'\(^j\) can thus easily be seen. Correspondingly, since the transmission of the driving force was inverted, the small wheels were truly 'idling'.\(^k\)

Lanchester saw that this system could have been used for the mechanism of the south-pointing carriage. The arrangement can readily be understood from the back elevation (Fig. 533) and the photograph of the model (Fig. 534). It is a question of reversing the direction of the drive, which occurs here, as we have noted, not from an engine to the road, but from the road to the south-pointing figure. Just as in the other

\(^a\) Cf. von Dresch (1); von Bertele (1).

\(^b\) As by George Graham (+ 1740) and about the same time by the San Cjatano brothers in Austria and Mudge in England (c. + 1770). See von Bertele (2).

\(^c\) Cf. Lloyd (?); von Bertele (4, 166).

\(^d\) In the subsection on clockwork below (pp. 456, 470) we shall find some evidence that they may have been used already in +11th-century China.

\(^e\) Cf. Dickinson (4).

\(^f\) The principle is still used in the Webber differential dynamometer (cf. Jones & Horton (1), vol. 1, pp. 366).

\(^g\) (4), pp. 361 ff., 380, 391, etc. A brief but interesting biography of Willis (1800 to 1875) has been written by Hilken (1).

\(^h\) Cf. p. 235 above.

\(^i\) Cf. p. 283 above.

\(^j\) Cf. p. 202 above.

plan, the gears \(A_2, A_1 \) fixed to the road-wheels engage with horizontal intermediate wheels, \(B, B_1 \) (extended to \(B_2 \)), but these are now so arranged as to be permanently in gear with an upper and a lower bevelled wheel \(C_1, C \), the upper one of which is concentric with the shaft carrying the pointing figure but is not fixed to it. Between them run two small idling wheels \(D, D_1 \) connected by a stub-shaft from the centre of which rises up at right angles the shaft carrying the pointing figure. Relative motions of the road-wheels will now be accurately, and inversely, reflected in the movements of the idling wheels and the pointer which they carry. If, for instance, the left-hand road-wheel moves faster than the right, as on a westward turn, \(B \) will move while \(B_1 \) will be almost stationary, and \(C \) will be turning while \(C_1 \) will be almost at rest. Hence \(D, D_1 \) will react to precisely the same extent but in the opposite direction. They will then stay put, though \(C, C_1 \) will resume their mutually opposite regular motion until further relative change of road-wheel velocities occurs. Fig. 535 shows the pretty behaviour of a model constructed by Lanchester himself.\(^a\)

Does this satisfy Yen Su's specification? If his two small vertical wheels had teeth, it could. But a misprint in the text would have to be assumed, for he should have been recorded as speaking of two large horizontal wheels in the middle, not one. This could be due to a textual error easily made. There should also, however, have been 10 or 11 wheels, and more than 120 teeth. Besides, if Yen Su's machine had used the

\(^a\) Of course in full-scale practice even this device would not have worked well over any considerable distance unless the two road-wheels were made very accurately identical in size, and some measures taken to avoid relative slip. Coales (1) has calculated that a difference of only 1% between the wheel circumferences would lead to a change of direction of the pointing figure of as much as 90° in a distance only 50 times that between the two wheels.
differential gear, it is not obvious why the motions of the carriage-pole should have been mentioned at all, though the text gives no reason for bringing them in, and no cords or weights are mentioned. In any case, whether or not Yen Su used a form of differential gear, it remains quite possible that Ma Chün or Tsu Chhung-Chih did so, for it is after all simpler as well as more practical and elegant than the clumsy device of engaging and disengaging gear-wheels vertically suspended.a

The most astonishing part of the story is that the differential gear is used to operate a 'south-pointer' in the design of military tanks today. For obvious reasons no references can be given, but since the magnetic compass will not function properly within their violently moving steel hulls, it is necessary to set a pointer initially, just as the Chinese used to set their pointing figures, and then to read the direction taken by the tank en route from the movements of the automatic pointer.

Sinologists have generally regarded the south-pointing carriage as a kind of playful freak, or an exercise of misguided ingenuity on the part of the Chinese. But from a broad historical viewpoint, it is surely much more than this. It may be said to have been the first step in human history towards the cybernetic machine.

Cybernetics is a term which has been introduced in our own time to cover a vast field in which mathematics, physics, and engineering join closely with biology and physiology. It derives from the Greek kubernètes, kubernētēs, a steersman, and has been expounded in a celebrated book by Wiener (1). It denotes the field of control and communication theory, whether in machines or in living organisms. Elsewhere in this Section (pp. 157 ff.) we are seeing, as we saw at an earlier stage, that the Chinese, like other ancient peoples, were intrigued by the possibility of inanimate simulacra of the living body, and constructed in due course many automata of various kinds depending on springs, water-power and the like. But it was their own invention of mechanical clockworkb which by permitting the motive force to be fully concealed within the body of the automaton had a really far-reaching influence on scientific philosophy. Mechanistic biology, with all its heuristic value, began with the Cartesian estimate of animal bodies as automata. But still it was a far cry from clockwork robots which could do no more than carry out a fixed programme, to living things. Only when it became possible to make machines which could spontaneously revise their proceedings in the light of information as to the degree of approximation to their goals attained, did the realms of mechanics and biology begin to approach closely.

Though classical biochemistry and physiology still think of living organisms in terms of power and fuel engineering, advanced science is moving towards the conception both

a In weighing this probability it may be worth while remembering that the 'Chinese windlass', discussed on p. 98 above, is one of the simplest cases of differential motion, and in this capacity often opens standard accounts of differential gearing (see e.g. Jones & Horton (2), vol. 1, pp. 363 ff.).
b Though apparently von Humboldt seriously believed—(3), vol. 1, pp. xxxv ff.—that it had aided the Chinese to achieve the high level which they attained in their knowledge of the historical geography of Central Asia.
c Vol. 2, pp. 51 ff.
d See Sect. 271 below, and in fuller detail Needham, Wang & Price (1). The essential invention here was of course that of the escapement, but it is noteworthy that although the Chinese tower clocks between the 8th and the 14th century were driven by water rather than falling weights or springs, the motive power was always concealed. Cf. p. 540.
of them and of machines in terms of communication engineering. Modern biology
has firmly established the existence of a 'homoeostasis' of the internal medium of the
body—a remarkable constancy of factors such as osmotic pressure, hydrogen ion
concentration, blood-sugar, and the like. So also modern technology has now for a
long time past developed all kinds of self-regulating or homoeostatic
machines.

Automatic action, in its broadest sense, would cover the coupling of auxiliary motions
to the main motion of a machine. We take occasion to discuss elsewhere whether this
first appeared in Villard de Honnecourt's water-powered saw-mill (+13th century)
or in the Chinese silk-reeling machine (+11th century if not earlier). In any case
such auxiliary motions did not establish a self-acting cyclical system. This came with
the development of the steam-engine in the +18th century. In its first truly practical
form (that of Thomas Newcomen, +1712) it embodied an auxiliary motion in the
form of a 'plug-tree' or plug-rod suspended from the beam and actuating the piston
of a water-pump which on its down-stroke raised the cold injection water. Naturally
the valve gear for admitting steam and cold water into the cylinder of the engine itself
played a vital part from the beginning. According to a well-known story (which if not
true is ben trovato) the automation of this was first effected by a boy attendant,
Humphrey Potter, who saved himself trouble by arranging that the beam's rise and
fall should spontaneously open and close the valves by suitable cords and catches at
the right points in the cycle. It soon became evident that the plug-rod could be made
to do this very simply by a series of trip-mechanisms, and indeed this was in all prob-
ability part of Newcomen's original design. From that point onwards the road lay
clear open to the invention of the slide-valve for single-cylinder double-acting steam-
engines by William Murdock in +1799. As explained elsewhere, this principle,
introduced by James Watt in +1782, was characteristically Chinese, deriving from
the ancient single-cylinder double-acting piston-bellows—with of course the essential
difference that the piston no longer acted as a compressor on both strokes but was
itself subjected to pressure on both strokes. Here then was a self-acting cyclical
system, but it did not establish a self-regulating cyclical system. Watt accomplished
this by his now familiar device of the centrifugal governor-balls for regulating the
velocity of steam-engines under varying conditions of load (+1787).

This was a true closed-loop 'servo-mechanism', and probably the oldest example
of the kind. In the same year Thomas Mead applied it to the control of the gap
between the grinding-stones in windmills set by the bridge-tree, for the avoidance
of frictional over-heating at high speeds. But in windmills the governor-balls had
been preceded by another important automatic control device, the ingenious 'fantail
gear' due to Edmund Lee in +1745, which kept the main sails of a post mill auto-

Fig. 535. Action photographs showing the efficiency of the mechanism of the differential-
gear reconstruction of the north-pointing carriage (a set from Mr George Lanchester).

a Cf. p. 2 above, p. 404 below.
e The mathematical study of the governor-balls by Clerk-Maxwell in 1868 is regarded as the founda-
tion stone of cybernetics.
f Wailes (3), p. 137. Cf. p. 185 above. Governor-balls may have been used in windmills rather earlier
than in the steam-engine. For the prior history of the windmill, see pp. 555 ff. below.
matically facing the wind by the use of a small auxiliary windmill mounted at right angles on a horizontally projecting tail substituted for the tail-pole. In tower mills the top of the tower so that it was free to turn until due in the wind direction, when it would stop. By this ‘self-becalming’ property it ensured that the main sails were always oriented for maximum advantage. Besides these arrangements there were many safety devices in 19th-century mills, giving warning of exhaustion of grain supply, rise in head-water level, etc., precursors, as Coales (1) puts it, of the klaxons introduced by Andrew Meikle in accordance with the load. By the beginning of the 19th century automatic controls in windmills had been so far developed as to allow of operation by one man alone. The windmill was the prototype of the automatic factory.

Since then we have come to use all kinds of other devices—thermostats, gyrocompass and powered ship-steering systems, computing machines, homing missiles, anti-aircraft fire-control apparatus, and automatically self-adjusting chemical and engineering production equipment. There is now a large literature on automation and on the various types of servo-mechanisms, i.e. power-amplifying motor end-organs which carry out the necessary operations. On the ‘sensory’ side there is an equal variety of information-producing end-organs—photo-electric cells, chemical meters, current-gauges, thermo-couples, etc. The routing of this information into the machine which must adjust its activities correspondingly is known as ‘feedback’. When we desire a motion, says Wiener, to follow a given pattern, the difference between this pattern. Other interesting discussions which illuminate the vistas opened up for the exploration of the possibilities of automatic machines, involving new discoveries in information-theory and the like, will be found in Tustin (1); Gabor (1); Cherry (1); Cherry, Hick & McKay (1); and Nagel, Brown, Ridenour et al. 27. MECHANICAL ENGINEERING optimum. Experiments are now being carried out by Walter (1) and others in which tentative models of living organisms are being built up from relatively simple circuits connecting receptor and effector units.

This is the background against which it may be said that the south-pointing carriage was the first homoeostatic machine in human history, involving full negative feedback. Of course, the driver has to be included in the loop. But as Coales (1) has acutely pointed out, an attractive carrot held by the pointing figure might have replaced the human driver and closed the loop more automatically. The south-pointing carriage would have been the first cybernetic machine had the actual steering corrected itself, as we could easily make it do today. It is interesting to note, also with Coales, that if the large gear-wheel (C in Fig. 531) were rigidly attached to the pole, then as soon as one of the small gear-wheels engaged, the pole would be restored in a few moments to its original direction. This would of course put intolerable strains on the teeth, and probably lead to prohibitive oscillations, but such an arrangement would have been a purely mechanical self-regulating closed-loop system. There is no textual evidence that this was ever attempted in medieval China.

Yet to produce an instrument which would fully compensate for, and thus consistently indicate, all deviations from a prearranged course, was a real achievement, not only of practice, but also of conception, for this coincidence that this simulacrum of a living organism arose in a highly stable civilisation characterised by a highly organic conception of nature, for the tendency to self-regulation is a primary property of living organisms. Wang Chhung in the 1st century, as we have seen, described an animal tropism; the larvae, after being disturbed, swung back on their course. If Chang Heng and Ma Chün could not make a machine that would accomplish this, at least they made one which would do its best to show where that course lay.

(f) POWER-SOURCES AND THEIR EMPLOYMENT (1), ANIMAL TRACTION

In foregoing sections we have been concerned with the use of animal-power as the prime mover for various kinds of machines, as also for vehicles, and it was convenient to leave vague the exact practical way in which this force was applied. Those who were really concerned with the matter, however, in different historical periods, found themselves face to face with a set of problems which were really of an engineering character.

* He has given an interesting diagram of the principle of the south-pointing carriage in terms of the conventions of current cybernetic theory.

* In the present Section and that on physics (Vol. 4, pt. 1, pp. 209 ff. above) it has always been necessary to distinguish sharply between the south-pointing carriage and the magnetic compass. Yet if the conclusions there reached concerning the knowledge of the directivity of the lodestone in the Han period, correct, it is not without interest that the first constructions of south-pointing carriages with gear design from the Later Han or San Kuo time. These were homoeostatic machines in a sense in which the lodestone was not, for it was a natural object, rather than a contrivance of man. But they may have been built in its image.

* Indeed a homoeostatic culture (Needham, 47).

* Vol. 4, pt. 1, p. 262 above.
Though we do not usually think of it in this way, any system of harnessing constitutes an elaborate play of linkwork and hinges, in which both the anatomical nature of the draught animal and the structure of the object pulled has to be taken into consideration.

(1) Efficient Harness and Its History

That historians of technology have become conscious of the importance of this set of inventions is due to the genius of a French cavalry officer, Lefebvre des Noëttes, who was the first to investigate the harness used in different cultures at different times, as shown by remaining carvings and pictures, and to make actual experiments with reconstructions of the ancient systems used. One is constantly seeing pictures of harnessed animals, in church windows, in manuscripts, on stone monuments, etc., but until one's eyes are opened by the systematic work of a des Noëttes one simply fails to see that quite different methods were employed at different times, and that their gradual improvement involved inventions of great importance. There can be no better way of opening this section than by a brief paraphrase of some of his introductory remarks.

A draught system, he said, is composed of one or more animals, the motive force of which has been applied to traction by means of a special system, the harness, which itself includes several components. A rational harnessing system should permit the complete utilisation of the force of all the animals, and favour their work as a team. The 'modern' harness (i.e. collar-harness), well adapted as it is to the anatomy of the horse, attains this objective, and the force which can be exerted is limited only by the requirement (the load to be pulled) and the quality of the road. The 'antique' harness, on the other hand (which we shall call throat-and-girth harness), could make use only of a small fraction of the possible motive force of each animal, failed to ensure satisfactory collective effort, and in general yielded a very low efficiency. The two are so different that the former cannot possibly be interpreted as a variant of the latter, and cannot, indeed, have grown out of the latter. The throat-and-girth harness was a single clearly recognisable type which remained unchanged from its first appearance in the most ancient illustrations we have, until it finally died out in the Middle Ages in Western Europe. And, moreover, it was the same everywhere, in every ancient realm and culture, equally inefficient. Only one ancient civilisation broke away from this and developed an efficient harness—China.

The throat-and-girth harness is shown by Fig. 536a. It consists of a girth surrounding the belly and the posterior part of the costal region, at the top of which the point of traction is located. Presumably in order to prevent the girth being carried backwards, the ancients combined it with a throat-strap, sometimes narrow, more often broad, which crossed the withers diagonally and surrounded the throat of the animal, thus compressing the sternoc-cephalicus muscle and the trachea beneath it. The inevitable result of this was to suffocate the horse as soon as it attempted to put forth a full tractive effort, accompanied by the lowering and advancing of the head. In sharp contrast to this is the 'modern', or collar-harness (Fig. 536c). Here the collar, reinforced and padded, bears directly upon the sternum and the muscles which cover it, thus linking the line of traction intimately with the skeletal system and freeing fully the respiratory channel. The animal is now able to exert its maximum tractive force. The collar-harness was not, however, the only way in which the line of traction could be derived from the chest or sternal region so as to leave the throat free. At some time during the Chhin or early Han in China, or quite probably earlier, in the Warring

\[\text{See des Noëttes (1), p. 5. As a prelude to the present section it would be instructive to read the appropriate chapter in Haudricourt & Delamarre (1), pp. 155 ff., which summarizes the state of the question, relating harness not only to vehicles but to ploughs. We must continue to bear in mind, however, its relation to machinery powered by animals. The account of harness in Jope (1) needs adjustment, especially in the light of the Chinese contribution.}\]

\[\text{From Needham (17), a preliminary presentation of this argument. Cf. Haudricourt (10).}\]
27. MECHANICAL ENGINEERING

States period, someone realised that the animal's shoulders could be surrounded by a trace, which, if suspended by a withers-strap and attached to the point of inflection of the curving cart or chariot shafts, would greatly increase the efficiency of the horse's work. This is the breast-strap harness shown in Fig. 536b. The continuation of the trace round the animal's hind-quarters, and its support by a hip-strap, was not a necessary part of the tractive mechanism, but allowed of the backward movement of the cart, and its braking when descending slopes; to this point we shall return.

(i) Throat-and-girth harness in Sumer and Shang

One might say that the throat-and-girth harness of horses was a makeshift alternative for the yoke of the ox. Since the neck of that draught animal projects forwards from the body horizontally, unlike the rising crest of the horse, and since its vertebral column forms a bony contour in front of which a yoke can easily be placed, this was satisfactory enough from the earliest times. Figure 537 shows an ox-cart of age-old type in the streets of Chiu-chhiian (Kansu) in 1958. Abundant illustrations of similar vehicles drawn by oxen could be reproduced, were it necessary, from Han reliefs, Buddhist carvings and Tunhuang frescoes. But the yoke on each side of a central pole, or between shafts, which was suitable for oxen was quite inapplicable to horses, and the throat-and-girth harness was the consequent substitute attachment. In the Shang period and no doubt for several centuries afterwards the junction-point of girth and throat-band was bound by leather thongs to the cross-bar (heng) attached medially to the upward-curving central pole, transmitting thus the tractive force. But for some reason or other, perhaps of symbolism, perhaps of ornament, the useless 'yoke' (heng or o, chhiu) lived on in vestigial forms with great persistence. Before the beginning of

1 The terms chest-strap or chest-band would of course be more appropriate, since this is not the site of the mammae in the horse, but we retain some usages of common speech.

2 Alternatively, loin-strap or croup-strap. It was often doubled.

3 A rather sharp internal 'hump' is formed by the long upward-projecting spinous processes of the 7th cervical vertebra and the 1st to the 5th thoracic vertebrae. Since the curve of the vertebral column so formed is almost as sharp as two right angles (cf. Sisson & Grossman (1), pp. 126 ff.), a strong 'ledge' or support is afforded for the yoke; and even when the line of the neck is straight (in some varieties of oxen there is a marked dip or hollow), the tissues under the trapezius muscle are more yielding than those of the corresponding region in the horse.

4 The ox-yoke itself appears in many variations. A historical and ethnographical summary will be found in Haudecourt & Delmasara (1), pp. 164 ff., 180 ff. Cf. Huntingford (1).

5 Cf. Siren (1), pl. 74; Harada & Komai (1), vol. 2, pl. XXXIV, etc., for unpainted terra-cotta models of Han date, common in museums. A typical Buddhist relief dated ±525 is figured by Harada (1), pl. XXXIV, a. At Chhien-fu-tung, many examples from Wei, Sui and Tang, e.g. cave nos. 22, 290.

6 The thoracic vertebrae of the horse also have spinous processes projecting dorsally but they rise and fall over the scapular region in a flowing curve, which, combined with the powerful suspensory muscles of the neck, make a smooth line along the back and give no 'ledge' of any kind for harness.

7 Cf. p. 246 above. See particularly the early -7th-century chariot-burials of the State of Kuo (in north-western Honan) described in Anon. (27).

8 The word chhiu seems to have meant the long pieces only, while o or ọ referred to the whole thing; cf. von Dewall (1).

Fig. 537. The age-old ox-yoke harness for bovine animals (orig. photo., 1958, Chiu-chhiian, Kansu). The long upward-projecting spinous processes of the cervical and thoracic vertebrae form a kind of internal hump against which the arched yoke can bear. No such ledge is available in equine animals.

Fig. 538. Burial of a chariot, with horses and charioteer, excavated at Ta-ssu-khun Tshun near Anyang in Honan; Shang period, c. 13th century (Ma Ts-Chih et al. (1), cf. Watson (2), pp. 88 ff.). Trenches were cut for the wheels, axle and pole, the wood of which left its traces in the soil. The bronze 'yokes', shaped like narrow wishbones, are still in position by the horses' necks; the bronze hub-caps and the rows of bronze discs used for ornamenting the harness are also still in their places. Two bronze bow-shaped ornaments of uncertain use can be seen within the limits of the chariot body. Photo. T'ING & BEIA.
the Chou it had assumed a narrow V-shaped 'wishbone' form, and its lower ends were turned up, perhaps to act as guides for the reins. Figure 538 shows a Shang chariot burial of about the - 12th century excavated at Ta-ssu-khung Ta-hun near Anyang in Honan. The two bronze-sheathed 'fork-yokes' (Fig. 539) can be seen beside the skulls of the two horses; they must have been suspended from the cross-bar with the reins no doubt resting in their lower 'gutters'. Then at some time about the Warring States period the Chinese abandoned the central pole in favour of two parallel outside bars, and the curving S-shaped shafts of the typical Han chariot, connected above and behind the horse's neck by a cross-bar, were the result. Still, however, the 'fork-yoke' persisted, probably now chiefly because it was often useful as a guide for the reins. This appears to be the arrangement in Fig. 540, a moulded Han brick from Szechuan. After the invention of the breast-strap harness, and the attachment of the traces directly to the point of inflection of the shafts, the cross-bar was of little further use, and it eventually disappeared. So too did the 'fork-yoke'. Here we meet with a question of considerable interest, namely the dates of the two inventions—the shafted vehicle and the breast-strap harness. Did they coincide, or if not what interval separated them, and which came first? Textual researches should have something to say on this problem while we are awaiting a decisive answer from archaeology.

The really astonishing thing about the throat-and-girth harness is the immense spread which it had both in space and time. We find it first in the oldest Chaldean representations of the beginning of the - 3rd millennium onwards, in Sumeria and Assyria (- 1400 to - 900). It was in sole use in Egypt from at least - 1500, 4th or 5th century, no trace of it is left. But as we shall presently find, the narrow Han 'fork-yoke' may also have been an inspiration for the hard separate 'hames' component of the earliest collar-harness; perhaps it was remembered, or perhaps some derivatives of it lingered on in parts of the country. Lejard (1, Figs. 2; des Noettes (1), fig. 17 (the Standard of Ur). In these earliest pictures the girth is sometimes not represented (cf. e.g. the tiger-chariot figured by des Noettes (1), fig. 16), so that it remains a question whether some considerable time elapsed before the girth was added to the throat-band. This is implied by the poles of the hobby-horse or saddle-chariots (cf. des Noettes (1), fig. 4). As is well known, Equus onager, not caballus, was used before - 2000. On Sumerian vehicles see further Childe (11, 16).

a The really astonishing thing about the throat-and-girth harness is the immense spread which it had both in space and time. We find it first in the earliest representations of the beginning of the - 3rd millennium onwards, in Sumeria and Assyria (- 1400 to - 900). It was in sole use in Egypt from at least - 1500, 4th or 5th century, no trace of it is left. But as we shall presently find, the narrow Han 'fork-yoke' may also have been an inspiration for the hard separate 'hames' component of the earliest collar-harness; perhaps it was remembered, or perhaps some derivatives of it lingered on in other parts of the country. Lejard (1, Figs. 2; des Noettes (1), fig. 17 (the Standard of Ur). In these earliest pictures the girth is sometimes not represented (cf. e.g. the tiger-chariot figured by des Noettes (1), fig. 16), so that it remains a question whether some considerable time elapsed before the girth was added to the throat-band. This is implied by the poles of the hobby-horse or saddle-chariots (cf. des Noettes (1), fig. 4). As is well known, Equus onager, not caballus, was used before - 2000. On Sumerian vehicles see further Childe (11, 16).

b This was actually made in three pieces, the two long arms being fixed into the holder at the top; cf. von Dewall (1).

c There are rather close parallels for the whole arrangement in ancient Egyptian and Assyrian representations (cf. des Noettes (1), figs. 20, 22, 25, 27).

d Ma Tso-Chih, Chou Yung-Chen & Chung Yun-Ping (1); Watson & Willetts (1), no. 10; Watson (1), p. 22, figs. 46f., (2), pp. 88ff., pl. 11.

e Cf. p. 248 above.

f But perhaps also as a protection against the breaking of the cross-bar if the horse reared backwards; cf. p. 310 below.

g Anon. (22), no. 19, pp. 42, 43; Liu Chih-Yuan (1), no. 50. Even when the shafts were straight, however, as in the chariot models from the - 1st century found at Chbanghsa (cf. p. 77 above), the 'yokes' were still present, so that the shafts must have pointed upwards at quite an angle unless the cross-bar was very arched (see the illustrations in Anon. 11). Such a highly arched one is indeed shown in Anon. (29), no. 18, p. 41; Liu Chih-Yuan (1), no. 53.

h That is to say, when trace harness was used. But along another line of development, it was present at the birth of collar-harness and indeed became the direct ancestor of the hard 'hames' of modern harness. This evolution will be made clear as we proceed.

i By the time of the earliest frescoes at Chihien-tung (T'ung-huang, see on, p. 319), i.e. the +4th or +5th century, no trace of it is left. But as we shall presently find, the narrow Han 'fork-yoke' may also have been an inspiration for the hard separate 'hames' component of the earliest collar-harness; perhaps it was remembered, or perhaps some derivatives of it lingered on in other parts of the country. Lejard (1, Figs. 2; des Noettes (1), fig. 17 (the Standard of Ur). In these earliest pictures the girth is sometimes not represented (cf. e.g. the tiger-chariot figured by des Noettes (1), fig. 16), so that it remains a question whether some considerable time elapsed before the girth was added to the throat-band. This is implied by the poles of the hobby-horse or saddle-chariots (cf. des Noettes (1), fig. 4). As is well known, Equus onager, not caballus, was used before - 2000. On Sumerian vehicles see further Childe (11, 16).

j See des Noettes (1), figs. 24, 25 and pp. 21-32.
Where it is shown on all paintings and carvings of chariots and horses, and it was likewise universal in Minoan and Greek times. Innumerable examples occur in Roman representations of all periods, and the empire of the throat-and-girth system also covered Etruscan, Persian and early Byzantine vehicles without exception. Western Europe knew nothing else until about +600, nor did Islam. Moreover, the south of Asia was almost entirely in reliance on this inefficient harness, for it is seen in most of the pictures of carts which we have from ancient and medieval India, Java, Burma, Siam and other parts of that area. Central Asia, too, has it, e.g. at Bamiyan. One of its last appearances occurs on a bas-relief of the +14th century at Florence in Italy, where it may be a conscious archaism.

(ii) The first rationalisation: breast-strap harness in Chhu and Han

We may now pass to the efficient breast-strap harness of China with its two traces suspended by the withers-strap (Fig. 550). One can only say that it is universal on all Han carvings, reliefs and stamped bricks which show horses and chariots (cf. Chavannes (9, 11), Jung Kang (1) and indeed every book on Chinese archaeology which reproduces such pictures). The Wu Liang tomb-carvings (cf. p. 264 above), of the +2nd century, as depicted in the Chin Shih So and on later rubbings, are full of examples of such harness, one of which is shown in Fig. 541. The Hosokawa

Fig. 541. Han breast-strap harness, a typical representation; the carriage of the Intendant of the Imperial Equipages (Wei Chihang), from the Wu Liang tomb-shrines (+ 147). Chin Shih So (Shih sect.), ch. 3 (p. 105). Besides the breast-band or trace suspended by withers-strap (here apparently forked) and hip-strap, a girth is still retained and the old throat-strap has turned into an elongated sling helping to suspend the front of the chest-strap. A breeching is present and there are also ornamental bands over the horse’s hind-quarters. Many Han representations are much less elaborate than this, showing only the chest-strap with its suspensions. From a recent rubbing.
PLATE CCVII

Fig. 543. Breeching and hip-strap hanging from the shafts of a parked chariot; part of the reliefs from the Wu Liang tomb-shrines, c. +147 (Chavannes, 3).

Another carriage harness relief of the Han period, from the I-nan tomb-shrines, c. +193 (Tseng Chao-Yii et al. 1). Compare with the diagram following.

Let us examine more closely a Chinese carriage from the end of the +2nd century, the culminating time of Han technique. Figure 544 reproduces a relief from the I-nan tombs and Fig. 545 adds an explanatory drawing. Aided by the commentators such as Fang Pao and Chiang Yung we can at once distinguish the breast-band (chin), the traces (yin), the withers-straps (hsien), sometimes called an, which more properly meant the saddle of a ridden horse, and the hip-straps and breech-band (chiu, chhiu). As often as not, horses harnessed in Han chariots have no girths (pi), but those of I-nan do. The shafts of the vehicle (yuan, cf. p. 248 above) are now bifurcated, for at or near the point of attachment of the traces a short rod is bound to them so that it serves to keep pointing forwards and downwards the lower extremi-

Fig. 542. MECHANICAL ENGINEERING

Collection in Tokyo possesses a splendid Han bronze model of a harnessed horse and cart, reproduced here in Fig. 542, from which the breast-strap and shafts can clearly be seen. The breeching or breech-band, suspended by the hip-strap, seems often to have been left attached to the shafts when the horse was taken out of them, for in a famous picture (Fig. 545) from the Wu Liang tomb-shrines, we see the empty chariot with the breeching between the shafts.

Fig. 544. Another carriage harness relief of the Han period, from the I-nan tomb-shrines c. +193 (Tseng Chao-Yii et al. 1). Compare with the diagram following.

Fig. 545. Elucidation of the I-nan relief to show the forked shafts, the cross-bar, the 'yoke', and the harness components. Technical terms are explained in the text.

Note that yin alone has the meaning of leading.

The breech-band, breech-strap or breeching corresponds to the crupper of the ridden horse which keeps the saddle from working forward. By a natural extension of meaning the second word, chhiu, could also denominate traces and whippletree (cf. p. 260 above). It participated, moreover, also very naturally, in the term for a swing (cf. p. 376 below).
ties of the 'fork-yoke' (ti) which is attached centrally to the cross-bar (heng).\(^a\) Through special rings (yu huan) on this run the reins (phei or pi, le, ti or thiaw),\(^b\) the forward ends of which (chhang)\(^c\) are attached to the bronze cheek-piece levers (piao)\(^d\) at each end of the bit (hsienn).\(^e\) The bridle (lung),\(^f\) or network of straps securing the horse's head-furniture, was also clearly depicted by the carvers of I-nan. Most of these terms have long fallen into disuse and will hardly be found in modern dictionaries.\(^g\) When two or more horses were used the inner traces were called yin yin,\(^h\) and the outer ones yang yin,\(^i\) the inner reins le\(^j\) and the outer ones phei.\(^k\) There were many other terms for ornamental parts of the harness (such as the little jingling bells hun)\(^l\) which we must not stay to examine. When the Han harness is well understood, one can appreciate some of the contemporary instructions to drivers; thus, for example, in the Chou Li it is suggested that when mounting gradients the driver should place his weight well forward in the chariot, thus helping to keep the breast-band down.\(^m\) Naturally there were various minor variations of the Han trace harness, but they need not delay us here.\(^n\) The traces were generally attached to the mid-points of the shafts, but it is clear from some of the reliefs that in the case of heavy baggage-carts, timber-tugs, etc., they were run right back to the body of the vehicle itself, as in modern practice (cf. Fig. 493). This also happened in quadrigeae which retained a central pole.\(^o\) So far we have found only one enlightening piece of evidence concerning the first origins of the breast-strap harness in China. It is a form transitional between the throat-and-girth type and the traces (see Fig. 546), depicted with varying degrees of clarity on painted lacquer boxes (lien)\(^p\) from the State of Chhu, approximately 4th century in date.\(^q\) What seems to be a hard yoke-shaped object, probably of wood, with down-turning ends, has been applied to the horse's chest, and the ends connected to the mid-point of the shafts by traces. Or it may be that two angle-pieces of wood or bone connected by a breast-strap hang at the horse's sides. But the breast-strap has not been quite abandoned, only lengthened so as to support the chest-piece (or

\(^a\) The function of this system is a little difficult to discern. Perhaps the vestigial yoke lived on in the role of a buffer to prevent the breaking of the light cross-bar when the horse reared back its neck and head. The sockets for the rode at each end of the yoke are clearly visible in Fig. 544. Or perhaps the persistent 'yoke' was part of the trappings and hardly functional at all. It may well have been gilded or at least brightly polished.

\(^b\) An elaborate study of some of them will be found in Hayashi Minao (1), pp. 228ff.

\(^c\) Ch. IX, p. 18a (ch. 4). There is a very good example of this in the Hsiao-thang tomb-reliefs (c. 129) linking its two ends underneath, as it often did. Balancing on the part of drivers continued to be enjoined until modern times (cf. Philipson (1), p. 32).

\(^d\) See Needham & Lu. Han carriage-horses were often decked with bands or trappings serving a purely ornamental purpose, especially on the hind-quarters. Cf. Fig. 541.

\(^e\) There is a very good example of this in the Hsiao-thang Shang tomb-reliefs (c. 129) immediately following the hodometer (p. 185 above); see Chhang Jen-Chieh (1), pl. 12. Here the Chi'in Shih Shu representation (Shih sect., p. 115) is particularly bad, for it made the nearest trace into a shaft.

\(^f\) A particularly clear example is figured by Chhang Jen-Chieh (2), pl. 12, who, however, dates it as Han. What seems to be another one, which shows something hanging in the same place as the chest-piece, will be found in Shang Chi'heng-Tsun (1), no. 9, pl. 23, 28, 30. This is considered indubitably of Chhu date. One of the best illustrations is given in Anon. (50), p. 31, an album of Chhu antiquities. All should be studied together.

\(^g\) When the Han harness is well understood, one can appreciate some of the contemporary instructions to drivers; thus, for example, in the Chou Li it is suggested that when mounting gradients the driver should place his weight well forward in the chariot, thus helping to keep the breast-band down.\(^m\) Naturally there were various minor variations of the Han trace harness, but they need not delay us here.\(^n\) The traces were generally attached to the mid-points of the shafts, but it is clear from some of the reliefs that in the case of heavy baggage-carts, timber-tugs, etc., they were run right back to the body of the vehicle itself, as in modern practice (cf. Fig. 493). This also happened in quadrigeae which retained a central pole.\(^o\) So far we have found only one enlightening piece of evidence concerning the first origins of the breast-strap harness in China. It is a form transitional between the throat-and-girth type and the traces (see Fig. 546), depicted with varying degrees of clarity on painted lacquer boxes (lien)\(^p\) from the State of Chhu, approximately 4th century in date.\(^q\) What seems to be a hard yoke-shaped object, probably of wood, with down-turning ends, has been applied to the horse's chest, and the ends connected to the mid-point of the shafts by traces. Or it may be that two angle-pieces of wood or bone connected by a breast-strap hang at the horse's sides. But the breast-strap has not been quite abandoned, only lengthened so as to support the chest-piece (or

\(^a\) The function of this system is a little difficult to discern. Perhaps the vestigial yoke lived on in the role of a buffer to prevent the breaking of the light cross-bar when the horse reared back its neck and head. The sockets for the rode at each end of the yoke are clearly visible in Fig. 544. Or perhaps the persistent 'yoke' was part of the trappings and hardly functional at all. It may well have been gilded or at least brightly polished.

\(^b\) An elaborate study of some of them will be found in Hayashi Minao (1), pp. 228ff.

\(^c\) Ch. IX, p. 18a (ch. 4). There is a very good example of this in the Hsiao-thang tomb-reliefs (c. 129) linking its two ends underneath, as it often did. Balancing on the part of drivers continued to be enjoined until modern times (cf. Philipson (1), p. 32).

\(^d\) See Needham & Lu. Han carriage-horses were often decked with bands or trappings serving a purely ornamental purpose, especially on the hind-quarters. Cf. Fig. 541.

\(^e\) There is a very good example of this in the Hsiao-thang Shang tomb-reliefs (c. 129) immediately following the hodometer (p. 185 above); see Chhang Jen-Chieh (1), pl. 12. Here the Chi'in Shih Shu representation (Shih sect., p. 115) is particularly bad, for it made the nearest trace into a shaft.

\(^f\) A particularly clear example is figured by Chhang Jen-Chieh (2), pl. 12, who, however, dates it as Han. What seems to be another one, which shows something hanging in the same place as the chest-piece, will be found in Shang Chi'heng-Tsun (1), no. 9, pl. 23, 28, 30. This is considered indubitably of Chhu date. One of the best illustrations is given in Anon. (50), p. 31, an album of Chhu antiquities. All should be studied together.

\(^g\) When the Han harness is well understood, one can appreciate some of the contemporary instructions to drivers; thus, for example, in the Chou Li it is suggested that when mounting gradients the driver should place his weight well forward in the chariot, thus helping to keep the breast-band down.\(^m\) Naturally there were various minor variations of the Han trace harness, but they need not delay us here.\(^n\) The traces were generally attached to the mid-points of the shafts, but it is clear from some of the reliefs that in the case of heavy baggage-carts, timber-tugs, etc., they were run right back to the body of the vehicle itself, as in modern practice (cf. Fig. 493). This also happened in quadrigeae which retained a central pole.\(^o\) So far we have found only one enlightening piece of evidence concerning the first origins of the breast-strap harness in China. It is a form transitional between the throat-and-girth type and the traces (see Fig. 546), depicted with varying degrees of clarity on painted lacquer boxes (lien)\(^p\) from the State of Chhu, approximately 4th century in date.\(^q\) What seems to be a hard yoke-shaped object, probably of wood, with down-turning ends, has been applied to the horse's chest, and the ends connected to the mid-point of the shafts by traces. Or it may be that two angle-pieces of wood or bone connected by a breast-strap hang at the horse's sides. But the breast-strap has not been quite abandoned, only lengthened so as to support the chest-piece (or

\(^a\) The function of this system is a little difficult to discern. Perhaps the vestigial yoke lived on in the role of a buffer to prevent the breaking of the light cross-bar when the horse reared back its neck and head. The sockets for the rode at each end of the yoke are clearly visible in Fig. 544. Or perhaps the persistent 'yoke' was part of the trappings and hardly functional at all. It may well have been gilded or at least brightly polished.

\(^b\) An elaborate study of some of them will be found in Hayashi Minao (1), pp. 228ff.

\(^c\) Ch. IX, p. 18a (ch. 4). There is a very good example of this in the Hsiao-thang tomb-reliefs (c. 129) linking its two ends underneath, as it often did. Balancing on the part of drivers continued to be enjoined until modern times (cf. Philipson (1), p. 32).

\(^d\) See Needham & Lu. Han carriage-horses were often decked with bands or trappings serving a purely ornamental purpose, especially on the hind-quarters. Cf. Fig. 541.

\(^e\) There is a very good example of this in the Hsiao-thang Shang tomb-reliefs (c. 129) immediately following the hodometer (p. 185 above); see Chhang Jen-Chieh (1), pl. 12. Here the Chi'in Shih Shu representation (Shih sect., p. 115) is particularly bad, for it made the nearest trace into a shaft.

\(^f\) A particularly clear example is figured by Chhang Jen-Chieh (2), pl. 12, who, however, dates it as Han. What seems to be another one, which shows something hanging in the same place as the chest-piece, will be found in Shang Chi'heng-Tsun (1), no. 9, pl. 23, 28, 30. This is considered indubitably of Chhu date. One of the best illustrations is given in Anon. (50), p. 31, an album of Chhu antiquities. All should be studied together.
Plate CCIX

Fig. 547. Trackers hauling a boat upstream; a fresco painting of the early Thang period from cave no. 328 at Chiien-fo-tung, Tunhuang. Efficient equine harness may have arisen from the practices of human haulers.

Fig. 548. Diagram to explain the harness system seen in the Chhangsha lacquer painting.

27. MECHANICAL ENGINEERING

pieces) at the inflection, acting instead of the withers-strap which would suspend the traces; and the girth has also been retained (Fig. 548). This evidence would perhaps suggest that the invention of the shafted chariot was the limiting factor, and that traction from the sternal region was not achieved until the shafts became available. But presently we shall find certain documents perhaps equally venerable which seem to show collars combined with long traces and no shafts. Many archaeological discoveries are still needed; in the meantime the lacquer paintings of Chhu do seem to show us the breast-strap harness in the nascent state.

Unless gear of this kind was a completely new invention long afterwards, these hard objects suspended at the side of the horse’s shoulder-bones were transmitted through tribes and peoples unknown to turn up again among the Avars (probably from the time when they invaded Hungary from the east in +568) and then among Magyars, Bohemians, Poles and Russians. For burials excavated in these lands dating from between the +7th and the +10th centuries have yielded T-shaped pieces of bone or horn pierced with holes in such a way as to connect conveniently the three harness components—breast-strap, lengthened throat-strap (now as good as a withers-strap), and traces; these last attached either to the vehicle itself or more probably to the tip of the shafts. After the +10th century these objects occur no more, presumably because of the replacement of the breast-strap harness by collar-harness in Central Europe.

What gave the idea for the breast-strap harness we do not know, but there is always the possibility that it derived from what was found most convenient in human haulage.

a Cf. Fig. 505 below.

b The elongated sling helping to suspend the chest-piece from the top of the girth persisted till the end of the + and century, by which time it had long become a purely ornamental band. Or so we may conclude if we rely on the Wu Liang Tzhu reproductions of the Fong brothers in 1821 (see Fig. 541 and many other places in Chén Shih So, Shih sect., e.g. pp. 126, 127). Unfortunately, we cannot be quite sure about this for many of the harness details have disappeared during the past century, as may be seen from modern rubbings such as those of Jung K’êng (1).

c See Gýula (1), pl. lviii, fig. 4; Arne (1); Zák (1), P. 61, calls the arrangement “a type of rudimentary horse-collar”, but this is quite inadmissible; we should rather call it a vestigial remnant of one of the most archaic transitional stages between throat-and-girth harness and breast-strap harness. It is interesting that in the reconstructions of Gýula and Zák the girth is retained just as in the ancient system of Chhu. The Avar harness is also compared by Lynn White (loc. cit.) with reindeer harness, but that is unconvincing too. It is true that Lapp and Siberian reindeer harness is composed of rigid parts as well as flexible parts, straps alternating with pieces of bone in continuous lengths, and that some of the hard parts may be bent in sharp angles, but the single trace to the sledge from the ‘collar’ runs backwards from its base lengthwise under the body between the legs so that no danger of choking the animal arises; cf. Martin (1); Manker (1). It seems quite impossible that the ancient device of Chhu, a relatively southern State, could have originated from contact with reindeer-using peoples. Of course reindeer-keepers and horse-drivers had important cultural interchanges (cf. Gunda, 1), but in this case it seems unnecessary to bring in a cervid with a quite different type of harness. Presently (p. 316) we shall meet with a group of ornamented metal links in breast-strap harness of Scandinavian regions which may well have been inspired by the bone components of reindeer harness.

d On this subject see Mason (1), p. 545, and Haudricourt (8).
The working of boats upstream by large groups of trackers goes back a long way, no doubt, in Chinese history, and men would have been conscious from their own experience that tractive force must be exerted from the sternal and clavicular region. Tracking is represented in the Tunhuang frescoes, from which Fig. 547 may enhance our argument.

If then we may accept the breast-strap harness as an invention of the late Chou period, perhaps it was the basis for the legend of Tsao Fu, the charioteer of King Mu, and the man who was supposed to have been the ancestor of the princes of Chao and Chhin. The Mu Thien Tsu Chuan (Account of the Travels of the Emperor Mu), which, though not as ancient a text as it purports to be, is certainly not later than the 5th century BC, furnishes us with the first actual reference to such a harness. In the time of King Mu, the names of which have long been suspected to be of Turkic origin, the horse was already harnessed in the same manner as that shown in the fresco of the Chou period. The fresco also shows that the Chou period was the time when the breast-strap harness was in general use.

The horse has greater endurance than the ox, and can work a few more hours each day. It may be worth while, however, to say a little more about the inefficiency of the equine throat-and-girth harness as compared with the later breast-strap harness. The anatomical pattern of course speaks for itself, but des Noëttes made practical experiments in 1910 from which he found that the effective traction of two horses harnessed in the throat-and-girth fashion was limited to about 1100 lb. (1 ton). Yet many modern vehicles weighed from 3 to 3 tons tare and between 1½ and 9 tons loaded, and were easily drawn by collar harness. A single horse with collar-harness can readily draw a total load of a ton and a half. To this des Noëttes added an examination of the regulations for post vehicles found in the De Curia Publico section of the Theodosian Code, which limits the load of a single horse to 1500 lb.

Code (+43). Here the fixed limits of freight varied from as little as 154 lb. for the birota to 1700 lb. for the angaria, a four-wheeled wagon drawn by several animals.

The throat-and-girth harness would not have been able to have been therefore, to draw modern vehicles, even when empty.

With these figures we may compare the 365 lb. taken by a single Chinese wheelbarrow of the San Kuo period. Moreover, an attentive study of Han illustrations of chariots and carriages, comparing them with those from all other ancient civilisations, clearly shows that the Chinese vehicles were much heavier. While Egyptian, Greek or Roman chariots always appear of minimal size, fit only for two persons at most, with cut-away sides and often drawn by four horses, the Chinese chariots frequently show as many as six passengers (cf. the hodometer or band-cart in Fig. 544). Very frequently too they have heavy curving roofs (cf. Fig. 540) and are usually drawn by only one horse. Again, when the Chinese came into contact with Western regions, they distinctly noticed the vehicles of those parts as being remarkably small, and the chapter on Ta-Chhin (Arabia, Roman Syria) in the Hou Han Shu says just this.

It is quite easy to add some evidence from Chinese texts which des Noëttes never knew. The Mo Tsu book, in a passage which may be taken as of the late 4th century, tells of the comments of Mo Ti on the flying kite constructed by Kungshu Pan.

Kungshu Pan constructed a bird from bamboo and wood, and when completed, it flew. For three days it stayed up in the air, and Kungshu was proud indeed of his skill. But Mo Tsu said to him, 'Your achievement in constructing this bird is not comparable with that of a carpenter in making a linch-pin (hata). In a few moments he cuts out a piece of wood which, though only three inches long, can carry a load no less than fifty fan in weight. Indeed, any achievement which is beneficial to man may be said to be skilful (chhiwao), while anything not beneficial may be said to be clumsy (cho).'

In a parallel passage in Han Fei Tsu, which would date from the following century, and which will be quoted below in connection with aeronautics, the figure given for the weight of the cart pulled is 30 tan. Since the tan of the Warring States period is estimated as having been equivalent to 120 lb., Mo Ti's estimate would amount to 3 tons, and that of Han Fei to rather over ¼ tons. Doubtless other figures for loads pulled during the late Chou and Han periods could be found in the texts, but these certainly seem to support the view that the breast-strap harness was little less efficient than the collar-harness itself.

Comparison of the efficiency of horse and ox.

It is hardly necessary to insist on the advantages of the horse, once properly harnessed, over the ox. While both animals have about the same tractive force, the horse gives some 50% more foot-pounds per second because of its greater speed of movement. Besides this, the horse has greater endurance than the ox, and can work a few more hours each day.

While both animals have about the same tractive force, the horse gives some 50% more foot-pounds per second because of its greater speed of movement. Besides this, the horse has greater endurance than the ox, and can work a few more hours each day.

It is quite easy to add some evidence from Chinese texts which des Noëttes never knew. The Mo Tsu book, in a passage which may be taken as of the late 4th century, tells of the comments of Mo Ti on the flying kite constructed by Kungshu Pan.

Kungshu Pan constructed a bird from bamboo and wood, and when completed, it flew. For three days it stayed up in the air, and Kungshu was proud indeed of his skill. But Mo Tsu said to him, 'Your achievement in constructing this bird is not comparable with that of a carpenter in making a linch-pin (hata). In a few moments he cuts out a piece of wood which, though only three inches long, can carry a load no less than fifty fan in weight. Indeed, any achievement which is beneficial to man may be said to be skilful (chhiwao), while anything not beneficial may be said to be clumsy (cho).'

In a parallel passage in Han Fei Tsu, which would date from the following century, and which will be quoted below in connection with aeronautics, the figure given for the weight of the cart pulled is 30 tan. Since the tan of the Warring States period is estimated as having been equivalent to 120 lb., Mo Ti's estimate would amount to 3 tons, and that of Han Fei to rather over ¼ tons. Doubtless other figures for loads pulled during the late Chou and Han periods could be found in the texts, but these certainly seem to support the view that the breast-strap harness was little less efficient than the collar-harness itself.

Comparison of the efficiency of horse and ox.

It is hardly necessary to insist on the advantages of the horse, once properly harnessed, over the ox. While both animals have about the same tractive force, the horse gives some 50% more foot-pounds per second because of its greater speed of movement. Besides this, the horse has greater endurance than the ox, and can work a few more hours each day.

It may be worth while, however, to say a little more about the inefficiency of the equine throat-and-girth harness as compared with the later breast-strap harness. The anatomical pattern of course speaks for itself, but des Noëttes made practical experiments in 1910 from which he found that the effective traction of two horses harnessed in the throat-and-girth fashion was limited to about 1100 lb. (1 ton). Yet many modern vehicles weighed from 3 to 3 tons tare and between 1½ and 9 tons loaded, and were easily drawn by collar harness. A single horse with collar-harness can readily draw a total load of a ton and a half. To this des Noëttes added an examination of the regulations for post vehicles found in the De Curia Publico section of the Theodosian Code (+43). It is likely (Burford, 1) that the angaria was drawn by two animals only, often quite probably oxen. If so, this load agrees well enough with the only other specific figure which has come down to us from occidental antiquity, namely 25 talents (1100 lb.) mentioned by Xenophon (Cyropedia, vi, i, 34) in his comments on Cyrus' experiments with siege towers (-4th century).

Three commonly in the Huai Shang Han relics of e. +199 (Chin Shih So, Shih sect., ch. 1.p. 106).

It is interesting to remember that the Mo Tsu text is approximately contemporary with the lacquer paintings just discussed which reveal the beginnings of breast-strap harness.
The detailed views of des Noëttes have been the subject of much discussion. For example, Sion (2) urged that the figures in the Theodosian Code may have been minimal ones authorised so as to spare the post-horses, and that heavier freight could have been carried at need, also that ancient horses might have given a better performance than those of des Noëttes on account of training. But no one disputes the general conclusion that the throat-and-girth harness, so long and so widely employed, was four or five times less efficient than the breast-strap or the collar-harness. As for the comparison of the two latter, all the practical books concur that trace-harness is never quite as efficient as the collar.

The throat-and-girth harness was often felt to be unsatisfactory in antiquity. That the throat-and-girth harness was often felt to be unsatisfactory in antiquity is clearly shown by the numerous unsuccessful attempts to improve it. This was not much use, since the point of traction remaining on the horse's back, the throat-band was always pulled upwards, and in this case it only brought the girth forward and galled the elbow region. It can be seen in the prancing horses of Ramses II at Karnak, and has generally been misunderstood by copyists, who have supposed that an extremely loose girth was intended, which would have been no use for anything. A second attempt was of course not exactly called the 'false breast-strap' harness, in which a horizontal band was placed round the chest of the animal, joining the girth at each end (Fig. 549b). This was not much use either, since the point of pull tended to make the false breast-strap rise and compete with the throat-strap in strangling the horse. It was never tried again and again, in Assyria (8th century), by the Sassanid Persians (+4th century), and by the Byzantines (+9th century). A third method was connected with the use of the saddle on draught horses, the throat-strap being attached either further back towards the horse's loins or croup, or lower than the back at the side of the saddle itself (Fig. 549c). This may be seen in late Byzantine MSS. (+10th to +13th century) as well as at the other end of the Old World in the Khmer culture (sculptured on the +12th-century Angkor Vat), and it found its way through to modern Japanese ploughs and north-west Indian tongas. But still the problem remained unsolved. Except in China.

(iv) Radiation of the inventions

In due course the Chinese breast-strap harness of the Han arrived in Europe. Although in the late Roman empire some light vehicles such as the *civis* began to be fitted with shafts instead of a pole, this does not seem to have involved the adoption of an efficient harness. The famous Gallo-Roman relief at Igel, near Trier (early +3rd century), shows two mules within shafts, but as the girth is clearly visible, and no horizontal traces, it can only be supposed that the throat-strap was retained also; moreover the cart is a very light one, seating only two men. So far as documentary evidence goes, there is no European representation of breast-harness before the +8th century. After this it appears more and more frequently, as for instance in the

Fig. 549. Attempted ameliorations of throat-and-girth harness. (a) The martingale of ancient Egypt; (b) the 'false breast-strap' of Assyria and Persia, and (c) the saddle breast-strap of Byzantium and Cambodia. None of these solved the problem of efficient equine traction.
The harness of the foreground horse in the Maraúdi relief, now in the Musee Calvet, Avignon (Sautel, 1). A trace seems to be combined with a double throat-band, and the girth is forked. Though claimed as Gallo-Roman, the authenticity of this carving is doubtful and the nature of the harness obscure. It may possibly represent a 7th-century attempt to combine throat-and-girth harness with breast-strap harness.

Fig. 551. The nearer of two horses attached to one of the two chariots carved on the lowest architrave of the southern gateway at Sanchi (probably late 1st century) in India (after Marshall, 3). A prominent throat-band indicates throat-and-girth harness. The traces and withers-strap have no tractive function but seem rather to be intended to keep the horses' long tails out of the driver's way. Possibly the Chinese breast-strap harness was known in India at this time and the artist misunderstood it.

Remarkable tapestry found in the Oseberg ship-burial (first half of the 9th century). When Ohthere told King Alfred about his life in northern Norway and said that 'what little he ploughed he ploughed with horses', the breast-strap harness was doubtless what he used. In the Viking culture of the 9th and 10th centuries the withers-strap of the harness seems to have carried various crest-like metal ornaments, or to have incorporated a curved and ornamented metal component across the horse's back. We see the breast-strap harness again in the drawings illustrating a MS. dated comment, as in van der Heyden & Scullard (1), fig. 300. The difficulty about it is its date. Des Noëtes (10), noting that the horses have shoes, affirmed that it is a Renaissance 'antique'. Sautel's view is that if not Renaissance, it is of the latest possible 'classical' date. If it could be placed between the 5th and 7th centuries, it might possibly represent an early European attempt to combine the throat-and-girth with the breast-strap harness. But its authenticity is too doubtful to admit of its use in support of any theory. Similar remarks apply to a relief in the Terme Museum at Rome figured by van der Heyden & Scullard (1), fig. 301, and ascribed to a date c. 100. Here evident throat-and-girth harness seems to be accompanied by traces of some kind, perhaps ornamental.

When Ohthere told King Alfred about his life in northern Norway and said that 'what little he ploughed he ploughed with horses', the breast-strap harness was doubtless what he used. In the Viking culture of the 9th and 10th centuries the withers-strap of the harness seems to have carried various crest-like metal ornaments, or to have incorporated a curved and ornamented metal component across the horse's back. We see the breast-strap harness again in the drawings illustrating a MS. dated comment, as in van der Heyden & Scullard (1), fig. 300. The difficulty about it is its date. Des Noëtes (10), noting that the horses have shoes, affirmed that it is a Renaissance 'antique'. Sautel's view is that if not Renaissance, it is of the latest possible 'classical' date. If it could be placed between the 5th and 7th centuries, it might possibly represent an early European attempt to combine the throat-and-girth with the breast-strap harness. But its authenticity is too doubtful to admit of its use in support of any theory. Similar remarks apply to a relief in the Terme Museum at Rome figured by van der Heyden & Scullard (1), fig. 301, and ascribed to a date c. 100. Here evident throat-and-girth harness seems to be accompanied by traces of some kind, perhaps ornamental.

Fig. 552. Evidence of possible experiments for the improvement of horse harness in the late Roman empire: a boy's shafted curvus on the 3rd-century sarcophagus of Cornelius Statius, formerly at Trier, now in the Louvre (des Noëtes, 1). The harness is placed too high and fits too tightly round the neck to be a collar, and the shafts meet it too near the mid-point; it is therefore probably a throat-band, occlusive as usual.
+1023 of the De Rerum Naturis of Hrabanus Maurus. The crudeness of the textile makes it a little difficult to distinguish from the collar-harness, but the Bayeux Tapestry seems to show it (+1130), as also contemporary carvings and MSS. After that time it was widely known and used, e.g. on post-coaches in the early 19th century; it found its way to South Africa, whence it was reintroduced into England (Philpion), and in some parts of Italy it is the only harness used. In recent years I have found it common in the Monocro region and Provence, where it is still called 'l'artelage à postillon'. Whether it ever spread to south or south-east Asia is uncertain.

It has long been well known that the other efficient harness, the collar-harness, made its appearance in Western Europe about the beginning of the +10th century, and had been universally adopted by the end of the +12th. Manuscript pictures of about +920 are the first to show it, and afterwards it becomes more and more

* See Amelli (1); Stephenson (1).
* In a ploughing scene. C. des Noettes (1), fig. 146, who regarded it as the oldest European representation of the agricultural use of mules and horses. Cave no. 290 at Chien-fu-tung, however, has what may possibly be a horse-plough, and this is of the early +6th century.
* Whether the shafts attached to the mid-point of what might be a collar draw forwards and attached to a horizontal trace suspended by straps from the animals' backs, and giving the illusion of breast-strap harness. We believe that des Noettes (1), p. 99, was right in saying that these traces may possibly be a horse-plough, and this is of the early +6th century.
* Whether the shafts attached to the mid-point of what might be a collar draw forwards and attached to a horizontal trace suspended by straps from the animals' backs, and giving the illusion of breast-strap harness. We believe that des Noettes (1), p. 99, was right in saying that these traces may possibly be a horse-plough, and this is of the early +6th century.
There is no doubt that over the same period it was largely replacing the old breast-strap harness in China. It is seen in Sung and Yuan paintings (+11th and +14th centuries), and appears, to the exclusion of all other types of harnessing, in the compendia of agricultural engineering already described (p. 166 above). But soon a suspicion arose that the collar-harness goes back a great deal further in China and Central Asia than in Europe. Though des Noëttes himself seems always to have adhered to the view that it arose in the West, he actually figured a photograph by Pelliot (25) of one of the Thang pictures of horses and carts in the 'Tunhuang cave-temple frescoes (actually from the +9th century), labelling it 'breast-strap and shafts' in spite of the fact that it shows collar-harness very clearly, as we shall shortly see from photographs and drawings specially made later on the spot. He also gave a photograph of a rubbing from Chavannes (9) of what looked like a transitional form between breast-strap and collar harness, from a Northern Wei incised stele of the +6th century. It is now possible to attain greater precision concerning the time and place of the cardinal inventions and their subsequent arrival in Europe. As has already been indicated, there can be no doubt that the earliest Chinese chariots were of the pole type, with throat-and-girth harness, as is shown by the analysis of the written character as well as the archaeological evidence. This system probably lasted as late as the end of the Warring States period, but was completely superseded by the breast-strap harness during the early Han (i.e. from the -2nd century onwards). In no other part of the world did an efficient equine harness appear so early. For dogs, indeed, the throat-and-girth gear lasted down to the end of the Han, as we know from tomb carvings.

its upper end even stands out as if padded—but as in all these cases, the position is that of the throat-band and not the collar proper. Moreover a girth is present, though with true collar-harness quite superfluous. Although, therefore, these interesting representations must fail to qualify as collar-harness, one cannot free oneself from the suspicion that some experiments towards better tractive devices were being made in the late Roman empire.

E.g. a +10th-century MS. 135 N.O. in the St Gall Library (des Noëttes (1), fig. 143), an +11th-century MS. 9968 of the Bib. Roy. Brussels (des Noëttes (1), fig. 144), and two +13th-century MSS. (figs. 150, 151). A fine example is found on the 'Kherson' bronze doors of the Church of St Sophia at Novgorod, made by German craftsmen and assembled by Master Abraham about +1125 (Kelly, I). For a miniature of +1140 see Leix (1), p. 328, and for +17th-century drawings and paintings Born (1), p. 773, (2), p. 782, also Saxil (1). Broadly speaking, the later the representation the clearer it is; some of the early ones place the collar as high on the neck as if it were a throat-band, thus sharing somewhat the uncertainty of the Roman and Gallo-Roman depictions just discussed.

Notably in the famous picture of Chang Tsa-Tuan 'Going up the River at the Spring Festival' (Chhing Ming Shang Ho Thu), pls. 8, 11, 16, 18 and 20 in the edition of Cheng Chen-To (3). From Figs. 515, 516 it will be seen that here in +1125 the horse- and mule-collars are of the modern 'combined' type (see on, p. 321). Also Yang Jen-Khai & Tung Yen-Ming (1), pl. 48.

Cf. one in the Brun Collection reproduced by des Noëttes (1), fig. 128.

Nung Shu (+1313), ch. 16, pp. 56, 70a, 88, 108; Thien Kung Khai Wu (+1675), ch. 1, p. 21b, ch. 3, p. 13a, ch. 9, p. 14a, etc. Needless to say also in +18th-century paintings and modern practice.

Des Noëttes was probably misled because Pelliot's photographs, made fifty years ago, were not always very clear on points of detail, and what are white collars with markedly padded profiles appeared on them only as broad white bands. (1), fig. 128, cf. p. 111.

All these conclusions agree with those reached by Hayashi Minao (1) in an elaborate paper on horse vehicle traction from the Shang to the Chhin, which appeared as this section was going to press.

W. Franke (2), fig. 6; Rudolph & Wei (5), pl. 20.

Fig. 555. Han tomb-model of a dog wearing throat-and-girth harness.
Cernuschi Museum, Paris (Hentze, 4).
and figurines, one of which is here reproduced (Fig. 555). It still continues in use among some of the tribal peoples of north-eastern Siberia.

That the breast-strap harness made its way in due course to the West across the Eurasian plains we can hardly doubt. Haudricourt (4) offers evidence that it reached Italy at least three centuries before the rest of Europe; he thinks with the Ostrogoths in the early 5th century. He suggests also that the arrival of the first efficient horse harness in Italy may have had something to do with the precocity of economic awakening there, as compared with other European countries. 'The good fortune of Europe in these matters', he wrote, 'in comparison with the Middle East and India, lay in the fact that it was the natural terminus of those great Asian plains which had been the centres of development of the techniques of locomotion.'

But could this be true of the second efficient horse harness also? That the collar was known in Thang times, i.e. two or three centuries before its first representation in Europe, was borne in upon me with conviction during the month which I spent in 1943 in residence at the cave-temples of Chhien-fo-tung (more properly called Mo-kao-khu) near Tunhuang. In these wonderful cave frescoes the eye of the leisurely visitor with technological awareness is caught by the fact that in nearly all the representations of horses and carts the shafts are attached to the lowest and furthest forward point of the collar-like harness (Fig. 556a). This is radically different from what is seen in drawings and carvings from all other parts of the world, where the attachment, if not in the throat-and-girth position on the horse's back, is to the midpoint of the throat-strap or collar-like band. It bears the clear implication of a pull from the sternum and not the tracheal region. I had already appreciated the significance of this when the first draft of the present subsection was written but at that time the caves were not so well dated as now, and on a return visit in 1958 it was possible to study the representations at Tunhuang in much greater detail.

(v) The second rationalisation; collar-harness in Shu and Wei

Let us begin with the clearest case. In cave no. 156 a magnificent panorama depicts the triumphal procession of a Chinese general and provincial governor Chang I-Chhao, another, about 3 ft. high, taken from a Later Han tomb at Thien-u-chhen, is to be seen in the Chhiengtu Municipal Historical Museum.

With Mr Rewi Alley, Mr Wu Tso-Jen (now President of the Chinese Academy of Fine Arts) and Mr Lo Chi-Mei. It is a pleasure to express our gratitude to the Lama Yi for all his kindness at that time. This is of course the site made famous in the West by Pelliot and Stein long ago.

Except certain early, but subsequent, European pictures, notably a 12th-century carving in the cathedral of Burgos in Spain (des Noettes (1), fig. 149), and 14th- and 15th-century Swiss and Austrian MS. illustrations (Wescher (1), p. 225, (2), p. 227). Cf. also des Noettes (1), figs. 155, 159. All these are undoubtedly collar-harness.

Cf. fn. g on p. 317.

I am greatly indebted to Dr Chhang Shu-Hung, Director of the Tunhuang Research Institute, for the warmest of welcomes and for all the Institute's facilities; and to Mrs Chhang (Li Chhing-Hsien) for her indefatigable help. I also owe much to my colleague Dr Lu Gwei-Djen for discussions at the site.

In Vol. 1, p. 120, I referred to the different enumeration systems which have been used at Chhien-fo-tung. Since then a concordance to them has been published by Hsieh Chih-Liu (1), and we now adhere
who recovered the Tunhuang region from the Tibetans in +834. We are fortunately able to date the picture closely for there is good evidence that it was painted in +851. The Commander of the Kuei-I Army and Legate-Plenipotentiary (Kuei-I Chieh-Tu-Shih) is probably celebrating the arrival of an imperial rescript confirming his authority, and he proceeds on his way attended by soldiers, banner-bearers, hunters and musicians. His retinue is followed by a second procession (the more important for us), that of his wife the Lady Sung (Sung Kuo Ho-Nei Chiin Fu-jen Sung shih), also composed of riders, musicians and dancers, but including four carts of which three are for the baggage. The main part of the scene is shown in Fig. 557, solely to the numbering of the Institute, converting other references into this as they arise, whenever possible. The most complete tables are those of Chhen Tsu-Lung (1).

* This is the opinion of Dr Chhang Shu-Hung. But there is universal agreement that the date must be in the middle two or three decades of the century.

b Previous reproductions of this scene which show the details of harness more or less well have been given by Pelliot (25), pls. XLVII and XLVIII (photos 45445/51, nos. 47 and 48 at Musee Guimet).

a This is the opinion of Dr Chhang Shu-Hung. But there is universal agreement that the date must be in the middle two or three decades of the century.

b Previous reproductions of this scene which show the details of harness more or less well have been given by Pelliot (25), pls. XLVII and XLVIII (photos 45445/51, nos. 47 and 48 at Musee Guimet).
and one of the latter, enlarged, in Fig. 558. An attentive study of the pictures in situ reveals that in all cases there are three components: (i) the shafts, (ii) a curved piece of wood like the ox yoke or the cross-bar of the Han carriage which connects them together, and (iii) a well-padded collar coming low on the chest (Fig. 556b), and rising behind the cross-bar. It thus becomes immediately evident that in these earliest forms of collar-harness the arrangement was in two parts, and the collar alone was simply an artificial substitute conferring upon the equine animal the equivalent of the internal 'hump' of the ox, i.e. a point d'appui against which the yoke could rest.

Our eyes were now opened. Great was our excitement, therefore, to find along the roads in Kansu province and many other parts of north and north-west China that the form of collar-harness still widely used there today perpetuates the double system of the Thang. Figure 559, a photograph taken near Chiu-chhiian, shows it well. The collar (the 'cushion', tien-tzu, or the 'hugger', yung-tzu) is not itself attached to anything, but there rests upon it a clapping framework (chia-ho-tzu or hsiao-ho-tzu), the descendant of the ancient yoke, which is directly connected with the shafts by thongs slipped over the pegs which they carry at their forward ends (Fig. 556c). In some districts the yokes of oxen assume the shape of a wishbone or a tree-branch forked in a wide angle. In this we may see a transition to the 'yoke' necessary for the horse in the collar-harness invention, and we shall naturally remember also the wishbone-shaped vestigial 'yokes' of the horse-drawn chariots of the Han. Thus the essence of the new device was an 'artificial hump' which would not come off. Only later on were the hard yoke and soft collar combined into one component, as in modern harness, to which the dictionary term for the horse-collar, hu-chien, or 'shoulder-protector', applies. And our original question can now be answered, in principle if not yet in date, for many of the earliest European pictures of collar-harness show precisely the Chinese three-component system. Indeed one can actually meet with

Roy (1), p. 123; Gray & Vincent (1), pl. 51 A; Chhang Shu-Hung (1), pl. 24; Yeh Chhien-Yü (1), pl. 24. Sirén (18), pls. 66, 68, offers a very clear copy painting, but the harness of the four carts is not well shown as the artist failed to appreciate the significance of the details. The cart of which we show an enlarged picture is the very one reproduced (and misinterpreted) by des Noettes (1) in his fig. 129.

For these and for other photographs we are very grateful to Dr Chhang Shu-Hung and the photographic staff of the Tchang Research Institute. We are also deeply indebted to Mr Kewl Alley and some of the teachers and students of the Baillie Technical School of the Chinese Industrial Cooperatives at Shantan (now the Technical College of the National Petroleum Administration at Lanchow) for paintings specially made at Tunhuang during and soon after the war. Most of these were made by Mr He Yi, a Nakh from Lichiang in Yunnan, and an able textile designer. Others were made for us by Mr Sorenson, but perished with him in a tragic aeroplane accident in Sinkiang in 1947. Much credit is due to Mrs Chhang Shu-Hung for appreciating the significance of this vital clue and drawing our attention to it.

Cf. a drawing in Li Chiu (1). Photographs in Hommel (1), fig. 490, and des Noettes (1), fig. 135; clear only if one knows what to look for.

For these names we are indebted to Mr Wang San-Lin of the Chiu-chhiian local government.

As we have noted above, this fusion was already complete by -1125, the date of Chang T'ieh-Tuan's painting. Whether it first occurred in China or the West we do not yet know. Perhaps it was a natural development which happened independently.

Notably in Wescher (3), p. 2377 (+14th century); des Noettes (1), figs. 130, 134 (+13th and +14th centuries); Lejard (1, fig. 73 (+16th century). The process of fusion can be progressively followed.

1 娃子 2 媽子 3 拖鞍子 4 拍鞍子 5 倫背
it still persisting in certain corners of Europe; two years after our study of the North China harness we found it again in the Iberian peninsula at the furthest extreme of the Old World.

Many other pictures of horses and carts are to be seen in the frescoes at Chhien-fo-tung. It was also evident at the first inspection that girths are never visible in them, and traces vary rarely, if ever, present. All show the attachment of the shafts to the furthest forward point of the object round the shoulders and chest. Some form of collar-harness was therefore clearly implied even without the crucial evidence of cave no. 156, but in the light thrown by the carts of Chang I-Chhao one feels no hesitation in assuming the existence of the padded 'hump-substitute' when the drawings do not show it. Otherwise the 'horse yoke' could not have worked at all. And indeed while the whole three-component system (Fig. 556b) is seen in at least four or five caves, there are at least five or six more where we find simply the shafts and the yoke (Fig. 556d). Again, by good fortune, the oldest representation of all (cave no. 257), painted under the Northern Wei between +477 and +499, shows collar-harness clearly (Fig. 561). Reins are indicated by a pair of lines, high up on the neck, or just possibly a collar not drawn in its proper place behind the yoke—yet the evidence is decisive, for the yoke itself is well placed, and though no collar appears for it to rest on, it would have been useless without it. The same argument applies to

PLATE CCXV

Fig. 560. The Chinese three-component system of equine harness still extant in the Iberian peninsula; an example in southern Portugal (near Tavira, Algarve, orig. photo., 1960). An arched cross-bar connects the shafts just as in the +9th-century frescoes at Chhien-fo-tung, being against and upon a free cushion-collar or 'neck-saddle', to which is fixed in front a functionless (but brightly ornamented) wishbone-shaped yoke or chia-pan-tau. Elsewhere, as in the Mancha in Spain, where there is no arched cross-bar, this still performs exactly the same function as in China; and elsewhere again, as in Andalusia near the Portuguese border, it is an approximately rectangular framework of wood and chains or thongs exactly the same as the Chinese pattern. Presumably these Iberian systems are vestiges of the first adoption of the Chinese three-component collar-harness in Europe, before the fusion of the soft cushion and the hard harness into one unit.

6 In 1960 I was able to photograph a number of examples. In the Mancha, as at Almagro, and in Portuguese Extremadura, the chia-pan-tau is an unpainted wishbone-like piece of wood resting against the separate collar; but in Andalusia, between Seville and the Portuguese border, the lower extremities of the chia-pan-tau tend to be linked by a cord or chain exactly as in China. Forms of harness seen in the Algarve, Portugal's southernmost province, approach even closer to the system of the Thang frescoes at Tunhuang, for an arched cross-bar (saqgu) connects the shafts and is borne on a kind of 'neck-saddle' (mul) formed by combining the wishbone-shaped chia-pan-tau (now become functionless and highly ornamented) with the wishbone. One sees the same arrangement further north in the Alentejo, but less brightly painted. If traces are used instead of shafts (as for animals turning šaktu chain-pumps), a rough working chia-pan-tau will be placed just behind the ornamental one, replacing the cross-bar. These archaic forms must be studied in the countryside, for ordinary modern collar-harness is more common in town. I do not know whether it is necessary to appeal to the Muslim influence in Spain for an explanation of them, or to assume some special route of transmission from East Asia—perhaps they may be more simply regarded as trans-Pyrenean 'relic fauna', the preservation of stages superseded long since in central European regions. See Fig. 560.

Norway also used to have a type of collar-harness in two parts like the north Chinese chia-pan-tau and tien-tzu, if we may judge from an old photograph of a two-wheeled cart from Alfdalen published by Brøgger & Schetelig (2), vol. 2, p. 31.

7 It is worth noting that Philipson's plates of ideal collar-harness all show that the optimum point where the traction transmitter (shafts, traces, etc.) should be applied to the collar is much lower than its central point when seen from the side, indeed from two-thirds to three-quarters of the semi-circle's circumference.

8 In the dating of the caves we are now able to take advantage of the valuable study of Mizuno Seiichi (1).

9 This fresco has often been reproduced; see e.g. Anon. (10), pl. 6; Chhang Shu-Hung (1), colour pl. 1; Chhang Shu Hung (2), cover; Gray & Vincent (1), pl. 6; Siren (10), pl. 33. It is thought to illustrate the Hau 阡taka.

10 If one should ask oneself how Fig. 561 differs from Fig. 551 the answer is that at Tunhuang the 'yoke' or cross-bar is at last exactly in the right place on the horse's withers, it could not have stayed there without a collar, and we know the indubitably complete gear of +851 at the same locality. In all the Roman representations on the contrary (Figs. 550 and 552 as well as Fig. 551) there is a band round the throat which is clearly connected with the shafts. Lynn White (7), p. 157, criticising Needham & Lu (2), interprets this Tunhuang fresco-painting as a 'withers yoke or strap between shafts', presumably therefore (if we understand him rightly) as this same Roman system. But a throat-strap would be
the next oldest pictures, those in cave no. 290, precisely datable between +520 and +524, from which we reproduce Fig. 562. Here only yoke and shafts are shown. From exactly the same reign-period, and with the same ellipsis, comes the cartload of travelling monks in cave no. 428. After this, there are two further two-component frescoes both from the Sui dynasty (c. +600), which bring us back to the certainties of the Thang. As a pendant to this evidence we may mention certain scenes in which animals other than horses are harnessed by yokes within shafts, the padded collar remaining tacit. One of these is of Thang date (probably early +9th century) and shows three carts in line, one drawn by an ox, one by a stag and one by a sheep or large white goat. The artist may have been illustrating a legendary story, but the mechanical principles remain in force.

After this the representations, though generally clearer, parallel or follow in date the presumed earliest appearance of collar-harness in Europe. There are two fine paintings of horses just released from the shafts and still bearing their padded collars; on the shafts both 'yoke' and breeching can be seen. Three-component pictures of horses in their shafts also occur, all before the middle of the +11th century. The conclusion from the Tunhuang evidence is thus quite clear. Collar-harness in its initial form appears explicitly and indubitably in the procession of Chang I-Chhao in +571, nearly a century before the first possibly acceptable documents of Europe. But depictions which can only have been based upon this harness go back to the last quarter of the +5th century and the first quarter of the +6th, so that it would be very reasonable to date the first appearance of it about +475 in the empire of the Northern Wei. And the place would again be significant, for the sands of the borders of the Gobi desert in Kansu and Shensi needed strong tractive apparatus. Where Han traces extraordinarily unlikely here, not only because of the considerations already mentioned, but because by +477 the Chinese had not used throat-and-girth harness for nearly a thousand years. The Roman empire on the other hand was only just trying with great difficulty to get away from it. Moreover, no throat-strap is in fact shown.

* The horses and carts from this cave may also be viewed in Anon. (10), pls. 25, 26 and 31; and Chhang Shu-Hung (6), p. 6.

* This has been reproduced only once, and only incidentally, in Chhang Shu-Hung (1), pl. 5, but a detailed copy-painting will be found in Needham & Lu (6).

* Cave no. 419; see Anon. (10), pl. 32; Chhang Shu-Hung (6), p. 10; Siren (10), pl. 41. It is thought to show the story of Prince Sudhana. Cave no. 420, sketched only in Needham & Lu (6).

* Cave no. 193; reproduction in Needham & Lu (6). Another occurs in cave no. 61.

* Cave no. 96 of the Wu Tai period (+520 to +524) or very early Sung (before +505); reproduced only in Needham & Lu (6). The donor of this cave was Li Shang-I-Tien, King of Khotan (cf. Chhang Shu-Hung (1), pl. 26), a fact which might not be entirely irrelevant to the westward transmission of collar-harness. Also cave no. 146, in which the paintings are of the early Sung, before +505. Reproduced only in Needham & Lu (6), apart from the old photographs of Pelliot (25), pl. XXVI (photo 45141/18, no. 26 at Musee Guimet).

* Cave no. 61 of the Wu Tai period (+520 to +524) or very early Sung (before +505), a general view of which is to be seen in Chhang Shu-Hung (1), pl. 28. This was a cave donated by the Tshao family so important in the history of printing (cf. Sect. 32 below); see Chiang Lung-Fu (1), pls. 28, 29, 30, and Chang Ta-Chhien (10). For the horse and cart see Pelliot (29), pls. CVI, CXX (photos 45151/14 no. 8/100, and 45157/28 no. 8/260 at Musee Guimet), but better in Needham & Lu (6). Also cave no. 146, before +505; references as in the previous footnote.

* This cave has already been reproduced in Pelliot (25), pl. XXVI (photo 45157/3, no. 5205/4,13 at Musee Guimet).
harness would break, the chia-pan-tru could be attached to the shafts by chains, and thus at last the sheer muscular strength available became the only limiting factor.

Yet another group of representations is found on Buddhist steles and reliefs of the Northern and Western Wei periods, in which one sees oxen wearing what looks extremely like collar-harness. I reproduce one of these dated +493 from a rubbing in my own possession (Fig. 563), but many more have been published; they are often more delicately drawn, and the artistic style is characteristic enough. That the animals are oxen is clear because horses (differently depicted) sometimes accompany them in the same scene, and it may well be that the artists intended only to represent a yoke with a loose throat-strap (yang) below it. This would be the jong de garrot, common later in Europe. They might also have been drawing an inverted U-shaped yoke which came down low on each side of the animal. Perhaps indeed the same yoke could have been used for oxen or horses as the occasion demanded; or perhaps a full horse-collar was sometimes applied to bovine species, as certainly sometimes happened in the West later on. In any case this iconographic group is not at all irrelevant to the early history of collar-harness in China.

A third source of information is constituted by bricks from tombs of the Chhin, Han and San Kuo periods. It would still be premature to fix upon the late +5th century as the assured time of origin of the collar-harness invention, for we may have to recognize it in the +3rd. During the First World War Segalen, de Voisins & Lartigue excavated the tomb of Pao San-Niang at Chaohua, a place just south of Kuangyuan on the Szechuan–Shensi road. This tomb contained a series of magnificent solid moulded bricks (shown here in Fig. 564), each of which has the same picture of a horse and cart. As they are not all equally damaged or imperfect in the same places, it is possible to make out what seems to be a large horse-collar coming low on the chest, apparently amply padded and looking almost like a thick garland. The straight shafts or traces seem to be attached to the side of this with no sign of a yoke. In some cases it is also possible to see a faint girth and perhaps the horizontal line of a breeching. Even the reins appear in some of the bricks. If collar-harness is really present the fact is indeed remarkable, for the date of the tomb is unquestionably in

* See, for example, two pictures in Siren (2), pls. 158 and 159, the former dating from +525 and the latter from +535. Also Binyon (1), pl. vi, a painting purporting to be of +697.

* See des Noëttes (1), p. 115 fig. 173 (a +13th-century sculpture at Chartres).

* Archaeologists have often enough had difficulty in deciding whether a particular piece of harness was intended to be used by oxen or horses. Small bronze objects excavated from +3rd-century tombs in the Rhineland have been taken as models of 'yokes' for horses, to be used with shafts or on both sides of a central pole for throat- and-girth harness (Behrens, 1); and a small wooden yoke of about the same period discovered at Pforzheim by Dauber (1) has been interpreted as a cross-bar between shafts to harness a pony with a throat-strap or jong de garrot system of linked hard and flexible pieces (Jacobit, 1). Lynn White (7), p. 60, accepts the equine relevance of these, but to us it seems more than doubtful.

* Segalen et al. (1), p. 58. Reproduced by O. Fischer (1), p. 314, without comment. In their discussion (p. 106) the discoverers did not appreciate the significance of this find for the history of animal traction. A similar series of chariots, not on separate bricks but stamped by the same stamp on a single hollow brick, is seen in Ti Phing-Tzu (1), ch. 2, p. 16; this is certainly Han, but the harness used is obscure.

Fig. 564. Moulded bricks in the tomb of Pao San-Niang at Chaohua, Szechuan, between +220 and +260, depicting something very like collar-harness (Segalen, de Vosins & Lartigue, 3). An amply padded annular object like a large garland surrounds the withers and passes across the sternal region at a low level. In one brick or another, undamaged in different places, shafts or traces and reins or breeching can be made out, together with a distinct girth. If a decorative garland is not simply obscuring normal breast-strap harness here, the invention of collar-harness may have been made in Szechuan.
the San Kuo period, between +221 and +265. Perhaps, then, the muddy clay soil of the Shu kingdom preceded the insidious sand of the Northern Wei, and Thopa Tao was only copying Chuko Liang. Of course the innovation could have first been made several centuries before it was generally adopted.a Moreover, the bricks of Pao San-Niang do not stand quite alone, for in a rare collection of reliefs and brick rubbings mostly of unknown provenance published by Ti Phing-Tzu there is one which shows a chariot the three horses of which have thick and distinctly ring-like objects round their chests.b Unfortunately, the origin of this hollow moulded brick is uncertain, but it is so curious that we illustrate the relevant part of it in Fig. 565. There is no reason for doubting its genuineness. It cannot be later in date than the Early Han, but it could be as old as the Warring States period, so we can only place it somewhere between the -4th and -1st centuries.c Possibly, therefore, the occasional use of collar-harness goes back in China far earlier than its general adoption in the +6th century.

Another hollow moulded brick in Ti Phing-Tzu's collection exemplifies the difficulty in distinguishing clearly sometimes between early examples of collar-harness and trace-harness.d As Fig. 566 shows, the style is clearly of the Chhin or Early Han, resembling closely enough the Loyang tiles studied in the well-known book of White (5), and must date the object as of the -3rd or -2nd century. A very unusual Fig. 567.

Fig. 567. Diagram to show the effect of a short-slung withers strap, the simulation of a collar in iconographic records.

\begin{itemize}
\item Possibly it was this which made Goodrich say (1), p. 54, that the 'breast collar-harness' appeared in +2nd-century China, but we suspect that he was simply referring to the breast-strap harness and not to collar-harness at all. In 1952 the Palace Museum in Peking exhibited a model of a Han quadriga chariot in which the horses wore a bizarre type of hard collar formed by a lyre- or wishbone-shaped yoke the lower ends of which were connected by a cross-piece on the chest. Traces were attached at two points on each side. Enquiry failed to reveal authority for this reconstruction, however, and it was decided to withdraw the model pending further study. Gailing would be intolerable without the 'cushion'.
\item (1), ch. 2, p. 6b. Remarkably, there is no sign of shafts, the collars all being attached to traces.
\item I am greatly indebted to Dr Cheng Tê-Khun for his kind advice on the rubbings of Ti Phing-Tzu. For this particular brick a southern origin seems to be indicated, for besides acrobats, dancers and firewood collectors the scenery is interspersed with elephants, human-headed serpents, scorpions, leopards, etc. Perhaps one should associate it with the region of the State of Chhu. This is the very region which in its lacquer vessels gave us (p. 310 above) precious evidence concerning the invention of the breast-strap harness.
\item (1), ch. 2, p. 6a.
\item The lines running backwards to the curved front of the wagon from the shoulders of the horses do look more like traces than shafts, but this would by no means exclude collar-harness.
\end{itemize}
that of a true collar (Fig. 567). This is presumably what has happened in the +6th-century Chinese harness shown in Fig. 568, from a Buddhist stela.8 But a recognition of this fact throws some doubt on the earliest accepted illustrations of collar-harness in Europe; where no padding is shown, it might be safer to regard them as imperfectly fitted breast-strap harness.9 However, this would not retard the date of collar-harness in Europe much after +1050.

Whenever the padded and stiffened horse-collar was introduced, it was, we are now agreed, a surrogate for the bovine cervical and thoracic vertebrae. But was it an absolutely new thing? To Haudricourt (3, 4, 7) we owe a very interesting hypothesis about its origin, based primarily on philological evidence. Starting with the word 'hames', which in English6 means the metal skeleton of the modern combined collar,3 he traced it eastwards through more than twenty eastern European and north Asian languages, revealing thus the fact that in many of the latter it means something apparently quite different, namely the pack-saddle of the Bactrian camel.4 It would follow, therefore, that the essence of the invention of the collar-harness was the application of the horseshoe-shaped felt-padded wooden ring upon which camel baggage was piled, to the chest and shoulders of the horse, no doubt with dimensions somewhat modified by reduction. No wonder, then, that the invention was not made in Europe. Two points immediately arise. The location of the ingenious novelty, somewhere in Chinese Central Asia,5 agrees well enough with the fact that, as Lauffer showed in a special paper (24), felt-making is a typical piece of nomadic (Hunnish and Mongol) technique.6 Felt (chan1 or li2) is mentioned in Han books such as the Huai Nan Tzu and the Yen Thieh Lun, and felt girdles became quite a fashion about +285. This material, therefore, would certainly not have been a limiting factor in Pao San-Niang’s time or even much earlier. Secondly, the camel was used as a pack-animal in the Han period, as we may see from the recent history of the camel in China by Schafer (3). There are references to it in the Shan Hai Chih,3 and in the - 2nd and - 1st centuries there were government post-camels, Superintendents of Camel Herds, stables for army supply services,4 and even a Camel Corps on the frontier.5 There seems no reason therefore why the invention should not have been made as early as the - 2nd century, though it may well have been uncommon before the +5th or +6th.

8 This was the rubbing published by Chavannes (9) and reproduced by des Noettes (3), Fig. 138.
9 Such a criticism would apply, for instance, to the figs. 140, 141 and 142 of des Noettes (3).
3 First recorded use about +1200.
4 I.e. the fused chia-pan-tzu and tien-tzu.
5 The attempt of Jacobit (3) to derive it from an Indo-European root is quite unconvincing.
6 Pack-camels are common in the Tunhuang frescoes, e.g. cave no. 61 dating from just before +970; see Anon. (20), pl. 66.
7 Cf. Olschki (7).
8 Ch. 3, pp. 338, 474, etc.
9 Chien Han Shu, ch. 96A, p. 108; an imperial edict of about -90.
10 Han representations of pack-camels are not infrequent, and later on camel-carts are seen. At Chien-fou-tung there is a picture of one crossing a bridge (Fig. 569) in a Sui cave (no. 302; cf. Hsieh Chih-Liu, 1), pl. 11, and Jau Min Huai-Pao, 1937, 2 (no. 3). In 1928 I had the opportunity of studying contemporary camel-cart harness in Kansu. The shafts were attached to ropes passing both behind and in front of the forward hump, the 'withers-strap' being carried over a small saddle-like leather pad. This one finds also in the camel-carts of Rajasthan, which I have seen with my friend Professor Daya Krishna of Jodhpur, who afterwards kindly sent me photographs.

Fig. 568. Horse and cart on a Buddhist stela of the +6th century (Chavannes, 9). While collar-harness and traces cannot be excluded here, it seems very probable that the harness was of the breast-strap type with the withers-strap slung short. It is not clear whether the shafts end by the horse’s tail or further forward. In the latter case the hip-strap indicates breeching.

Fig. 569. Camel-cart in a Sui fresco at Chien-fou-tung, c. +600 (cave no. 302; copy-painting in Hsieh Chih-Liu, 1). The harnessing is the same as that used in north and north-west China today; see text.
In the documentary evidence assembled by des Noëttes (1) the dates of arrival of the two efficient harnesses in Europe showed a curious inversion. Although in China and Central Asia the general use of breast-strap harness long preceded that of collar-harness, the first appearance of the latter in Europe could be dated about +1000 or a little earlier, while the former was not seen till about +1130. Western monuments of the +8th century (cf. p. 315 above) have now removed this discrepancy. But Haudricourt (3) had independently brought forward philological evidence* that this succession was illusory, arising only from the scarcity of pictorial representations. The German word for the traces, stiele, may be shown to have been borrowed by Slavonic before the dispersion of the Slav peoples, i.e. before the +6th century. Conversely the word for collar, humnet, was borrowed by German after this dispersion, probably in the +9th century. It would certainly seem more likely that the times of arrival of the two forms of efficient harness in Europe should have been echeloned in accordance with their original succession in the east. The position may be summarised in the following way:

<table>
<thead>
<tr>
<th>Form of harness</th>
<th>Des Noëttes (1) (documentary representations)</th>
<th>Newer evidence</th>
<th>Haudricourt (3) (philological evidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throat-and-girth</td>
<td>Very ancient</td>
<td>Very ancient</td>
<td>+5th or +6th</td>
</tr>
<tr>
<td>First breast-strap</td>
<td>+1st</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>First collar-harness</td>
<td>+12th</td>
<td>-1st (Han bricks)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+17th</td>
<td>+3rd (San Kuo bricks)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+5th (Tunhuang frescoes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+10th</td>
<td></td>
</tr>
</tbody>
</table>

Unfortunately, we still know very little indeed about the intermediate stages in the transfer, but Bloch (4) was doubtless justified in emphasising the creatively transmissive role of the Huns in such matters.

It only remains to glance briefly at the relations of these different types of harness to their vehicles. The throat-and-girth harness, with its pole, cross-bar and fork-yokes seen from above, shown in Fig. 570a, is to be contrasted with Fig. 570b, the Han system, where the fork-yoke had not disappeared but had become even more unnecessary because of the full use of breast-strap and traces. It was the predecessor of the simple breast-strap ('postillion') harness of later times (c). But after the Chinese adopted collar-harness, one special feature persisted until the present day, namely the attachment of the hard component of the collar directly to the ends of the shafts (d). This, derived from the ancient ox-yoke method, was only possible because in the Chinese cart the shafts always formed a continuous part of the structure of the vehicle.\(^\text{b}\) As Haudricourt (4, 6, 7) has shown, the Russian or Finnish duga

\(^\text{b}\) Haudricourt (7) says that this arrangement was formerly known in the Jura region, and takes it as further evidence of the coming of the collar-harness from China and Central Asia. It was known as 'lattelage à la Grandvallière'.
This section cannot end without a reference to the social aspects of efficient equine harness, and the use of animal-power instead of human labour, which have been much debated. Des Noettes considered his book (1) a contribution to the history of slavery, and so he subtilled it, believing (6, 7) that the invention of the collar-harness had been the chief causative factor in the decline and disappearance of that institution, a laudable detestation of which is very clear in his pages. Historians such as Bloch (3, 5) hastened to point out, however, that the time-relations did not fit this view, since mass slavery vanished from Europe many centuries before the collar-harness first appeared. It is true that we now seem to see the arrival of the breast-strap harness in Europe earlier than was formerly thought, yet the essential point made by Bloch still carries conviction. But it had never affected the converse argument that after all no efficient form of horse harness was invented in those ancient Mediterranean societies which embodied mass slavery and presumably abundant man-power. If the invention of efficient harness was clearly not the cause of the decline of slavery, perhaps the presence of slavery inhibited the invention?

It certainly seems one of the paradoxes of history that in spite of the theoretical brilliance of Stoics and Peripatetics, or Euclid’s geometrical insight, or the remarkable ingenuity of the Alexandrian mechanicians—all men who could differentiate, systematise and compile—the ancient Western world never succeeded in solving the problem of harnessing horses efficiently. Perhaps of course it did not try. Here the general ideas of des Noettes seem to be faulty in further serious ways. Concentrating as he did on equine harness and on its genuine inefficiency in Western antiquity, he encouraged the implication that Greek and Roman culture employed mass slave labour for the movement of heavy weights (in building, shipbuilding, grain-transport, etc.) just as the Egyptians and Babylonians had done centuries earlier. But Fouquet (5), and now definitely Burford (1), have been able to demonstrate by studying inscriptions of accounts and other evidence from the 5th century onwards that Greek and Roman engineers moved all their heavy weights (involving loads of up to some 8 tons) quite effectively by the aid of yoked oxen, often in file. Hellenic and Hellenistic civilisation, Burford suggests, did not in fact regard the horse as a draught-animal at all—it was primarily aristocratic, swift and military; and it had always been in short supply. Yet even so, one would have thought that for some purely military purposes

(a) Pole, cross-bar, yokes and throat-and-girth harness; (b) Han breast-slap harness with shafts, yoke vetigale, hip-strap and breeching present; (c) postilion or later breast-slap harness with traces attached to vehicle; (d) traditional Chinese collar-harness with the hard component (che-pang-tiao), descendant of the yoke and ancestor of the harness, attached directly to the forward ends of the shafts; (e) dega of Russia and Finland, retaining the arched cross-bar because the shafts are not structurally part of the vehicle; (f) modern collar-harness, the traces attached directly to the vehicle; (g) whippletrees for receiving the pull of the traces of collar-harness.

back, moved downwards, either in front of the chest (as in curious forms still persisting in the Landesb and South Africa’s), or underneath the horse’s belly (as in the Berber harness),b or behind the animal altogether to become eventually the whipple-tree (Fig. 570g). In the +12th century this was fixed firmly across the pole, but later it was linked to two or more movable whippletrees as shown in the diagram.\(e\)

(2) Animal Power and Human Labour

This section ends without a reference to the social aspects of efficient equine harness, and the use of animal-power instead of human labour, which have been much debated.

\(a\) Cf. drawings in Michell (1).
\(b\) Des Noettes (1), fig. 18a.
\(c\) Philipson (1), p. 59, pl. xv.
\(d\) Described by Laoust (1).
\(e\) Traces and whippletrees were used for oxen in 3rd-century China; we have noted a technical term for them above (p. 260) in the description of the wheelbarrow of Chiko Liang.

\(f\) In this book there is never opportunity to follow far the social and economic consequences of the inventions which we discuss in it, and in our account of the development of efficient horse harness in the Old World we have taken it as sufficiently obvious that vast effects flowed therefrom. We cannot forbear, however, from mentioning the interesting thesis of Lynn White (2). pp. 67ff., on the effect of efficient harness in encouraging a proto-urbanisation of rural settlement in Western Europe. From the +11th century onward, though population increased rapidly, the smaller hamlets long inhabited were abandoned, and the peasants agglomerated into larger and larger villages. This was primarily due, he believes, to the replacement of oxen by horses as the basic farm animals, for when the latter could be used it was no longer necessary to live close to the fields tilled, and the larger villages could afford more

amenities both spiritual and material. Such were the roots of that great dominance of city life in late medieval Europe which gave rise to the Renaissance and the rise of capitalism with all their consequences. If this was due to the spread of originally Chinese devices, the intervention of East Asia would have affected the most intimate mechanisms of European social evolution. It is not the last time that we shall meet with this pattern (cf. Sect. 307 below).

\(g\) For his reply see des Noettes (3). Grand (1) also contributed to the discussion, but his paper has been unavailable to us.

\(h\) Some of the effects of this weakness (if such they were) produced extraordinary results. The Po valley did not feed Rome with wheat because the expense of haulage with inefficient harness was much greater than bringing wheat by sea from Egypt. What the Po valley grew was barley and fodder, for the meat which could walk by itself to Rome. So at any rate Dr B. J. Forbes in a stimulating lecture at Cambridge (February 1934).

\(i\) There are good reasons for accepting this view as more applicable to Greek than to Roman culture. The only Greek inscriptions so far found which clearly refer to draught-horses are those of Callatis on the Black Sea, cf. Tafrazi (1); Robert (1); and this place was on the borders of the Greek world. On the other hand it is true that clear that horses and especially donkeys were used in the Roman world, at least from +200 onwards, for working grain-mills (cf. pp. 136ff. above; the sola aminara, Moritz (1), pp. 62ff., 74ff., 97ff.), Roman reliefs and other representations which depict these mills (cf. des Noettes (1), fig. 74; Moritz (1), pl. 5b, 74, and fig. 9, p. 83) show throat-and-girth harness pretty clearly.
efficient equine harness could have been decidedly useful. In any case, for the Chinese and their Hunnish and Mongol neighbours, ever in the saddle, horses were assuredly not so rare and precious. This is a feature of northern Chinese culture which may well be relevant to the fact that both the efficient forms of harness for traction by horses were invented in its midst.

Here a comparison of Hellenistic slave-owning society with ancient Chinese society inevitably presents itself, but unfortunately the complex problems involved are hardly as yet answerable, and we can only allude to them. It may well be that Chinese society incorporated only domestic slavery, and that the proportion of slaves to the total population (in the Han, for instance) was always small; but the available manpower liable to corvée was, at any rate in some periods, abundant enough. Possibly the monsoon climate, with its consequence of strictly fixed seasonal agricultural work, from which Confucian morality and common sense alike forbade the abstraction of the toiling peasant-farmers, led to the use of greater ingenuity in solving the mechanical problems of efficient traction, which might arise at any time of year. In the last resort it was perhaps the nomadic peoples who first faced and solved some of them, aided and stimulated at the borders of culture-contact by the practical genius of the Chinese.

(g) HYDRAULIC ENGINEERING (I), WATER-RAISING MACHINERY

The present subsection, which deals with machinery for raising water from one level to another—an operation of immense importance in any civilisation based on irrigated agriculture—might well have formed part of Sect. 27d above, in which the various fundamental types of machines described and illustrated in Chinese books were discussed.

a E.g. for bringing catapult artillery more quickly into position, or for moving the impediments of a headquarters.

b Cf. pp. 23ff. above. We shall of course deal with these questions as thoroughly as possible in Vol. 7.

c Des Noëttes himself was very confused about the Chinese situation. To begin with, he did not recognise the collar-harness as Chinese and Central Asian in origin. Then, while in some places—(I), pp. 110, 111, 122—he saw that the anatomical fitness of the breast-strap rendered it almost as efficient as the collar, he somehow could not bring himself to admit (p. 114) that the ancient Chinese were any better off than the Greeks and Romans. He emphasised, therefore, the great instances of corvée labour in Chinese history which were popularly known when he wrote, such as the building of the Great Wall and the digging of the Grand Canal. In order to account for the absence of mass slavery in China, he added that great public works were less important and frequent than other civilisations, when precisely the opposite is the case. Advancing further into a swamp of errors, he wrote that the Chinese had not used mills because they ate rice, forgetting that rice must be hulled and may be ground, as also that half the Chinese culture-area has always been dependent on cereals other than rice—wheat, millet, buckwheat, etc. Absence of mills (!) he thought helped to account for absence of slavery in China. All these opinions are now but curiosities—yet des Noëttes will always remain a great pioneer.

d It has been said that efficient equine harness had to await better understanding of the anatomy of the domestic animals. Now without prejudging the conclusions of Sect. 43, Galen, Herophilus and Erasistratus were probably better anatomists than any of their Chinese and Han contemporaries. Yet so far as the donkeys and horses of Rome were concerned they might never have existed.

ea For a striking instance of such collaboration cf. p. 257 above.

f We have already enlarged upon one piece of water-raising apparatus, the Archimedean screw, in connection with worms and screws in general (Sect. 27b, pp. 120ff. above). Here it would be out of place since it was not known in the Chinese culture-area until the +17th century.
But the significance of the subject is such that it finds its place more naturally as the first part of our account of Chinese hydraulic engineering. It has intimate connections, moreover, with the application and use of water-power, and all that that implies. We shall thus consider in due order (a) the counterweighted bailing bucket, (b) the well-windlass, (c) the scoop-wheel, (d) the square-pallet chain-pump, (e) the vertical pot chain-pump, and (f) the peripheral pot wheel. This enumeration by no means exhausts the variety of water-raising devices known and employed in ancient and medieval times, or traditionally still, but it meets the needs of the Chinese story, and we shall refer to other types of water-lift machinery incidentally as we go along.

(1) The Swape ('Shādūf'; Counterbalanced Bailing Bucket)

The oldest and simplest mechanism which lightened the human labour of dipping, carrying and emptying buckets,\(^a\) was the swape\(^b\) or well-sweep ('chīk hāo')\(^c\) (often

\(^a\) There is now a brief, but good, account of Chinese traditional types of water-raising machinery by Ch'eng Si-Lo (1), but it appeared long after the completion of the present Section.

\(^b\) Similar listings have been given by Forbes (1), pp. 35 ff.; Britain (1), pp. 219 ff., and others. Unfortunately the terminology of this subject is still in a rather confused state. As useful single names, we still speak of swape or shādūf for the counter-weighted bailing bucket, we call the vertically hanging endless chain of pots the sīqfya, and the wheel with pots around its rim the 'noria'. There is no difficulty about the name for the pallet-carrying endless chain, working in a flame, the fen ckd, for it was purely Chinese. But Forbes and Britain restrict the term 'noria' to peripheral pot wheels which are operated by the current of the water. Furthermore Forbes (cf. (17), pp. 695 ff.) makes sīqfya apply to peripheral pot wheels if worked by men or animals, presumably with treadmills or whirns; reserving the term dauliib for endless pot-chains similarly operated. Britain on the other hand (with a personal background of Egyptian experience) employs the term sīqfya only to designate wheels worked by men or animals using right-angle gearing, whether the buckets are fixed to the wheel or borne on a dipping chain, in other words the ex-aqueous converse of the Vitruvian vertical-wheel ex-aqueous mill. We ourselves prefer to adhere to older authorities, among whom we may cite Ewbank (I), pp. 82 ff., 123 ff., 128 ff., E. W. Lane (1), p. 301, and Chatley (36), p. 159, as explicitly reserving the term sīqfya for the chain of pots; a practice which is borne out as correct by the most exhaustive study of the technical terms in Egyptian Arabic known to us (Littmann, 1). It is true, however, that Arabic dictionaries generally describe the noria as current-operated. The difference really is that Forbes, Britain et al. seek to apply the terms 'noria', sīqfya, etc., in accordance with the motive power used, while we think that their definition should follow the mechanical structure, i.e. the disposition of the pots. In this we are perhaps influenced by Chinese practice. All such old terminology is still no doubt very loosely used in Arabic countries, and conventions other than that which we here adopt may well be tenable. Various theories about the logical derivation of the forms, and various interpretations of the historical evidence concerning them, are implicit in the presentations of these authors, however; we do not always subscribe to them, and we shall give what opinions we have concerning the evolution of the various devices as we go on. Our grateful thanks are due to Mr Robert Britain and to Dr D. M. D'nmlop for fruitful discussions on this tangled matter of nomenclature. For a comparative practical study see Molenaar (1).

\(^c\) A still more primitive device was the bucket slung on ropes and handled by two men (fu tau). The King Chih Thu illustrates this, and I myself during the Second World War often saw it in use in Kanatu province. In China barrel-shaped baskets lined with oilcloth are often used; see Hommel (1), fig. 5. Ball (1) illustrates the system from South India, where it is called the kattur (as in Egypt; Lane) or leetha; it will not suffice for more than a 3 ft. lift. Ewbank (2), p. 89, knew it from Egypt. What authority Forbes (1), p. 35, has for applying to it the English word 'swipe' I do not know.

\(^d\) This word is not found in literature before 1773, so applied, but with the meaning of any kind of lever it goes back to +1492. Its alternatives for referring to the well-sweep, i.e. swipe and swype, are recorded from +1600, swipe from +1639.

\(^e\) If the arms are of very unequal length, as in Southern Shansi near Meihisien, the machine may be called the 'steelyard swape' (chheng hāo); Fu Chien (1).
MECHANICAL ENGINEERING

known by its Arabic name of *shiddaf*). This was familiar from early times in Babylonia, where it has continued in use till the present day. It may be termed the counterbalanced bailing bucket, and it makes use only of the lever, involving no rotary motion. A long pole is suspended or supported at or near its centre, like a balance-beam, and while one end is weighted with a stone, the other carries the bucket at the end of a rope or a piece of bamboo. In the Old World its distribution became almost universal. The earliest illustrations we have of it in China are those on the mid- and early Hsiao-thang Shan and Wu Liang tomb-shrine carvings, often reproduced (cf. Fig. 571). We see it again on the walls of the Chhien-fo-tung cave-temples, and in the *K'ing Chih Thu* of +1210, the *Thien Kung Khai Wu* and other books (Fig. 572). A good contemporary photograph is given by Hommel. But the earliest mention of it in Chinese literature is of the 4th century, in that interesting passage in *Chuang Tzu* which has already been quoted in Sect. 109 above with regard to the paradoxical anti-technology complex of the Taoists. A farmer declines to use the device when Tzu-Kung (Tuanmu Tzhu) suggests that he should do so.

Tzu-Kung had been wandering in the south in Chhu, and was returning to Chin. As he passed a place north of the Han (river), he saw an old man working in a garden. Having dug his channels, he kept on going down into a well, and returning with water in a large jar. This caused him much expenditure of strength for very small results. Tzu-Kung said to him, 'There is a contrivance (ch'ieh) by means of which a hundred plots of ground may be irrigated in one day. Little effort will thus accomplish much. Would you, Sir, not like to try it?' The farmer looked up at him and said, 'How does it work?' Tzu-Kung said, 'It is a lever made of wood, heavy behind and light in front. It raises water quickly so that it comes flowing into the ditch, gurgling in a steady foaming stream. Its name is the swape (kao Hsiao)'.

The farmer's face suddenly changed and he laughed, 'I have heard from my master,' he said, 'that those who have cunning devices use cunning in their affairs, and that those who use cunning in their affairs have cunning hearts. Such cunning means the loss of pure simplicity. Such a loss leads to restlessness of...'

Footnotes:

3. *Examples still persist in some parts of Central Europe; cf. Croon (1); Wakarelski (1). During the writing of this Section I met with a whole group of them at Vouvray in Touraine, and later found them common in Hungary especially between Budapest, Tihany and Pécs; as also in Bosnia and the Konavle besides other parts of Yugoslavia.

4. *Chavannes* (1), pl. XXX.

6. *E.g. cave no. 302 dating from the Sui, about +600.

7. *Chu shih* marks the counterweight.

8. *It is significant that the story is told of Tuanmu Tzhu, the successful merchant and Confucius' wealthiest disciple, who figures also in the chapters on wealthy persons in the Shih Chi and the Chihem Han Shu (cf. Swann (1), p. 427).*
This might be taken as evidence that the swape reached China about the 5th century.

Batteries of swapes raising water in successive levels are often seen in Babylonian and ancient Egyptian representations, described in Arabic MSS. and photographed by contemporary travellers. A later development was to elongate the bucket's spout into a flume, often made from a dug-out palm-tree trunk, this being linked parallel with a counterweighted beam above, and so arranged that it automatically empties itself into the receiving channel on the upward motion. This is the Bengali dilad. In India the operation of the device is assisted by a moving counterpoise, i.e. by men who walk back and forth along the upper beam. Finally the bucket, flume and counterpoise were combined into one single unit, or the place of the counterpoise taken by manhandled ropes or gearing. These machines have sometimes been regarded as Muslim inventions because many of them occur in Arabic texts such as the famous book of al-Jazari (+1206). But in view of their wide distribution and frequency in India, they may more probably have originated there. Significantly they occur in various forms in Indo-China but not further north. In one Arabic type the motion of the flume-beam is produced by the rotation of a lug attached to wheels worked by animal-power, and moving in a slot on the beam, but it is doubtful whether this was ever put into practice. Another design shows a series of quarter-gears rotated by animal power, engaging alternately with a set of lantern-pinions each of which thus raises a flume-beamed swape, and when it has emptied lets it drop back into the water again (cf. Fig. 573). How far such machines were ever common in medieval Islam we do not know. At all events, the flume-beamed swape interested European engineers.

Fig. 573: A battery of flume-beamed swapes in al-Jazari's treatise on mechanical contrivances of +1206 (Coomaraswamy 2). An animal-power whim rotates by means of right-angle gearing a set of quarter-gears (drawn in semi-perspective) which engage one after the other with lantern-pinions fixed on the same shafts as flume-beamed swapes. The buckets and flumes, which no longer need counterpoises, are thus periodically raised and emptied into a receiving channel behind the plane of the diagram.
in the 16th century, and was introduced to China by the Jesuits (cf. Table 58 and p. 222 above), though probably never employed there.

The swape is not quite such a jejune instrument as it seems at first sight, for its exact converse, namely the movement of a weight by an alternating water counterbalance, has interesting relations with the development of water-wheels. It was also used for raising beacon-fires \((\text{fēng huo}, \text{fēi chū}) \) on high. And if certain important types of catapults were essentially swapes, so also was that great herald of industrial technology, the Newcomen pumping steam-engine.

(2) THE WELL-WINDLASS

Rotary motion came in with the pulley or drum set at the mouth of the well. At first the rope was simply hauled over it and gathered, then the bucket was counterweighted, and finally the drum was turned by a crank. Han tomb-models (Lauffer, 3) show the first of these stages (e.g. Fig. 395). One can see the pulley \((\text{lu}-\text{lu}) \) in its bearings at the top under a small rectangular tiled roof, and the frame is ornamented with the heads of water-bringing dragons. At some later date the drum \((\text{chhang ku}) \) was introduced, and the pulley acquired its specific name of \text{hua chhe}. Figure 574 shows an interesting, though bad, drawing of the drum and crank \((\text{chhu mu}) \) from the 17th-century \text{Thien Kung Khai Wu}; but it is not as bad as it looks, for it corresponds remarkably closely with a well-diggers' windlass photographed by Hommel. Both Lauffer and Hommel noticed during their travels in China that the drum generally carried two ropes so wound that the counterweight or the unfilled bucket descended as the filled bucket came up. Hommel suggests that this practice may have been at the origin of the 'Chinese windlass' which gains mechanical advantage (discussed above on p. 98).

Other evidence which makes it clear that these simple machines were common in the Han may be found in texts such as \text{Huai Nan Tzu} where it is recommended not to plant \text{tsu-trees} near wells, for their roots or branches will impede the movement of the rope and buckets. It is also probable that large capstans worked by animals were used for hauling up the long bamboo buckets of brine in the salt-well boreholes at

* And, in certain forms, as late as the 18th; cf. de Belidor (1), vol. 1, pl. 41.
* Cf. \text{Chi Chui Thu Dao}, ch. 3, pp. 22b, 23b, and Ramelli redrawn by Beck (1), fig. 273.
* See below, p. 363.
* \text{Piao I Lu}, ch. 7, p. 54; \text{Wu Ch'ing Tsung Yao}, ch. 12, pp. 56a, 56a. The converse of the European cucking-stool (Spargo, 1).
* The trebuchets; we shall deal with them thoroughly in Sect. 356.
* Cf. pp. 95 ff. above, and Baroja (6).
* Such representations from this period are quite common. For other pottery models see e.g. Anon. (4), pl. 35; \text{Thang Lan} (1), pl. 88; de Tizac (1), pl. 17. A beautiful bronze model from Chiu-chhian is in the Kansu Provincial Museum at Lanchow. A depiction in relief is in the I-nan tomb sculptures (Ta'ta Chao-Yü et al. (1), pl. 48).
* It is noteworthy that many of the Han well-pulleys are very broad, looking almost like two cones fitted tip to tip.
* (1), fig. 173.
* (1), p. 72.
* (1), p. 118.
Certainly salt derricks with pulleys at the top are seen in several Han representations.6
The nasba of Iraq or mule of India is a modification of the well-bucket used in irrigating on river-banks, in which an animal pulls up a camel-skin, so arranged that when the desired height is reached it discharges through an open limb, this being kept suspended (and therefore closed), when at lower levels, by a subsidiary rope. We have no reason to think that this device was ever used in China, but there is a Chinese reference to it, for the Taoist adept Chhiu Chhu-Chi and his entourage noted such water-raising arrangements at work in the neighbourhood of Samarqand in +1221.4

(3) The Scoop-Wheel
The next simplest machine is a hand-operated paddle-wheel sweeping up water into a flume; Fig. 575 shows the illustration given of it in the Shou Shih Thung Khao,5 where, as in the +1313 Nung Shu,6 it is called kau chhi.1 It could be effective only for short lifts. Its simplicity may, however, be deceptive, and it would be unsafe to assume that it was invented before the ex-aqueous water-wheel8 or the ad-aqueous paddle-wheel9 themselves. Though ad-aqueous, it is not for the purpose of motion over water, but of transmitting motion to water. A version of the scoop-wheel in which the operator treads upon its perimeter became particularly popular in Japan.10 Okura Nagataune1 tells us in his Nōgu Benri-ron1 that these fumi-guruma,4 as they are called, were said to have been invented by two townsfolk of Osaka some time between +1661 and +1672, and he gives diagrams and measurements for their construction.1 Nothing similar has come to light in any Chinese book, but the treadmill scoop-wheel is in fact widely used (or was until recently) in the salterns of East China (Fig. 576). It seems also to have become popular in late 17th- and 18th-century Korea.11 We have not found any literary references to it. The principle was widely employed in Holland and the English fen country from the +16th century onward, where such ‘scoop-wheels’ were mounted at the bases of windmills.1 Westcott12 gives an elevation

3.2. MECHANICAL ENGINEERING

27. MECHANICAL ENGINEERING

337

Fig. 574. Well-windlass (hu-lo) with crank, from Thien Kung Khai Wu, ch. 1, p. 188 (+1637). A plan of irrigated plots superimposes itself on the left of the perspective drawing.
Fig. 575. Scoop-wheel (kua chhi) or hand-operated paddle-wheel sweeping up water into a flume, from the Shau Shih Thang Kuo (± 1742), ch. 37, p. 22a. Effective only for small lifts.

Fig. 576. Treadle-operated scoop-wheel (tha chhi), perhaps a 17th-century Japanese invention; the user steps on the treads as they come round. About five horizontal windmills (cf. p. 558 below) are in sight in the background of this picture of the Phi-tzu-wo saiterns, near Dairen in the Kuantung Peninsula of Liaoning (c. 1935).

Fig. 577. Typical Chinese square-pallet chain-pump (fan chhi) which raises water in a flume, the pallet-chain passing over a sprocket-wheel powered by two or more men stepping on radial treadles (orig. photo. between Yung-chiang and Yung-chhuan, Szechuan, 1943).
Fig. 578. Detailed view of the mechanism of the square-pallet chain-pump, an example in Anhui.

We come now to the most characteristic of Chinese water-raising machines, the square-pallet chain-pump. This device, as it is found today, is seen in Fig. 577; it consists essentially of an endless chain carrying a succession of pallets which draw the water along as they pass upwards through a flume or trough, discharging into the irrigation canal or field at the top. It is known as the *fan chhē* ('turnover wheels'), *shui chhē* ('water machine'), or colloquially, *lung ku chhi* ('dragon backbone machine'). A detailed description of some examples, with dimensions, is given by Hommel, but it may suffice to say that according to the length of the trough (*tshao thung*) it will lift water up to 15 ft., the effective limits being conditioned by leakage and the properties of woodwork. The best inclination is 24° but in practice usually somewhat less. The endless chain is turned by one of four methods: the human hand or foot, animal-power and water-power. Of these the oldest is probably the human foot, since the upper sprocket-wheel can carry on its axle so conveniently the radial treadles already mentioned (p. 89 above); this is seen in all the agricultural treatises beginning with the *Kêng Chih Thu* (+1210). A nearer view of the sprocket-wheel and pallets, from which a perfect idea of the mechanism can be gained, will be found in Fig. 578. The best Chinese illustration is probably that of the *Thien Kung Khai Wu* (Fig. 579). The same 17th-century work also shows a smaller version of the machine operated by hand (*pa chhē*), using a connecting-rod and eccentric lug or crank on the upper sprocket-wheel axle. Hommel and Ball found examples of these which they were able to photograph. The other widespread way of working the square-pallet chain-pump was by using animal-power, the animal being attached to a whippletree and cogged drive-wheel which engaged at right-angles with a gear-wheel on the sprocket-wheel axle. Figure 581 shows this from the *Thien Kung Khai Wu*, though it appears first in a
Fig. 579. The square-pallet chain-pump in the *Thien Kung Khai Wu* of +1637 (ch. 1, p. 19a), here called *thu chhê*.

Fig. 580. Square-pallet chain-pump manually operated with cranks and connecting-rods (*pa chhê*), from *Thien Kung Khai Wu*, ch. 1, p. 19b (+1637).
Fig. 581. Square-pallet chain-pump worked by an ox whim and right-angle gearing (niu chh!, from *Thien Kung Khai Wu*, ch. 1, p. 17a (+1637). The driving axle is labelled 'central shaft', and the legend to the left says that the ox treads a circle wider than the diameter of the horizontal gear-wheel.

Fig. 582. Square-pallet chain-pump worked by a horizontal water-wheel and right-angle gearing (shai chh!), from *Thien Kung Khai Wu*, ch. 1, p. 17b (+1637).
The only other machine capable of such a continuous flow would have been the noria (see on, p. 356), but a series of chain-pumps would fit Wang Chhung's words best, and the probability is that they would have been of the characteristic Chinese square-pallet type. The reference would be to about +80. Just a century later we have the account which has usually been taken as marking the invention itself. It refers to the engineer and master-founder Pi Lan, and occurs in the *Huo Han Shu's* biography of Chang Jang, a famous eunuch minister (d. +189).

He (Chang Jang) further asked Pi Lan to cast bronze statues... and bronze bells... and also to make (lit. to cast) 'Heavenly Pay-off' (Thien Lu) and 'Spread-eagled Toad' (Hsia Ma) (machines) (which would) spout forth water. These were set up to the east of the bridge outside the Phing Men (Peace Gate) where they revolved (continually, sending) water up to the palaces. He also (asked him) to construct square-pallet chain-pumps (fan chih) and 'siphons' (sho su'), which were set up to the west of the bridge (outside the same gate) to spray (m') water along the north-south roads of the city, thus saving the expense incurred by the common people (in sprinkling water on these roads, or carrying water to the people living along them). He also (asked Pi Lan to) mint (lit. cast) bronze coins....

This event was regarded as important enough to merit mention in the imperial annals of the emperor Ling Ti's reign for the year in question (+186). We shall have to return to the passage in connection with the noria (on p. 358), but the construction of the chain-pumps is quite explicitly stated. As for the 'thirsty crows' (i.e. siphons), the term must have been loosely used, for no siphons would have raised water as it is implied that these did. Our explanation is that what Pi Lan constructed included a series of simple suction-lift pumps analogous to the bamboo buckets with valves in their floors, which were probably used in the brine-well bores at the time, and which we have already discussed (p. 142 above). All this apparatus was to the west of the bridge, but square-pallet chain-pumps to the east of it also may be concealed by the term hsiu ma, about which we shall have more to say presently.

Whatever exactly Pi Lan's water-raising machinery was, we have here at the end of the +2nd century a precious account of a rather advanced water-supply system for an urban area, and the recent discoveries of so many kinds of stoneware piping and conduits from the Chhin and Han give us a clearer picture of how it was organised. Such information about ancient Chinese cities has numerous implications, for example...
27. MECHANICAL ENGINEERING

in connection with public health and hygiene. There is no doubt that Pi Lan’s job was done at Loyang, and from later sources such as the Lo-Yang Chi Chien Lan Chi of +530 it is not difficult to identify the site of his works. Deriving from the Ku Shui stream, the Yang Chih, a kind of moat, passed round the city walls to the west and south and was bridged outside the Phing Mên (later Phing Chhang Mên) gate, which had been built in +37. The pumps on its east side were evidently reserved for the palaces within the walls, while on those west the water-pipes of the city streets, most of the water seems to have gone round the north of the city to enter the Hung Chih lake, the southern part of the moat was probably very slow-flowing—a fact of some importance for our interpretation of Pi Lan’s machines, which thus can hardly have been current-operated.

The other locus classicus for the square-pallet chain-pump is in the San Kuo Chi and concerns the famous engineer Ma Chün who was active at the court of the emperor Ming Ti of the Wei.

Ma Chün of Fu-feng was matchless in ingenuity (chi hiao stu). According to the essay on him by Fu Hsian there was a capital, within the city, some unused land which could have been made into a park or gardens. But unfortunately no water was available for it. However, Ma Chün constructed square-pallet chain-pumps (fan chhê) and had them worked by serving-lads. Whereupon the irrigation water rushed in (at one place) and spouted forth—by serving-lads. Whereupon the irrigation water rushed in (at one place) and spouted forth (at another), automatically turning over and over. The skill with which these machines were constructed was a hundred times beyond the ordinary.

This must have been at Loyang between +227 and +239. Later historians, such as the Sung author of the Shih Wu Chi Yuan, used to mention Pi Lan and Ma Chün together as the originators of the device. But apart from the evidence already given, it may be that the chain-pump had already acquired its name of ‘dragon backbone machine’ (lung hâ chhê) in the Han, in which case some early references to dragon bones, (such as certain letters of Yang Hsiung, for example), dating from the last decades of the -1st century, may have meant the machine and not the fossil. Such at any rate, was the idea of some Thang commentators.

In thinking over the first invention of the square-pallet chain-pump one has to take into account the fact that the expression fan chhê did not always have sole reference to this machine. According to that most ancient of Chinese dictionaries the Erh Ya (Warring States material compiled in Chihin and Han), the ‘overturning device’

The Man of Wu Tzu means that this Kuo Pho. at the beginning of the Shih Ching, the early Chou period. Whether it had any connection with the idea of the square-pallet chain-pump is another matter, though Wu Nan-Hsin suggests (not perhaps altogether implausibly) that Pi Lan was inspired partly by the two bars of the swape bird-net for the sides of his flume, and by its overturning motion for the upper action of his endless chain. He recalls also that curious Chou idiom for the human jaws (ya chhê) already mentioned, and relates it to the ingesting lower action of the chain. In any case, the two uses of the term fan chhê deserve to be recorded.

By the Thang and Sung the square-pallet chain-pump had become a commonplace, mass-produced by thousands of rustic wheelwrights. In +828 its specification was standardised. The Chia Thang Shu says:

In the second year of the Thai-Ho reign period, in the second month...a standard model of the chain-pump (shui chhê) was issued from the palace, and the people of Ching-chao Fu were ordered by the emperor to make a considerable number of the machines, for distribution to the people along the Chêng Pai Canal, for irrigation purposes. The device was also getting into literature—for example, a rhapsody on it was written by Fan Chung-Yen (+849 to +1052). Sui Chêng tells us that it was customary in his time (the +14th century) for girls to work the square-pallet chain-pumps.

While the farmer sits on his bamboo mat Like a set of birds, each holding the tail of the next in its mouth. These are not so good as (that engine, which works)

While the farmer sits on his bamboo mat Enjoying the cool of the evening, and the singing and laughing Of lads and lasses, under the willows, Lit by the setting sun.

The text is continued in the next page.
An early reference to the use of animal-power in working these chain-pumps occurs in Lu Yu's account of his journey to Szechuan in +1170. Fu Lin was using them about the same time for draining the foundations of granary sites. Both these literary mentions are preceded, however, by the early Sung painting already mentioned (p. 344) from about +965.

These machines must always have been used for raising water in civil engineering operations as well as for agricultural irrigation, and thus we see them take their place in Lin Chihing's great Chih chin compendium of water-conservancy technology, the Ho Kong Chi Chi Chu Shuo (cf. Sect. 28 below).

The square-pallet chain-pump is probably what was meant in a passage in the travel journal of Chhiu Chhang-Chhun, on his way through Turkestan in +1221 to visit Chhinghiz Khan. At Almaligh (near modern Kuldja) the Taoist sage and his party met for the first time with cotton, and observed the work of the local farmers.

They irrigate their fields with canals, but the only method employed by the people of these parts for drawing water (formerly) was to dip in jars and carry them back. When they saw our Chinese water-raising machines, they were delighted with them (chi chien Chung yuan chi chi, kai)."--Ju Shu Shu Chih (Diary of a Journey into Szechuan), ch. 1, p. 56. This shows, incidentally, that the inventor of the animal-driven chain-pump cannot have been Shan Chien-Lang, as at the beginning of the Ming, as supposed by Lin Hsien-Chou (1). The Koreans were also designing ox-whisks in +1362, a Korean official, Chhi Chhi Chung Yuan, is said to have been installed there for the removal of sewage in +1516, but which dates more probably from about +1700. As Zimmer (1) points out in his description of it, the size of the pallets (8 x 9 in.) closely resembles that of Chinese practice, but the maker failed to reproduce certain subtleties of the original type, such as greater height than breadth of the pallets, and the arrangement that their grains should be at right angles to the wearing surfaces.

There can indeed be little doubt that this type of chain-pump spread all over the world from China in the +17th century, and it might well be possible to date its travels to within a couple of decades. First Lorini describes something very similar in +1597. European writers on water-raising machinery such as Bate (+1634) and d'Acres (+1660) do not know of it, but Montanus, writing just before +1671, describes what he saw when accompanying one of the Dutch Embassies.

Where there is want of Water, it is convey'd, though a considerable way, out of the Rivers, along digg'd Channels; (by which means all China is made Navigable) and conducted from low to high Places by means of an Engine made of four square Planks holding great store of Water, which with Iron Chains they hale up like Buckets.

The only fault in the observation was that the chains were of wood, not iron. Sinclair, the Scottish physicist and engineer, seems also to refer to these chain-pumps in +1672, when he speaks of 'buckets or plates' for drawing water from mines; as also Meyer and other writers in the following decade. According to Ewbank, chain-pumps were in use on British naval ships for clearing bilge towards the end of the +17th century, having been adopted from Chinese junks.

After +1700, the probable date of the Hampton Court pump, there are numerous descriptions in European engineering literature—Leulpold (+1724), van Zyl (+1734), de Bélidor (+1737), Chambers (+1757) and Leonhardt (+1798). At the end of the century Stuanton gave a famous cut showing the machine at work, and in +1797 van Braam Houckgeest was so kind as to describe clearly his introduction of it to Europe.

Much information on this history has been assembled by Yi Kwangnin (I), pp. 84ff. E.g. in his book on agricultural improvement, Kwoon so Schho Anou (1799), Pak had been greatly impressed by Chinese learning and Chinese technique during his visit as a member of the Korean mission of congratulation on the occasion of the Chhien-Lung emperor's 70th birthday in +1786. In his T'ha Hie (1790) he wrote an interesting account of this journey. On his struggle, with like-minded men, to modernise his country, cf. Yang & Henderson (1).
America; a rare example of a statement by a living link in the chain of technique transmission. 'I introduced it', he said, 'into the United States, where it has proved of great utility along the river-banks, on account of the ease with which it is operated.' The Spaniards had taken it to the Philippines, and the Dutch to Batavia, much earlier.8

By the Sung period the square-pallet chain-pump may have given rise in China to the endless conveyor chain of containers for excavating sand or earth.9 In any case, with the Renaissance, the idea arose and spread in the West.5 Zimmer (2), who has treated of the early history of mechanical handling devices, noted the excavators of Ramelli and Lessen (late +16th century), which, as we saw above (p. 211), were offered to the Chinese as a new idea; and demonstrated the ancestry of all conveyor belts and chains. It was to flour-milling that these were first applied, and a description of their earliest forms, due to Oliver Evans (+1756 to +1819), has been given by several authors.4 The small wooden blades, or 'flights', of the grain-elevator were the lineal descendants of the early history of mechanical engineering.

Another obvious application of the endless chain was for dredging, as we see in numerous European designs from the +16th century onwards, but this use, with its need for scooping-buckets rather than inter-pallet spaces, derives presumably rather from the saqiya than the fan chhē.8 Here there was a junction of techniques. If the dredger was, and still is, set up slanting like the fan chhē, it has buckets like the pot chain-pump or saqiya. The obvious converse logical intermediate device would have pallets (or their equivalent) like the fan chhē, but would be set up vertically; and this indeed has long existed under the name of the 'paternoster pump' or 'rag-and-chain pump'. Here the fan chhē flume must have a fourth side. Within a vertical pipe an endless chain brings up balls of metal or lumps of rag and leather which nearly fill the lumen of the pipe and so act as pallets discharging the water at the top. The resemblance of the endless chain to a rosary gave the device its ecclesiastical name. These pumps were popular for mine drainage in +16th-century Europe, and Agricola describes and figures several kinds;8 but the previous history of the machine is obscure, and no

8 As recently as 1938 it was again in navigation from China to America because it was found extremely useful in the pumping of crystallising brines; a self-cleaning action prevents clogging. This information was given by Mr Ferris of the Bonneville Salt Company of Salt Lake City to my friend Dr M. R. Bhol of Sdom in Israel.

9 Cf. p. 219 above.

10 Single-scoop dredgers, in which the bucket is hauled up by a pedal winch, are still used in China (G. R. G. Worcester, unpublished material, no. 1234). We shall describe them in Sect. 287. There are early European analogous.
PLATE CCXXVII

Fig. 584. Triple paternoster pump manually operated with two cranks (orig. photo., Exhibition of Agricultural Machinery, Peking, 1958). The discoidal diaphragms (phi chhien) can readily be seen.

Fig. 586. Paternoster pump and ‘fly-wheel’ weighted with two mill-stones, manually operated by eccentric, connecting-rod and hand-bar as in the traditional mills, cf. Fig. 413 (orig. photo., Exhibition of Agricultural Machinery, Peking, 1958).

27. MECHANICAL ENGINEERING

Illustrations of it before the early 15th century are known. It seems to have been foreign to traditional Chinese engineering practice, but this does not mean that it may not have been a European invention deriving from the fan chhieh, possibly through vague hearsay from intermediate sources. At present there is no evidence. The device had a period of importance, for Agricola described a three-stage paternoster pump in a mine at Schemnitz in the Carpathians worked by 96 horses and raising water at least 660 ft. It may have stimulated some people to think about pistons in cylinders, but as we have seen (p. 141 above), the piston-pump was familiar in Hellenistic and Arabic culture as well as in Agricola’s own time, so that the paternoster pump might have derived from the former rather than contributing to it. Provisionally one might almost think of it as a marriage of the old European piston-pump to a rumour from China.

In any case the paternoster pump has today spread over the length and breadth of China as the most efficient and convenient of water-raising machines in the vast movement of rural mechanisation and agricultural improvement. Already in 1952 it was displacing the classical square-pallet chain-pump and even the noria. Six years later I was enabled to study it in many varieties at the National Exhibition of Agricultural Machinery at Peking. Some machines are built entirely of wood, with square diaphragms (hua shu pan) working through a vertical square-section wooden pipe, but it is more common to have cast-iron gear and sprocket-wheels (Fig. 584) for animal power, with discoidal ‘washers’ of leather or rubber (phi chhien) running up a metal pipe (Fig. 585). Another photograph (Fig. 586) illustrates the ingenious improvisations now dear to every peasant farmer; a manually-operated connecting-rod and crank like those of the traditional mills (cf. Fig. 413) rotates the right-angle gear with the help of two peripheral weights (old millstones) which form a bob fly-wheel.

Elsewhere the small donkey-engines which co-operatives and communes can now afford apply steam-power to the raising of irrigation water. Under the sun of a Chinese summer, an East Anglian contemplating this could not but remember those

1. A manuscript drawing of a paternoster pump is in the work of Mariano Taccola (+1438), Münchener Codex Lat. 197; see Feldhaus (1), col. 833.
2. At least, on land, for there is some evidence that the paternoster pump, which became in the 18th and early 19th centuries a favourite device for clearing the holds of ships, was adopted directly from the means employed on Chinese junks (cf. Ewbank (1), pp. 154 ff.; Davis (1), vol. 3, p. 82). We shall take up the matter again in Sect. 29j.
3. On the late 14th-century group of important technological transmissions from China to Europe, see p. 544 below.
4. Not Agricola’s home, Chemnitz (Karlsbad) in the Erzgebirge, but Banská Štiavnica in Slovakia, later the site of the first Newcomen steam-engines on the continent (+1721); Voda (1), cf. Nagler (1). Central European mining steam-power may have been delayed by the efficiency of the Stangenkunst (cf. p. 334 above), arrangements of rocking pantograph-like levers which could not only transport water directly but transmitted power for pumping from distant prime movers; see Multhauf (4). This arose just after Agricola’s time.
5. Generally called simply shu chhieh.
6. My own observations accorded with those of my friend Dr N. W. Pirie, F.R.S., in that year.
7. Many working drawings and sketches will be found in Anon. (58), pt.1, and many photographs in Anon. (56). Among the latter’s interesting designs for local construction may be mentioned a vertical water-wheel working a high-lift paternoster pump by a long chain-drive (p. 68).
8. A working drawing of this will be found in Anon. (18), pt. 1, no. 85. Similarly, old cart-wheels are pressed into service as fly-wheels, as we have already seen (Fig. 386).
delightful words borne (for an opposite purpose) by one of the historical pumping-stations in his own gloomy land:

These fans have often been by Water drown'd;
Science a remedy in Water found,
'The power of Steam', she said, 'shall be employ'd,
And the Destroyer by itself Destroy'd'.

But soon the tao hiang will be turning a switch.

(5) The 'Sāqīya' (Pot Chain-Pump)

To the sāqīya ('the cup-bearer girl'), i.e, the endless chain of pots, let us now turn. It differs doubly from the chain of pallets in the inclined flume, for here the chain hangs normally straight down below the upper wheel, and carries whole pots or buckets which fill at the lower end and discharge at the top.8 Zimmer (2) introduces his account by reproducing a Babylonian relief of about 700 showing queues of men carrying baskets of earth upwards and descending with them empty.9 It is not surprising, therefore, that the chain of pots should have been an ancient idea, and there seems little doubt that the description occurring in a text of Philon of Byzantium (c. -210) is at any rate partly genuine.10 Writing about 30, Vitruvius mentions the machine clearly,11 and we still have the remains of one of the chain-pumps used for emptying the bilges of the great ships of the Lake of Nemi built between +44 and +54.12 While nothing authorises the view that the ancient Egyptians knew of this device,13 it spread rapidly in the Hellenistic age all over the Near East, and the sāqīya or dauldā ('camel-wheel') thus became as characteristic of the Islamic lands as the fan chēl was of China.14 The familiar words 'Or ever the silver cord be loosed, or the golden bowl and the pitcher be broken at the fountain, or the wheel broken at the cistern' must surely refer to the sāqīya.15 One of the most imposing of these machines is that known as Joseph's Well at Cairo, where a borehole descends vertically through solid rock 165 ft. to the lower animal-power chamber, and then further down to reach

8 Cf. Ewbank (1), pp. 122 ff.; Baroja (1, 4); Schiøler (5).
9 Like many others who have been in China during and since the Second World War, I have seen similar turets en masse of human labour in the building of airfields, dams and canals. Cf. Sect. 285 below.
10 Pneumatica, ch. 65; cf. Cora de Vaux (a); Beck (5); Drachmann (a), pp. 66, 68.
12 See Moretti (1), p. 33. The sprocket-wheels have five cogs moulded to fit buckets pear-shaped in cross-section. A Ctesibian double-cylinder force-pump was also found (ibid. p. 34). Fuller details in Ucelli di Nemi (1, 2).
13 As supposed, for instance, by al-Salam (1), p. 9. Petrie (a), p. 145, says that sāqīya pots are common in Roman, but not in ancient Egyptian, dumps. On the other hand, the view of Forbes (11), p. 34, that the so-called 'hanging gardens' of Babylon, c. -700, were watered by sāqīya working in deep shafts, is not entirely without plausibility. Cf. Schiøler (5).
14 See E. W. Lane (1), p. 301; Bonaparte (1), vol. 12, pp. 48 ff.; and atlas, vol. 2 (Arts et Métiers Section), pls. 111, 117 and 17; Chatley (3b), p. 159. A very thorough study of the technical terms in Egyptian Arabic for all the parts of the sāqīya is due to Littmann (1). Ball (1) tells us that in 1906, the Dongola province of the Sudan alone had just under 4000 sāqīya, each irrigating about 15 acres and supporting 33 people.
15 Ecclesiastes, xii, 6.
and were established among the Copts. Europeans, having derived them from the
Arabs, continued to use them till they were displaced by modern pumps. I add a
photograph of a contemporary _sáqýa_ which I took at Yedikülle, just outside the walls
of Byzantium, in 1948 (Fig. 588). That the machine was a comparatively late introduction to China is suggested by
the name, _kao chuan thung chhé_, i.e. ‘noria for high lifts’. It is first illustrated in
+ 1313, but Fig. 589 shows the picture from the _Thien Kang Khai Wu_. The significa-
cance of the name is that it suggests that the pots or bamboo pipes attached to the
periphery of the noria, a machine with which the Chinese were already familiar, had
flown away from it, and taken their path on high to pass round a second wheel and so
return. The illustrations we have of the high-lift _sáqýa_ in China generally show a
wheel at the lower or reception end, but though this looks like a current-operated
paddle-wheel the texts all say that the drive came from above, using either a multiple-
pedal treadmill or an ox whim. Moreover, the whole machine is shown slanting like
a fan chhé, with a wooden guide-trough for the chain of bamboo buckets. Yet the
Arabic _sáqýa_ was vertical, and did not often have a wheel at the lower end of the
chain. Wang Chén says that the _kao thung chhé_ was especially useful where water had
to be raised to considerable heights, and mentions lifts of several steps of about 100 ft.
each. The fact that he names a particular temple, the Hu Chhiu Ssu at Phing-chiang,
where such a machine was installed, may mean that it was rather uncommon. Indeed,
the energy required may often have made it uneconomic. Thus it seems doubtful
whether this device was ever widely used in China; there are very few literary
references to it except the passages in the agricultural encyclopaedias, nor do many
travellers describe it. During my own journeys in most of the Chinese provinces
during the Second World War I never encountered it, but in 1958 I was able to
photograph a few examples newly discarded for more modern equipment (cf. Fig. 590).

a Zimmer (4); Winlock & Crum (1).

b One was pictured by Pisanello about + 1420 (Degenhart (1), fig. 147), and they were described in the+
+ 17th century by many writers, e.g. Bate (1); d'Acres (1); the Marquis of Worcester, see Dircks (1),
etc. Wakarelski (1) photographed them still in use in Bulgaria.

c The mixture of eotechnic wood and palaeotechnic iron is worth noticing.

d The same applies to Korea, where in + 1431 a water-raising machine which was not very good for
irrigation but would drain water effectively from wells was compared with the current-operated noria
from Japan; cf. Yi Kwangnin (1), p. 91.

e Nung Shu, ch. 18, pp. 174 ff.

f Ch. 1, p. 168, not in first ed.

g Modern Wu-hsien in Chiangsu.

(1) found such machines numerous on the south bank of the Wei River in Shensi, and Chatley (16),
pl. xxxi (1) illustrates one from the neighbourhood of Tientsin. All these were regular vertical _sáqýa_
driven by animals.

1 The first of these was on Yenthan Island in the Yellow River just below the city of Lanchow; the
second at the Fêng-thai Agricultural Cooperative near Peking. The construction of these old gear-
wheels is interesting. In the former (which has lost most of its cogs) the rim is more composite than
usual because the felloes are clamped by plates on the sides of the wheel, set between spokes which
grasp the rim externally as well as by the fitting of their tongues into the felloes. In the latter the felloes
are joined by wrought-iron dogs, and the spokes are disposed at unequal distances from one another so
as to allow for the insetting of the cogs between them alternately in twos and ones.

PLATE CCXXVIII

Fig. 588. A modernised _sáqýa_ at Yedikülle, near Istanbul (orig. photo., 1948). Iron and petrol-cans
have replaced the classical wooden drum-wheel and earthen pots, but the right-angle gearing is still
much as it would have been in al-Jazarî's time. The donkey whim can be seen underneath the driving
shaft.
Fig. 89. A Chinese shijia from the *Thien Kung Khi Wu* (+1637), ch. 1, p. 16b. Its foreign origin may be sensed by the inappropriate nomenclature, *hao chuan thung ohhe*, ‘noria for high lifts’. It is unusual to have a wheel at the lower end, and one suspects operation by paddles, but the texts all make the power come from above.
One industry however adopted the _siiqiya_ systematically at some date unknown, namely the salt fields at Tzu-liu-ching in Szechuan. Figure 591 shows one of the towers (chhe loup), some 60 ft. high, housing a horse-driven vertical chain-pump (_shui tou_ or _tou tzu_) which raises the brine to a distribution-head (_chien wo_). Hence it is conducted by means of bamboo pipes (_chien s._ or _hung_2) for many miles to the sources of the natural gas used for evaporation. Here again, the lack of character in the name of the machine (‘water-buckets’) suggests a relatively late introduction.

(6) The Noria (Peripheral Pot Wheel)

The noria (a word which is derived from the Arabic _al-nii'ura_, ‘the snorter’) is the most difficult of all these machines to trace back to its origin. It differs from the _fan chhe_ and the _siiqiya_ in that no chain is present and the buckets, pots, or bamboo tubes are attached to the circumference of a single wheel, collecting at the bottom and discharging at the top. Hence the name _thung chhe_. This wheel may be driven by the force of the current, if it is furnished with paddles, but in still water it must of course be powered by men or animals. The first Chinese illustration of it appears in the _Nung Shu_ of +1313, but Fig. 592 shows the semi-diagrammatic representation in the _Nung Cheng Chhuan Shu_. These may be compared with photographs of contemporary examples (Figs. 593 and 594); the latter, viewed from the road between Chungking and Chhingtu in Szechuan (1943), gives an idea of the height which these machines, though built only of wood and bamboo, can attain (in this case a diameter of some 45 ft.), and the smallness of the stream required to operate them. Celebrated in China are the sets of fifty-foot wheels on the Yellow River near Lanchow in Kansu. The grandeur of these masterpieces of eotechnic millwright craft can be appreciated from

8 From the _Szechuan Yen Fa Chih_9 a complete account of the technology of the salt fields compiled by Lo Wen-Pin10 and 25 collaborators in 1882 at the request of the Governor-General of the province, Ting Pao-Chen.11 From the _Szechuan Yen Fa Chih_9 ch. 2, pp. 26b, 272.

b The normal drive would be either a multiple-pedal treadmill or an ox or donkey whim. We know of no picture or description of the former, but the latter is well illustrated and discussed under the name of _wei chuan thung chhe ta_ in the _Nung Shu_, ch. 18, pp. 160ff., where Wang Chen emphasizes its use for lakes, pools, moats, etc. Compared with the current-operated type, these forms are rare, however. An unusual type exists on Hainan Island, where the peasant walks on the circumference of the wheel; see Frank, p. 321. This might be either ancestor or descendant of the Japanese external treadmill scoop-wheels already discussed (p. 337).

c Ch. 18, pp. 13ff.

d Ch. 17, p. 92; cf. _TKKW_, ch. I, p. 16a, first ed. pp. 29, 30a. Most of the traditional Chinese drawings fail to do justice to the great lift which the noria accomplishes, and make the delivery of the water too low.

f A photograph of the same group of norias also appears in Phan _En-Lin_ (1), p. 186; cf. his p. 36. A close study of machines very like these in Indo-China is due to Guilleminet (1), who gives working drawings and calculates efficiencies. At Phu'0'35 a long aqueduct some 50 ft. high conducts the water away from a battery of seven large norias 60 ft. in diameter. All these are of the same order of size as the Syrian norias shortly to be mentioned, but in East Asia the availability of bamboo made it possible to lighten the construction. A diameter of some 75 ft. was probably always and everywhere the economic limit, however.

g My first introduction to these was with the geologist Dr E. Beltz, who was also in Lanchow in 1943.
Fig. 592. The noria or peripheral pot wheel (sheng chhi); a drawing from the Nung Chzes Chhiidn Shu of +1628 (ch. 17, p. 9a). Like most traditional representations of the noria, this fails to do justice to the high lift available; the artist seems to have drawn the delivery flume in plan instead of in elevation.
Fig. 595 (taken in 1958). Both in China and Indo-China norias are often arranged in batteries with a common shaft, up to as many as ten in a row.

It might be tempting to relate the strange phrase in the Tao Te Ching to the noria: 'Some things are loading when other things are tipping out (huo tsho huo hui)', but in the -4th century or earlier this must surely have referred rather to human chains of basket-carriers. On the other hand, the somewhat obscure account of Pi Lan's constructions in +186, given in full above (p. 345), does seem to reveal the noria at work. Whatever it was that was built on the east side of the bridge seems to have been different from the square-pallet chain-pumps and the pumps or 'siphons' on the west.

The two terms which need consideration are thien lu and hsia ma. There can be no doubt that the second ('spread-eagled toad') means gear-wheels of some kind, or any wheel with projections, such as the sprocket-wheels of the fan chhe. The first, which we ventured to translate as 'heavenly pay-off', is taken by most of the commentators to mean some kind of animal, and hence part of the decorations on the machine, but though there certainly was this usage, a pun may here have been involved.

The top of the machine would certainly have been called the 'heavenly' end of it, and in fact it was just at the top that the water 'won' (as miners would say) poured forth into the receiving channels. The use of gear-wheels clearly authorises the inference that the water was still, or at any rate not fast-flowing, and indeed we have already seen that the Peace Gate of Loyang was in the south-east wall of the city near the bridge over the Yang Chhii moat. Thus it seems most likely that Pi Lan's east-side equipment consisted of a battery of norias worked by men or animals, and perhaps also square-pallet chain-pumps similar to those on the west side of the bridge.

The Ming book Ku Chih Shih Wu Yuan Shih (Beginnings of Things, Old and New) by Hsü Ch'üi, attributes the invention of the noria to another engineer, Ko Mien, contemporary with Pi Lan, but he may well be mythical, since the name could have arisen from confusion with the 'siphons' or lift pumps which occur in the same passage.

Distinct references to the noria are rather rare in later literature, though one has the impression that it was quite widespread. The use of many large wheels for raising water for public baths at Loyang in +914 is referred to in an account of their builder, Lanchow people still revere the memory of Tsuan Hsi, a Kansu countryman who about +1545 made a couple of hazardous journeys at his own expense to Yunnan, Chiangsi, and back, in order to master the art of constructing norias as large and strong as possible.

Photographs in Sarrout & Robequin (1), p. 79.

Ch. 29.

Many examples could be quoted, but a very clear explanation is given by T'ien I-Heng in his Liu Ch'ing Jah Cha of +1579; cit. KCCY, ch. 48, p. 79. This reference was first noticed by Schlegel (1), p. 458.

Many instances will be found in Sect. 27 below.

It reached Japan apparently about +800; cf. Papinot (1), p. 757; Sarton (1), vol. I, p. 580. And thence it spread to Korea, as is shown by many quotations assembled by Yi Kwangnin (1), pp. 8ff.

+1429, under King Sejong, after an embassy had returned from Japan, a student was dispatched thither to learn the art of making current-operated norias. Between +1431 and +1437 much attention was given to the best forms and designs, and on several occasions standard models were sent out to all the provinces for copying by the local artisans.
Fig. 594. A high-lift noria, some 45 ft. in diameter, constructed entirely of bamboo and wood (orig. photo., 1943, from a bridge near Chienyang, Szechuan). The narrowness of the artificial channel which rotates the paddle-wheel as it fills the buckets (bamboo tubes) is noteworthy.

Fig. 595. A battery of high-lift norias (diam. c. 50 ft.) in one of the arms of the Yellow River just below Lanchow (orig. photo., 1958). More stoutly built than that in the preceding picture, these can withstand, as here, the great river in spate.
Fig. 596. The oldest representation of a noria: a mosaic at Apamea in Syria (Mayence, 1). This is of the 2nd century, after Vitruvius and before Ptol Lan. But the evidence points to India as the home of the invention. A few decades later we have the description by an Arab traveller of the water-supply of the city of Shantan (see below, p. 420), which could hardly have been effected without the use of one or more large norias, as in fact it was within living memory. Then about + 1170 the philosopher Chu Hsi (cf. above, p. 143) has a reference which must, I think, be interpreted as meaning the noria, although the expression used (shui chhe) was more usually applied to the square-pallet chain-pump. He says:

Since the beginning of Heaven and Earth there has been this thing (this machine of Nature) in ceaseless revolution. There is a diurnal rotation, and rotations of months and years. But there is only the one (machine) endlessly turning and rolling. It is like a water-raising machine (shui chhe), in which (at a given moment) one (bucket) is upright and another inverted, one is coming up and another going down.

About + 1130 a phrase about norias appears in one of the poems of Shen Yu-Chhiu, author of the Kuei Chi Chi (Poems from Tortoise Valley)—shui hu thien-phien chieh chu yu, 'the water-buckets gracefully revolve by the river-bank'. Then comes the matter-of-fact description in the Nang Shu (+ 1313), and all later books of the same kind illustrate the noria.

A pleasant literary reference occurs about + 1601 in a travel book about Kuangtung by Wang Lin-Heng. He says, speaking of the southern countryside:

As for the water-raising machines, at the end of every spoke there is a tube (bamboo bucket), upright when rising and inverted when descending, so that as the wheel turns, the water is poured out into a channel. The size of the wheel depends upon the height of the field—even as high as 30 or 40 ft., a field can be watered. Not the slightest human effort is required. This is something like the water-triphammers and water-mills of Chekiang. Such machines as these for raising water would put to shame even the old man who lived north of the Han River long ago; in short the skill of man, when it comes to perfection, can conquer the works of Nature. Who invented (the noria) we do not know, but he ought to be honoured with worship and sacrifices.

In this connection see the illuminating study of baths in China by Schafer (7). This conviction is strengthened by the fact that, as we shall see (p. 361 below), the noria analogy had long been used in Buddhism, and Chu Hsi had certainly devoted much study to that philosophy, though he contradicted it.

Tr. auct. It has not been possible as yet to locate this text in Chu Tzu Chiian Shu or Chu Tzu Yi Lei, but it is taken from the material copied by Wieger (2), p. 188. Its use by recent authors really belongs to the Department of Utter Confusion. The translators of Grousset's last book (6), p. 218, reproduced a text which is in no way what Chu Hsi said, though quoting it as if it were his, and the text is not even a literal translation of Wieger's paraphrase and interjected comments (5), pp. 188 and 191. The muddle existed already in Grousset (5), p. 265. Wieger had indeed spoken of a noria, but evidently confused it with the siiq'iya, for he included in his 'translation' some words about the full buckets coming up out of the well while the empty ones went back into it. The machine then became a 'chain-pump' in the English translation of Grousset (6), but to add to the bewilderment a footnote is given explaining that the chain-pump is a device for raising water into the rice-fields, portable and operated by treading—though the fa chhe has nothing to do with wells and carries no buckets. Of course no references were vouchsafed either by Wieger or Grousset, and the latter inserted several remarks taking the term li7 as laws of Nature, which I hope we have shown (Sect. 18 above) is inadmissible.

A reference, of course, to the Chuang Tzu story, p. 332 above.
The noria's history has been studied by Laufer (19), but though the choice of subject did him credit, the paper was not one of his more inspired efforts, since he confused the noria with the *sāqīya* (as so many other writers have done),\(^a\) and even with the *fan ch'ī*.

\(^a\) King (2).

He also maintained that the noria was not mentioned by Vitruvius.\(^b\) In fact, however, Vitruvius gave about 30 a very clear description of the current-operated noria.\(^c\) That it spread through the Hellenistic world is indicated by the discoveries at Apanoea in Syria, described by Mayence (1), which have revealed a noria in mosaic (Fig. 596). This would be of the early +2nd century, after Vitruvius and before Pl Lan.

The noria was much more widespread in the Middle East after the fall of Alexandria, and again in Italy, where engineers had a continuous series of radial boxes round its periphery, as if the very rim of the wheel were hollow and pierced with holes, and this was at any rate a form which it long retained in the Near East.\(^d\) There was thus no doubt a close relation with its *lymparum*,\(^e\) a water-raising wheel completely boxed in and divided into compartments. This, the *tóbát* (i.e. the "ark") of the Islamic lands, has the disadvantage that it delivers the water only at axle-level and not at the top of the wheel, but it will do for small lifts.\(^f\) Bigland illustrates some norias of the +2nd century at Alexandria, Egypt,\(^g\) but the most splendid ones ever constructed still exist and labour today at Harma on the Orontes in Syria. Here the largest attain a diameter of nearly 70 ft. and discharge into tall arched aqueducts of stone as well as the more usual trestles.\(^h\) From Mieli we learn that these were originally constructed by Ibn 'Abd al-Ghānī al-Ḥanafi (+1168 to +1251),\(^i\) and there is much on norias of all kinds in Arabic MSS.\(^j\) The earliest Arabic literary reference is of +884. From Islam follows the usual corollary of our -- we find the noria again in the late +11th century at work in France,\(^k\) and depicted in +15th-century German MSS.\(^l\) Naturally enough, it was particularly common in Spain.\(^m\) It has persisted in some parts of Europe until today, e.g. the remoter sections of Bavaria,\(^n\) and in Bulgaria\(^o\) where the design is very Chinese indeed. It was not altogether absent in the 19th-century iron age, for steam-driven norias delivering 2000 gallons on each revolution were at work in the eighties for emptying copper residues into Lake Superior.\(^p\)

It seems, then, that we are presented by the noria with a problem similar to that which we shall encounter in the case of the water-wheel, namely first appearances separated by rather short time-intervals at the two extremes of the Old World. The problems are of course closely related, since the current-operated noria with paddles is very near the vertical water-wheel for mills. Laufer (19) argued strongly for an origin of the noria in Sogdiana (Central Asian Persia) whence it would have spread in both directions, but he had really no evidence for this,\(^q\) nor is the purely Greek origin urged by Pagliaro (1) or Forbes (11) any more convincing. The question therefore arises whether India might not be the original home of the noria.\(^r\)

\(^q\) See Anon. (44).

That the machine was very widespread there in recent times Laufer had no difficulty in showing, but the question is how far it goes back, and that, owing to the well-known difficulty of dating Indian teehfas it is not easy to say. However, there are references in Pali to a *cakkavattana* (turning wheel) which the commentators explain as *arabatta-gāhita-yanta*, or machine with water-pots attached.\(^s\) If this is really the noria and not the *śāṭya*, the mention is interesting, since the date would probably be (on traditional views) about -350.\(^t\) Classical Sanskrit,\(^u\) Jain Sanskrit and Prakrit,\(^v\) and Buddhist Sanskrit\(^w\) also have references, as well as later Indian languages.\(^x\) Perhaps also the comparisons between the noria and *samudra-cakra*, the wheel of existence, in Buddhist literature, point to an early use of the machine.\(^y\) Indian treatises on engineering will some day

\(^x\) Wells (1), p. 15.

\(^p\) See Masson-Oursel (2); Przyluski (7).

\(^r\) The fact that the noria was so widely called the 'Persian Wheel' carries little weight for earlier periods, cf. Margueritene (1), pp. 339ff. Ewbank (1), p. 114, maintained that the term 'Persian Wheel' ought to be reserved exclusively for that form of the noria in which the buckets swing on pivots, thus losing no water until they are overturned by a catch at the top, but I doubt whether this could be substantiated.

\(^s\) See Anon. (44).

\(^t\) The difficulty of the Pali Canon is that it is no longer considered more reliable than the Sanskrit texts, since it was thoroughly revised towards the end of the 4th century (private communication from Dr E. Coe, cf. 7).

\(^u\) See also Conze (6) commenting on a difficult passage in the *Abhidhamma-pitaka* (Ornament of the Instruction of the Doctrine), vii, 2, a mid +4th-century text; and its +8th-century commentary by Haribhadra (cf. Renou & Fillonat (4), vol. 1, p. 377). Here again it is hard to exclude decisively the *śāṭya* as the *yantra* referred to.

\(^w\) See J. Bloch (1), p. 393.

\(^s\) See Masson-Oursel (3); Coomaraswamy (4); Foley (1). In the *Dīcyadācāna* (-2nd to +2nd century) the Buddha instructs Ānanda to make a *māndala* like a water-wheel so as to show the cycle of rebirths. This sounds like a noria rather than a *śāṭya*. One remembers, too, the ubiquitous 'wheels of fortune' motif in European medieval literature and illustration (cf. Fig. 681), the use of the noria in philosophical analogy by Chu Hsi (p. 339 above), and the place which it took in ancient Chinese cosmological specialisation (Vol. 3, p. 489 above).

\(^y\) See also Max (1); Freyshki (5).
throw greater light on the matter, but as yet hardly any definitive work has been done on them.¹

Summing up, therefore, the general impression gained is the following. The characteristic Chinese water-raising machine was the square-pallet chain-pump. Originating probably in the +1st century, it knew a worldwide diffusion after the +16th. The characteristic Hellenistic and Arab water-raising machine was the śāḍyā (vertical chain of pots); this was probably an early Alexandrian invention, and was transmitted to China from Arab lands some time before the +14th century. The noria is the most difficult to place, but provisionally we may adopt the hypothesis that it was invented in India, reaching the Hellenistic world in the -1st century and China in the +2nd.²

(h) POWER-SOURCES AND THEIR EMPLOYMENT (II), WATER FLOW AND DESCENT

In the previous subsection we were concerned with man exerting labour to move water about, now we approach the even more epic story of man getting water to labour for him. The invention of the current-operated noria had indeed already done this, though the place and date of its origin remains obscure, and the work accomplished was only the raising of water itself to a higher level. Who was it who first realised that the torque of the axle of the noria could be made to perform tasks beyond the power of unaided human strength, and with greater efficiency and continuity of effort than men or animals could bring? Or was the water-wheel simply a kind of extension of the horizontally rotating millstone? It will not be possible to elucidate all these problems of origin here, but we shall at least be able to contribute to the argument a mass of facts relating to the invention and use of water-wheels in East Asia which have so far not been taken into account by any historian of technology.

The term 'mill' must not be taken here in the narrow sense of the rotary quern only. We shall have to deal with tilt-hammers and trip-hammers, edge-runner mills, saw-mills, air-conditioning fans, textile machinery, and—surprisingly heading most of the others in date—metallurgical bellows operated by water-power.³

¹ Take for example the Yadantiaka Campā, which contains a description of garden waterworks, written by the South Indian Jain encyclopaedist Somadeva Sūtri in +949, and brought to our attention by Raghavan (1, 2). For our present purpose it is rather late, and its vogue means interpretation difficult, unless the collaboration of a Jain specialist with a trained engineer could clarify the nature of the machines described. This desideratum applies indeed to most of the past work and future problems of the history of engineering in the Indian culture-areas.

² Its possible genetic relation to the equally ex-aqueous water-mill wheel will be discussed in detail below (p. 409).

³ The only paper specifically devoted to water-power in Chinese engineering before the writing of the present section was that of Massi (1); its conclusions were generally in accord with ours. Subsequently the papers of Anano (1) and Liu Hsien-Chou (2) became available. There are no significant differences of opinion.

(1) SPOON TILT-HAMMERS

Let us start with what amounts to a riddle. How could the power of falling water be made use of without any application of continuous rotary motion? The answer is by a device which was the exact opposite of the swape (discussed above, p. 331). Instead of the bulet-bucket being counterweighted to assist the raising of the water, the counterweight was turned into a hammer or pestle and alternately raised and allowed to fall by having a stream of water pouring into the bucket at the other end of the beam. This was the 'spoon tilt-hammer' (tshao tui, or trough hammer), illustrated in all the books from the Nang Shu of +1131 (see Fig. 597) onwards. Unfortunately, references to it in literature are very few. The Nang Shu quotes a poem which is hard to identify, and then much later there is a statement in the Ming dictionary Ch'eng Tzu Thung² by Chang Tzu-Lieh:³

The mountain people cut out wood in the shape of a spoon, and make it face a mountain torrent to work a water-titlhammer (shui tui 4). Sometimes it works slowly and sometimes quickly, but it doubles the efficiency attainable by man-power. Ordinary people call it the 'spoon tilt-hammer' (tshao tui).⁴

This would have been written about +1600, though not printed till nearly thirty years later, but the device must have been well known already in +1145, for Lou Shou's poem (given below, p. 393) refers to the water flowing in and out of the slippery spoon (shih⁵). Before that we lose sight of it.

No references to it by travellers in China have been found,⁶ but Troup (1) studied it carefully in Japan. The battari, as it was called, had a trough with a sloping bottom so as to let out the water easily when the counterbalancing effect came into play, and in its most archaic form, such as Lou Shou must have known it, was simply a hollowed-out log. Now between Arima and Sando in the Settsu province, Troup saw a double trough which swung right round when emptying, and rotated a shaft which worked

* A similar balanced lever was incorporated in the coin-in-the-slot machine of Heron of Alexandria (Ch. 21, see Woodcroft (1), p. 37; Vowles & Vowles (1), p. 105).
* Ch. 19, pp. 139, 140.
* Tr. aus. Citt. in R.C.G.C. Ch. 53, p. 70. Cf. the Shao-Hsing Fu Chih (Shui Li sect.) about +1700.
* But Dr C. P. Fitzgerald informs me that he saw a battery of spoons operating in 1937 near Echo-yuan (on the road between Tali and Liuchiang in Yunnan). He also saw them at Sangan Ga in the Diamond Mountains in north-east Korea. Others have reported them from Korea (e.g. Vowles, 2) and Indo-China (Colani, 3). In Java they take the form of tilting bamboo tubes (salakadeh) so arranged that after each discharge a kind of chime-stone is made to sound (see Kunst (5) and Crossley-Holland (2), p. 77). Besides the simple duty of warning the farmer of any interruption of flow, this apparatus has been developed by the Javanese into a veritable orchestra, with chime-stones of different pitch and bamboo tubes of different size and emptying-periodicity. So also the Sedang people of Annam make elaborate hammer-stuck hydraulic carillons of bamboo (tang hoa), working automatically in the rice fields for months without ceasing. Somehow the spoons eventually spread to South America (Baroja (4); Mengeringhausen, J. & M.), presumably from Europe, though references to them are few. According to the Director of the Deutsches Museum at München, where a model is shown, they were used in Switzerland about 1800 for pounding stones and even for saw-mills moved on by ratchets. Their name was wasser-anke or guipfe.
* The mountain people cut out wood in the shape of a spoon, and make it face a mountain torrent to work a water-titlhammer (shui tui 4). Sometimes it works slowly and sometimes quickly, but it doubles the efficiency attainable by man-power. Ordinary people call it the 'spoon tilt-hammer' (tshao tui).⁴

The mountain people cut out wood in the shape of a spoon, and make it face a mountain torrent to work a water-titlhammer (shui tui 4). Sometimes it works slowly and sometimes quickly, but it doubles the efficiency attainable by man-power. Ordinary people call it the 'spoon tilt-hammer' (tshao tui).⁴
Fig. 597. Water-power in its simplest form: the tipping bucket as an intermittent counterpoise. The spoon tilt-hammer (tsho tui) from Xung Shu, ch. 19, p. 138 (+1343).

Fig. 598. An 18th-century European use for tipping buckets as intermittent counterpoises; Triewald’s blowing-engine for forges and furnaces (+1736). The flame-handled spoons alternately raise and lower bell-shaped cylinders suspended in water, thus sending a continuous blast to the tuyères (Frémont, 2, 10).
vertical stamp-mill pestles by means of lugs (Fig. 599). Here the rotary principle had replaced that of the simple lever. Troup discussed this with the anthropologist Tylor, who asked whether four-spoked examples were known; at the time Troup had not seen any of this kind, but later he found them in the Tonegawa Valley in Jōshū province. The two additional spokes were light, and carried only flat boards with raised rims round the edges, serving merely to assist the main spokes to get round so as to place the troughs under the stream of water. Troup also saw others in which all attempt to mount troughs on the subsidiary spokes had been abandoned, and they carried only flat pallets or paddles. Finally he succeeded in finding and sketching machines with four, six and even eight spokes ending in troughs, all the machines operating stamp-mill pestles by lugs on the shaft.

The relevance of these discoveries for the theory of the origin of the water-wheel is obvious enough, but it will be best to postpone its consideration until the conclusion of the argument, when we can view the entire development of water-mills in perspective.

*They were said also to exist in several other provinces.

*In the +18th century the spoon principle was ingeniously applied by the Swede Martin Triewald to working a blowing-engine for furnaces and forges (Fig. 598). A pair of flume-handled 'spoons' (acting in a converse way to flume-beamed swipes, cf. p. 324) alternately depressed and raised bell-shaped cylinders suspended in a pond with their lower ends open, so that the water, forming a piston, expelled the air through pipes towards the places where the blast was needed (see Pitmon (4), p. 158, (16), p. 80). This design dates from +1736, and found much use in undertakings such as the great Falun mine and copper works throughout the rest of the century (cf. Lindroth, 1). Of course the use of water as a piston in this way goes back to the Alexandrians; cf. Philon, Pneumatics, ch. 64; Beck (9), p. 75; Drachmann (3), pp. 6ff. And a double bell-blower like that of Triewald, though not worked by water-power, was sketched by Leonardo (Feldhaus (18), p. 46; Beck (1), p. 341). The spoons of the serious-minded Swedes did heavy work, but a facetious Austrian archbishop set them to another task. At the château of Hellbrunn near Salzburg (built in +1614 by Marcus Sitticus of Ems), the numerous water-sports (cf. p. 157) include a face with a periodically protruding tongue—supposedly at the archbishop's critics. The movement is effected by a small stream of water filling a periodically emptying cup, to which the tongue is attached on a pivot. Here we have a connection between the workaday tilt-hammers and the jack-work tipping buckets of the Arab makers of striking water-clocks (cf. pp. 334ff. below). Either the periodic discharge of water, or the work done by the other end of the arm, may be the more important according to the conditions.
It is now necessary to sketch very briefly the essentials of what is known about the appearance and spread of the water-wheel in the West. An unsurpassed mine of information is contained in the book of Bennett & Elton, and there are two classical papers which must be mentioned, those of Bloch (26) and Curwen (4). These, and the literature to which they give access, will elaborate, for those who desire it, the basic facts now to be summarised. The oldest known water-mill (a water-wheel working rotary grinding-stones for cereals) in the West was the *hydrætæs* (dolopedrenes) described by Strabo (4) about 24 as existing at Cabeira in the Pontus, having formed part of the property which the last Mithridates (Eupatorus) lost when he was overthrown by Pompey in -65. The first literary reference occurs in a Greek epigram attributed to Antipater of Thessalonica, which might be dated about -370:

Women who toil at the querns, cease now your grinding;
Sleep long, 'till the crowing of cocks announces the dawn.
Your task is now for the nymphs, by command of Demeter,
And leaping down on the top of the wheel, they turn it,
Axe and whirling spokes together revolving and causing
The heavy and hollow Nisyrian stones to grind above.
So shall we taste the joys of the golden age
And feast on Demeter's gifts without ransom of labour.

Then comes in - 27 the matter-of-fact description in Vitruvius, whose specification has often been illustrated. Pliny's reference (c. -75) is a more than a little obscure: he says (4) that 'in the greater part of Italy falling pestles are used, and wheels also that water turns as it flows along, and so they mill'. From this it is not clear whether stamp-mill hammers or rotary querns were meant. In the +3rd century there were apparently mills along Hadrian's wall and on the tributaries of the Moselle, and in the +4th we begin to read of numerous mills, e.g. at Arles and on the hill of Jani-

*Note additions by Gille (7). C I.e. 'water-grinder'.
* Cf. Moritz (r), pp. 136ff. 1
* Greek Anthology, ix, 418 (Loeb ed., vol. 3, p. 233); tr. auct. adiuv. Curwen (4), etc.
* *Nat. Hist.* xvi, 32, p. 313; *Usher* (1), 1st ed., p. 124; *Bennett & Elton* (1), vol. 2, p. 33. Evidence of a water-mill of some kind in Judaeaca has been published by Steensberg (1), but it is hard to visualise since nothing was left but the stones of the presumed mill-races. The evidence is however accepted by many archaeologists (Lynn White (7), pp. 81, 160).
* Nat. Hist. xvii, xxiii, 97, reading *vanta* for *nauta*, as d'Arcy Thompson suggested in *Vowels* (2).
* Cf. Bennett & Elton (1), vol. 1, p. 102; Moritz (r), p. 135.
* Benoit (1), 328 (19); Forbes (19), p. 598. This was the notable factory at Barbegal, which with its sixteen overshot wheels in two descending rows handled 28 tons of flour a day. The date of its construction seems to have been about +750. I had the opportunity of paying a personal visit to this site in September 1955, with Dr Dorothy Needham, and could observe the rock cutting some 7 ft. deep which supplied the water at the top of the south-facing slope, to which it had been conveyed by an aqueduct many arches of which still stand. Here again of course nothing is left of the machinery, but the disposition of the masonry indicates vertical Vitruvian water-wheels without possibility of error. To the Rev. Fr François du Roure, Canon of Aix-en-Provence, who resides at the Château de Barbegals, I express warmest thanks for his kind assistance.

27. MECHANICAL ENGINEERING

It has often been illustrated.

The heavy and hollow Nisyrian stones to grind above.
So shall we taste the joys of the golden age
And feast on Demeter's gifts without ransom of labour.

Then comes in - 27 the matter-of-fact description in Vitruvius, whose specification has often been illustrated. Pliny's reference (c. -75) is a more than a little obscure: he says (4) that 'in the greater part of Italy falling pestles are used, and wheels also that water turns as it flows along, and so they mill'. From this it is not clear whether stamp-mill hammers or rotary querns were meant. In the +3rd century there were apparently mills along Hadrian's wall and on the tributaries of the Moselle, and in the +4th we begin to read of numerous mills, e.g. at Arles and on the hill of Jani-

*Note additions by Gille (7). C I.e. 'water-grinder'.
* Cf. Moritz (r), pp. 136ff. 1
* Greek Anthology, ix, 418 (Loeb ed., vol. 3, p. 233); tr. auct. adiuv. Curwen (4), etc.
* *Nat. Hist.* xvi, 32, p. 313; *Usher* (1), 1st ed., p. 124; *Bennett & Elton* (1), vol. 2, p. 33. Evidence of a water-mill of some kind in Judaeaca has been published by Steensberg (1), but it is hard to visualise since nothing was left but the stones of the presumed mill-races. The evidence is however accepted by many archaeologists (Lynn White (7), pp. 81, 160).
* Nat. Hist. xvii, xxiii, 97, reading *vanta* for *nauta*, as d'Arcy Thompson suggested in *Vowels* (2).
* Cf. Bennett & Elton (1), vol. 1, p. 102; Moritz (r), p. 135.
* Benoit (1), 328 (19); Forbes (19), p. 598. This was the notable factory at Barbegal, which with its sixteen overshot wheels in two descending rows handled 28 tons of flour a day. The date of its construction seems to have been about +750. I had the opportunity of paying a personal visit to this site in September 1955, with Dr Dorothy Needham, and could observe the rock cutting some 7 ft. deep which supplied the water at the top of the south-facing slope, to which it had been conveyed by an aqueduct many arches of which still stand. Here again of course nothing is left of the machinery, but the disposition of the masonry indicates vertical Vitruvian water-wheels without possibility of error. To the Rev. Fr François du Roure, Canon of Aix-en-Provence, who resides at the Château de Barbegals, I express warmest thanks for his kind assistance.

The Vitruvian mill, a vertical water-wheel, working the mill-stones by right-angle gearing (Usher, 1).

Fig. 601. The Vitruvian mill, a vertical water-wheel working the mill-stones by right-angle gearing (Usher, 1).
The early spread of the vertical water-wheel was mainly northwards, and it became in due course characteristic of France, Germany, England and Wales. But the horizontal water-wheel made a peripheral perambulation; it is and Syria, Thessalonica, Yugoslavia, Rumania, Greece, Italy, Provence, Spain, then Ireland, the Shetlands, Sweden. What makes the pattern still more

Turkestan (Cable end of the last century; myself observed, and successions of them up to

Williamson (I). teens

Rev. E. O'Reilly (I); A. T. Lucas (I).

Ha because the Goths were impressed with the water-wheels, necessarily vertical, which were mounted on boats in the Tiber in the 6th century (see below, p. 458). Overshot wheels began to predominate in northern Europe from the 14th century onwards.

Curwen (4).

Jace have been published by Pilja (I).

E. Fischer (I), often with spoon-shaped vanes.

O'Reilly (I); A. T. Lucas (I).

K. Williamson (I).

It spread also to the South of France, giving rise to some famous mills at Toulouse (de Bélidor (I), vol. 1, pl. 23; Sicard (I); Bennett & Elton (I), vol. 2, p. 26) and was described by Ramelli in 1588, pl. 115 (W. B. Parson (I), p. 131).

Personal communication recorded in Bennett & Elton (I), vol. 2, p. 26.

Hoose (a), p. 88. See Figs. 623, 624.
job of blowing metallurgical bellows. This must mean that there was a tradition of
millwrights going back some considerable time before, even though we cannot trace it
in literary references. The essential texts run as follows; first, the Hou Han Shu:*

In the seventh year of the Chien-Wu reign-period (+31) Tu Shih was posted to be
Prefect of Nanyang. He was a generous man and his policies were peaceful; he destroyed
evil-doers and established the dignity (of his office). Good at planning, he loved the common
people and wished to save their labour. He invented a water-power reciprocator (shui phai) for
the casting of (iron) agricultural implements.

[Comm.] Those who smelted and cast already had the push-bellows to blow up their
charcoal fires, and now they were instructed to use the rushing of the water (chi shui) to
operate it... Thus the people got great benefit for little labour. They found the ‘water(-powered)
bellows’ convenient and adopted it widely.

This advanced mechanism comes, therefore, between the dates of Vitruvius and Pliny.
The tradition of Tu Shih and his engineers must have persisted in Nanyang, for it was
a Nanyang man who spread the knowledge of the technique when he became
prominent as an official two centuries later. This we know from the San Kuo Chih, which
says:*

Han Chi, when Prefect of Lo-ling, was made Superintendent of Metallurgical Production.
The old method was to use horse-power for the blowing-engines, and each picul of refined
wrought (iron) took the work of a hundred horses. Man-power was also used, but that too
was exceedingly expensive. So Han Chi adapted the furnace bellows to the use of ever­
flowing water, and an efficiency three times greater than before was attained. During his
seven years of office, (iron) implements became very abundant. Upon receiving his report,
the emperor rewarded him and gave him the title of Commander of the Metal-Workers (Ssu
Chin Tu Wei).

The period referred to must have been a little before +238. Some twenty years later,
the story continues through the +5th century, for Phi Ling wrote in his Wu Chihang Chi:*

The origin of the Pei Chi Lake is that it was (artificially constructed) for the Hain-Hsing
(iron-)smelting and casting works. At the beginning of the Yuan-Chia reign-period (+424 to
a) Ch. 61, p. 35; tr. auct.

[Comm.] I see no reason for taking a superior attitude about this. Well-authenticated cases are known where
humanitarian feelings have motivated invention, e.g. Jouffroy’s paddle-boat of
(1783), for Jouffroy had seen the sufferings of the galley-slaves (Schuhl (1), p. 53).

The old method was to use horse-power for the blowing-engines, and each picul of refined
wrought (iron) took the work of a hundred horses. Man-power was also used, but that too
was exceedingly expensive. So Han Chi adapted the furnace bellows to the use of ever­
flowing water, and an efficiency three times greater than before was attained. During his
seven years of office, (iron) implements became very abundant. Upon receiving his report,
the emperor rewarded him and gave him the title of Commander of the Metal-Workers (Ssu
Chin Tu Wei).

The period referred to must have been a little before +238. Some twenty years later,

The story continues through the +5th century, for Phi Ling wrote in his Wu Chihang Chi:*

The origin of the Pei Chi Lake is that it was (artificially constructed) for the Hain-Hsing
(iron-)smelting and casting works. At the beginning of the Yuan-Chia reign-period (+424 to
a) Ch. 61, p. 35; tr. auct.

[Comm.] I see no reason for taking a superior attitude about this. Well-authenticated cases are known where
humanitarian feelings have motivated invention, e.g. Jouffroy’s paddle-boat of
(1783), for Jouffroy had seen the sufferings of the galley-slaves (Schuhl (1), p. 53).

The old method was to use horse-power for the blowing-engines, and each picul of refined
wrought (iron) took the work of a hundred horses. Man-power was also used, but that too
was exceedingly expensive. So Han Chi adapted the furnace bellows to the use of ever­
flowing water, and an efficiency three times greater than before was attained. During his
seven years of office, (iron) implements became very abundant. Upon receiving his report,
the emperor rewarded him and gave him the title of Commander of the Metal-Workers (Ssu
Chin Tu Wei).

The period referred to must have been a little before +238. Some twenty years later,

The story continues through the +5th century, for Phi Ling wrote in his Wu Chihang Chi:*

The origin of the Pei Chi Lake is that it was (artificially constructed) for the Hain-Hsing
(iron-)smelting and casting works. At the beginning of the Yuan-Chia reign-period (+424 to
a) Ch. 61, p. 35; tr. auct.

[Comm.] I see no reason for taking a superior attitude about this. Well-authenticated cases are known where
humanitarian feelings have motivated invention, e.g. Jouffroy’s paddle-boat of
(1783), for Jouffroy had seen the sufferings of the galley-slaves (Schuhl (1), p. 53).
c. +459) there was a great development of water-power for blowing bellows for metallurgical purposes. But later, Yen Mao, finding that the earthworks of the lake leaked, and that it was not much good, destroyed them, substituting man-power bellows (yen lau phat), so that it was called the 'treadmill bellows' (pu yeh) lake. Now it has got so much out of repair that it cannot be used for smelting, and dries up altogether in winter.

Moreover the Shui Ching Chu quotes Tai T'ai's Hui Cheng Chi, a record of the campaign against Yao Hsing, which was written about +420, as saying that the Ku Shui river had been used for the iron industry. At a certain place there were

machines of this kind are illustrated in nearly all the relevant Chinese books from the time of the Nung Shu onwards (+1313), not only for metallurgical bellows, but also for operating flour-sifters and any other machinery requiring a longitudinal motion (cf. Figs. 461, 527b). They have been seen in their traditional form by modern travellers. Their historical importance is due to the fact that from some time in the +1st millennium they embodied the standard conversion of rotary to longitudinal reciprocating motion in heavy-duty machines. For this reason, though the exposition somewhat disturbs our pursuit of the cereal water-mill, it seems necessary to deal with the problem now.

From the time of the earliest illustrations (Fig. 602 shows that given by the Nung Shu) this form of conversion of rotary to rectilinear motion is present. At first sight, however, owing to the many mistakes made by the artist, it is almost impossible to make out from this how the machine worked. But by the aid of Wang Chen's Nung Shu text, together with the illustrations redrawn in later books, especially the Shui Shu Chi Chih encyclopedia and the Shou Shih Thung Kao (cf. Fig. 461), a clear understanding of the mechanism can be reached. We may summarise it as follows (see Fig. 602). The motive power came from a horizontal water-wheel, the shaft of which bore at the top a driving-wheel of similar size. Upon this an eccentric could have been mounted directly if the bearings of the wheel had not been built above it. Since that was preferred, a smaller wheel or pulley was mounted alongside in a second frame, and driven by a cross-driven-belt working off the large fly-wheel. This second shaft bore, above its bearings, an eccentric lug which connected by

a. Rocher (1), vol. 2, pp. 106ff., whose description almost exactly parallels that in the Nung Shu; Honan (a), p. 96; A. Williamson (i); Hommel (i), p. 86, in part.

b. Feldhaus (10) had to stop at this point, but he deserves credit for drawing attention to the importance of the machine, which he knew only from the Shui T'ien Thao Shu. Since that was preferred, a smaller wheel or pulley was mounted alongside in a second frame, and driven by a cross-driven-belt working off the large fly-wheel. This second shaft bore, above its bearings, an eccentric lug which connected by

Rocher (10), (ii) pp. 210ff., whose description almost exactly parallels that in the Nung Shu; Honan (a), p. 96; A. Williamson (i), whose description almost exactly parallels that in the Nung Shu; Hommel (i), p. 86, in part.

b. Feldhaus (10) had to stop at this point, but he deserves credit for drawing attention to the important of the machine, which he knew only from the Shui T'ien Thao Shu. Since that was preferred, a smaller wheel or pulley was mounted alongside in a second frame, and driven by a cross-driven-belt working off the large fly-wheel. This second shaft bore, above its bearings, an eccentric lug which connected by

Rocher (10), (ii) pp. 210ff., whose description almost exactly parallels that in the Nung Shu; Honan (a), p. 96; A. Williamson (i), whose description almost exactly parallels that in the Nung Shu; Hommel (i), p. 86, in part.

b. Feldhaus (10) had to stop at this point, but he deserves credit for drawing attention to the important of the machine, which he knew only from the Shui T'ien Thao Shu. Since that was preferred, a smaller wheel or pulley was mounted alongside in a second frame, and driven by a cross-driven-belt working off the large fly-wheel. This second shaft bore, above its bearings, an eccentric lug which connected by

Rocher (10), (ii) pp. 210ff., whose description almost exactly parallels that in the Nung Shu; Honan (a), p. 96; A. Williamson (i), whose description almost exactly parallels that in the Nung Shu; Hommel (i), p. 86, in part.

b. Feldhaus (10) had to stop at this point, but he deserves credit for drawing attention to the important of the machine, which he knew only from the Shui T'ien Thao Shu. Since that was preferred, a smaller wheel or pulley was mounted alongside in a second frame, and driven by a cross-driven-belt working off the large fly-wheel. This second shaft bore, above its bearings, an eccentric lug which connected by
means of a rod and working joint with a rocking roller not unlike a bell-crank, a this in its turn operating the pole or piston-rod of the bellows itself through another working joint. b Evidence has been given above (pp. 140 ff.) that at least during the Sung, the blowing apparatus in question was some large type of fan- or piston-bellows. Considerable increase in velocity was of course gained by having the eccentric mounted on the small wheel instead of the large one, c and this was no doubt purposely intended, in which case the securing of the main drive-wheel by upper instead of lower bearings would have been deliberate. d

Now let us compare this with what Wang Chén himself says in a most interesting passage: e

According to modern study (+1313), leather bag bellows (tai nung) were used in olden times, but now they always use wooden bellows (mu shan). f The design is as follows. A place beside a rushing torrent is selected, and a vertical shaft (ch’u hu) is set up in a framework with two horizontal wheels (mu lun) so that the lower one is rotated by the force of the water (yang shui chi ch’uan). The upper one is connected by a driving-belt (liu sin so) to a.

b Rocking levers on shafts became very popular in Europe from the 16th century onwards for raising water in flumes (cf. Beck (1), pp. 366 ff.) or for transmitting power from waterfalls to hoists and pumps (cf. Lindroth (1), vol. 1, figs. 83-4, 88-9, 248; Jespersen (2), pp. 66 ff.). See further on p. 376 below. This was the Stangemast already mentioned (p. 334 and p. 4).

c The number of strokes of the piston-rod for each revolution of the water-wheel would be much augmented.

d We were glad to find, long after writing this, that the general interpretation of Wang Chén’s machinery by Yang Kuan (6), p. 57, agrees fully with our own. He adds the interesting point that in the similar crossed-belt horse-whim mill described elsewhere in the Nung Shu (ch. 16, pp. 64 a, b) the smaller wheel is said to rotate 15 times for each revolution of the driving-wheel. Cf. Fig. 450.

e Nung Shu, ch. 19, pp. 66 ff.; tr. acct. The details of the machines described by Wang Chén have been studied by several Chinese scholars. Liu Hsien-Chou (1, 4, 7) gives a diagrammatic plan of a similar horse-power bellows, Wang Chia-Chhi (1) and Liu Hsien-Chou (7) show photographs of the model of the hydraulic bellows now in the Imperial Palace Museum which I had the pleasure of seeing in 1958, and Yang Kuan (1, 6) and Li Chhung-Chou (1) have concentrated further on identifying the technical terms in Wang Chén’s text. On this their agreement is not complete, and we have adopted the interpretation which seems to us the best.

f I think it is certain that Wang Chén is not referring to any kind of rotary fan (as in the winnowing-fan), but as thinking of the piston itself. This may well have been a hinged one, as shown in the traditional drawing, but in any case valves on the intake and output sides of the bellows would have been necessary. The bellows in his illustration, and in all those which derive from it, are somewhat like the cuneate wood bellows of the European 16th century (cf. p. 140 above and Johannsen (2), p. 91), shaped similarly to the wood-and-leather bellows of earlier times (cf. Johannsen (2), p. 97, fig. 26). An older illustration is seen in a picture of iron-working among the frescoes of the Wan-to-lais cave-temples in Kansu (Fig. 430) which are of the Hai-Hsi period (±96 to ±1227); see Tsou Wei-Chien (1), p. 182. But we have found no textual description. Of course descriptions of the straight piston-bellows are also extremely rare. We shall have to return to this subject in Sect. 30 on iron metallurgy, but meanwhile we may draw attention to the fact that the ‘hinged piston’ fan-bellows of medieval China also have some similarity to the tatara bellows of Japan worked by men as treadmills in a see-saw rocking motion (Figs. 604, 605). A very similar form was in operation at the great copper works of the Falun mine in Dalarna (Sweden) in 1816 (Lindroth (1), vol. 2, figs. 76, 77, pp. 162 ff.). The ps yeh or treadmill bellows mentioned in the 18th-century passage quoted on p. 372 above may be an early reference to fan-bellows something like tatara. For a ‘hinged piston’ device used by Leonardo, see p. 383 below.
As the poet says:

'...and has it suspended by a single rope. Such an arrangement would certainly work, but there are a few points of doubt—among others: (a) the description of the crescent-shaped board might imply 'recumbent' (yen mu hang ju chu yuoh?); (b) a swing normally implies a double rope, (c) the piston-rod is not termed hou in the preceding passage, and in any case the word means primarily a cross-bar, (d) it seems rather too short for such a piston-rod, and (e) if an oscillating motion alone was required the piston-rod could have been mounted on or between rollers, without need for any suspension at all. However, alternative reconstructions (see Needham, 48) necessitate departing from the text at least as far, and are less workmanlike from the engineering point of view, so we shall neglect them here.'
and Han Chi were surely of this description, but there is always the difficulty that horizontally mounted mill-wheels seem in general to have been more characteristically Chinese than the vertical Vitruvian ones. There is no real answer to this problem as yet. We can at any rate be fairly sure that the bellows of those early times were leather and汉, then. The following curious passage was

The appearance of Kao here is not at all surprising. Born in +494, he was an eminent architect, engineer and city builder of the Northern Chhi dynasty, well known for his many hydraulic engineering works which he carried out before his death in +554. He was particularly remembered for the construction of water-mills working many different kinds of machinery. One would give a good deal to recover the manual mentioned by the author of the Anyang Hien Chih.

It is needless to emphasise the outstanding importance of power-driven bellows and forges for the metallurgy of iron, and the remarkably early successes of the Chinese in cast-iron technology cannot be unconnected with the machinery here described. The hydraulic blowers of Tu Shih and his successors, to which there was nothing comparable in the Graeco-Roman world, had indeed a glorious future before them. It is now clear that the use of water-power for metallurgical purposes began

in Europe, notably in Germany, Denmark and France, very much later than in China. Forge-hammers were the first to be mechanised, about the beginning of the +12th century, and the application of water-power to the bellows for the air-blast followed early in the +13th, i.e. a century or so before Wang Chen made his researches in the history of technology. Of the specific origin of the plans for the European machines we know nothing, but if anything came westwards overland it would have been the trip-hammer lug first, and then long afterwards the eccentric drive. For the designs in the +15th-century MSS, shows only cuneate leather bellows worked by lugs on the shafts of vertical overshot wheels, and this practice continued through the time of Biringuccio (+1540), who figures them in great variety, to the 18th century, when John Wilkinson actually patented in +1757 a hydraulic blowing-engine essentially similar to that described in the Nang Shuh of +1313. The only difference was that while some of Biringuccio's machines included crank motions instead of lugs, Wilkinson's embodied a two-throw crankshaft, as shown in the diagram (Fig. 607).

The designs of Ramelli especially (+1588) were strangely close to Sung and Yuan Chinese patterns on account of his extensive use of rocking rollers like bell-cranks (Fig. 608). So also in the previous century we find an intimate resemblance in the sketches of Antonio Filaretto (+1462), and in the subsequent one in the plates of Böckler. One cannot help believing that there was some genetic connection.

In any case the Chinese engineers seem to have had a predilection of some ten centuries
for the practical trip-hammer principle, and three or four for the combination of eccentric, connecting-rod and piston-rod. Must we not see in the latter the precise, but inverse, pattern of the arrangement of the reciprocating steam-engine?

(4) Reciprocating Motion and the Steam-Engine’s Lineage

All this brings up in rather acute form the history of the interconversion of rotary and longitudinal reciprocating motion. The oldest examples of this achievement (the bow-drill, the pump-drill and the pole-lathe) all involved non-continuous belting, and in the development of machinery they did not lead far. Next came the use of lugs on a rotating shaft, with springs to ensure return travel. But Gille was stating the half of a half-truth when he said that ‘the only way of effecting these conversions known to the Middle Ages involved springs’. He was thinking of course of the hydraulic saw of Villard de Honnecourt (c. +1237), which used the trip-hammer principle but

Assuming that this was not Han and had been developing later through Thang and Sung before Wang Chén’s time.

It is true that in the Chinese blowing-engine a kind of ‘bell-crank’ rocking roller intervenes between the connecting-rod and the piston-rod, but this does not affect the logical situation, and the device might be considered as an interim solution in the search for stability ultimately attained in slides and cross-head. One may also reflect that the beam of the beam-engine was simply a straightened bell-crank, so that Wang Chén’s rocking rollers were reincarnated for a time in that form. The only thing lacking in his blowing-engine was the true crankshaft, and that did not appear in such a machine until the time of Wilkinson four centuries later.

Assuming that this was not Han and had been developing later through Thang and Sung before Wang Chén’s time.

* * *

Fig. 607. Schematic semi-perspective diagram of John Wilkinson’s hydraulic blowing-engine of +1757 (after Dickinson, a). A vertical water-wheel works two air-pump pistons by means of a two-throw crankshaft. Apart from the crankshaft (cf. p. 113), this machine was in no essential way different from the blowing-engine described by Wang Chén in +1227.

for the practical trip-hammer principle, and three or four for the combination of eccentric, connecting-rod and piston-rod. Must we not see in the latter the precise, but inverse, pattern of the arrangement of the reciprocating steam-engine?

(4) Reciprocating Motion and the Steam-Engine’s Lineage

All this brings up in rather acute form the history of the interconversion of rotary and longitudinal reciprocating motion. The oldest examples of this achievement (the bow-drill, the pump-drill and the pole-lathe) all involved non-continuous belting, and in the development of machinery they did not lead far. Next came the use of lugs on a rotating shaft, with springs to ensure return travel. But Gille was stating the half of a half-truth when he said that ‘the only way of effecting these conversions known to the Middle Ages involved springs’. He was thinking of course of the hydraulic saw of Villard de Honnecourt (c. +1237), which used the trip-hammer principle but

Assuming that this was not Han and had been developing later through Thang and Sung before Wang Chén’s time.

It is true that in the Chinese blowing-engine a kind of ‘bell-crank’ rocking roller intervenes between the connecting-rod and the piston-rod, but this does not affect the logical situation, and the device might be considered as an interim solution in the search for stability ultimately attained in slides and cross-head. One may also reflect that the beam of the beam-engine was simply a straightened bell-crank, so that Wang Chén’s rocking rollers were reincarnated for a time in that form. The only thing lacking in his blowing-engine was the true crankshaft, and that did not appear in such a machine until the time of Wilkinson four centuries later.

Fig. 608. Furnace bellows worked by a vertical water-wheel; a design by Ramelli (+1588). The rocking rollers and bell-cranks (B, C, D), set in motion by the connecting-rod (F) and crank (G), are very reminiscent of the mechanism of the Chinese blowing-engines of Sung and Yuan times (cf. Figs. 602, 603).
Fig. 609. An avuncular element in the lineage of steam power; the slot-rod water-pump described by al-Jazari in his treatise on ingenious mechanical contrivances of +1206 (from Coomaraswamy, 2). The upper gear-wheel and the water-wheel are drawn in semi-perspective.
of mechanism for the early +13th century, but Al-Jazari's device was not as direct an ancestor of the steam-engine combination as the Chinese system which Wang Chen described.\(^8\)

Another machine which must be considered in close connection with the hydraulic blowing-engine is the silk-winding or reeling apparatus already referred to.\(^b\) Though our best illustrations of this come from the early 19th century they agree not only with +17th-century texts but also quite precisely with the *T'ien Shu* (Book of Sericulture) written about +1590. In this machine (Fig. 405) the main winding barrels or reels are worked by a crank-and-pedal motion, but the ramping-arm (the forerunner of the 'flyer')\(^f\) is also operated from the same power-source by means of a driving-belt connecting the main shaft with a pulley at the other end of the frame. This subsidiary wheel then moves the ramping-arm back and forth by means of a lug eccentrically placed. Here then we have the driving-belt just as in Wang Chen's hydraulic blower,\(^6\) as also the smaller wheel with its eccentric, so that the ramping-arm corresponds to the connecting-rod. There is nothing, however, corresponding to the piston-rod, and instead of having any link connection at the further end, the arm is simply held in a ring through which it slides back and forth. Thus this system was still at the stage of the European +15th-century military engineers, whose crankshafts are so often depicted with connecting-rods but never with piston-rod. It resembles too the age-old connecting-rods of the hand-driven millstones (cf. p. 117 above). So the silk-reeler did not have quite all the components of the hydraulic blower. But the fact that it was already a standard piece of mechanism at the end of the +11th century, destined for the Smithsonian Institution, was exhibited at the Science Museum in London in 1961. In the form of the slotted cross-head or Scots yoke (cf. Jones & Horton (1), vol. 1, pp. 220 ff.) they played a considerable part in steam-engine and pump design by eliminating the connecting-rod and giving the piston-rod a uniform harmonic motion. The slotted member is also valuable for quick-return effects, as in shapers (ibid., vol. 1, pp. 300 ff.; vol. 3, pp. 138 ff.), and it occurs in ingenious arrangements for giving positive accurately-timed reciprocation with a firm lock during the dwell at the end of each stroke (vol. 3, pp. 102 ff.). Slotted rods are also sometimes furnished with an internal rack and periodically thrown by cane from side to side so as to engage with a pinion on a driving-shaft in alternate senses, thus bringing about a reciprocating motion in the direction of their elongated axis. This gives a particularly long stroke (as in windmill pumps; Jones & Horton (1), vol. 1, pp. 220 ff., cf. also the converse case of the Napier motion, where a single rack with two faces paraphrases in alternative upper and lower contact with a continuously rotating pinion, pp. 250 ff.). The windmill-type of internally racked slot-rod was used as early as +1592 by Salomon de Caus for a similar drive (cf. Beck (x), p. 510). Curved slots with racks give the various varieties of the well-known mangle gear (Jones & Horton (1), vol. 2, pp. 345 ff.). A theoretical treatment of slot systems, both plain and racked, was given by Willis (1), pp. 287 ff., 294, 238, and of course in many later books.

\(^8\) Not as direct, indeed, as I first thought, for we interpreted the text to mean that the lower gear-wheel, normally mounted, carried a simple eccentric lug free to slide up and down in the slot-rod. But Prof. Aubrey Burstall convinced me that a closer adherence to its words revealed a more unusual mechanical principle. We were both pleased to find that Lynn White (7), p. 170, had arrived independently at the same interpretation.

\(^b\) Especially above, pp. 2, 197, 176, and below, p. 404. Photographs in Tisdale (x) cf. Sect. 31.

\(^f\) The function of this, of course, is to assure the even laying down of the fibre or yarn on the reel or bobbins. It survives in textile machinery of the industrial age (Cox (1), 17th ed., vol. 3, pp. 66ff.).

\(^6\) According to our interpretation of the latter, cf. p. 373 above. We there took note of the rather puzzling fact that the medieval Chinese seem not to have used gearing in their rotary-longitudinal conversion machinery. It was in no way strange to them. The reason escapes us, but we may be sure that the mechanisms such as the silk-reeler and the hydraulic blower worked well enough, for the Chinese were always an intensely practical people, and the texts in question were primarily intended for the dissemination of practical knowledge.
and indeed owing to the antiquity of the silk industry may well have been established practice long before, considerably strengthens the probability that the water-powered blower, with its full 'steam-engine' arrangement for converting rotary to reciprocating longitudinal motion, developed during the Thang and Sung, i.e. during the four or five centuries preceding Wang Chên's description of it. It may very easily, therefore, be older than al-Jazari's swaying slot-rod.

It is necessary to emphasize that the system of three parts (eccentric, connecting-rod and piston-rod) has not so far been found in any +14th-century European illustration, and occurs only rarely in the +15th century. Lynn White, best of guides, gives us nothing earlier than a drawing, now in the Louvre, by Antonio Pisanello, which depicts in very workmanlike fashion a pair of piston-pumps operated by rocking levers raised and lowered by connecting-rods from two cranks fitted 180° apart on the two sides of an overshot water-wheel. It would be reasonable to date this about +1445 for Pisanello died in +1456. The same arrangement appears again in the Mittelalterliche Hausbuch about +1460, applied to what looks like a single vertical stamp-mill, but here with only a single crank, connecting-rod and rocking lever. By this time we are fully within the period of activity of Leonardo da Vinci.

When Leonardo faces the problem of interconversion in the late +15th century, nearly two hundred years after Wang Chên, he shows, as Gille has acutely pointed out, a most curious disinclination to use the eccentric (or crank), connecting-rod and piston-rod combination. In fact he does so only for a mechanical saw. In order to avoid it he has recourse time after time to the most complicated and improbable devices. One celebrated arrangement (Fig. 611) has a lantern pinion on a windlass engaging on each side with right-angle gear in the form of pin-wheels, the motion of which is transmitted by rocking levers operated from a point of the gear by a system of interconnected chains.

* No. 286; see Degenhart (1), fig. 147. The same drawing includes a sopha driven by an overshot water-wheel through two-stage reduction gearing. We regret that we must exclude what Lynn White (7), p. 113 and fig. 7, proposes as 'the earliest evidence of compound crank and connecting-rod', a MS. drawing of Mariano di Jacopo Taccola which dates between +1441 and +1458 (Bayerische Staatsbibliothek, München, Cod. lat. 197, fol. 82v). We do so not because the two-throw crankshaft is doubly mistranscribed, but because it effects the excursion of a lift-pump by what is quite evidently a rope instead of a connecting-rod, gravity alone ensuring the return. This device certainly constitutes an interesting premonition of the three-part system, but no more. By an extraordinary inversion, Lynn White (7), p. 81, misinterprets the construction of the hydraulic blowing-engine of the Nyong #a in exactly the same sense. The water-wheel, he says, 'turned a vertical shaft carrying an upper wheel which, by means of an eccentric peg and a cord, worked the bellows of a furnace for smelting iron'. But no such system was used; text and drawing fully concur in making the connecting-rod a rigid bar. Nor have we encountered any Chinese machine which used a cord with an eccentric peg. We are very grateful to Prof. Lynn White for his kindness in bringing these two +15th-century machines to our notice, and showing us an advance set of the plates of his book.

* Anon. (15), Essenwein ed., pls. 24b, 25b; Bossert & Storck ed., pl. 32. Here again there is a mistranscription, for the rocking lever is made to pass through a horizontal instead of a vertical slot. The arrangement does not seem suitable for a stamp-mill, and perhaps a pump is implied, for in the 'Liebesgarten' on the left there is a fountain playing. No text or explanation has survived to help.

* (14), p. 65a. It will be remembered that the full crankshaft had appeared in Europe during the first half of the +14th century, and, in the form of the carpenter's brace, during the first half of the +15th. Cf. pp. 113, 114.

* Cf. Beck (1), p. 232; Uccelli di Nemi (3), no. 21; Feldhaus (18), p. 55. An almost exactly similar machine was carved in relief after a drawing by Francesco di Giorgio Martini in +1474 and later; cf. Feldhaus (20), p. 249, fig. 167; Uccelli (1), p. 64, fig. 200, and especially Reti (1). There is one other device of Leonardo's which employs the principle, a grinding-machine for cylindrical cone concave glass mirrors (Beck (1), p. 361, fig. 342), but here the 'piston' is hinged (cf. pp. 37, 374).
which is restricted by internal ratchets so that they can turn only in opposite directions. A lever working back and forth moves them on by means of internal drums with projecting movable pawls, thus turning the windlass continuously in one direction.\(^a\)

A much more brilliant solution was found when Leonardo devised a cylinder with a double helical groove in which a peg on the end of a piston-rod fitted, so that it was driven back and forth as the cylinder continuously rotated (Fig. 612, left). With extraordinary ingenuity he then added a variety of automatically acting gates which prevented misrouting of the peg at the places where the grooves crossed each other.\(^b\)

A third design (Fig. 612, centre) used cam-shaped lugs on a rotating shaft acting upon a system of levers hinged by linkwork in such a way that each cam effected successively two excursions of the piston-rod.\(^c\) Lastly, Leonardo initiated that scheme which was to be such a favourite of the later Renaissance engineers, the half-gear.\(^d\) In this system (Fig. 612, right) two lantern-pinions on the same shaft engage at right angles with a single gear-wheel which has pins set round only half of its circumference. Thus with the successive contacts the shaft is driven round alternately in each direction. The resultant alternating rotary motion is then easily converted to alternating

\(^b\) Cf. Beck (I), pp. 417 ff.; Ucelli di Nemi (3), no. 122; Willis (1), pp. 157, 321. These cylindrical cams with follower rollers sliding back and forth in the grooves are widely used in contemporary machine construction; cf. Jones & Horton (1), vol. 1, pp. 4, 8; vol. 2, pp. 11 ff., 19 ff., 52 ff., 594; vol. 3, pp. 178, 182. Automatic gates like Leonardo's can be found in wire-making machines and gas-engines; cf. Jones & Horton (1), vol. 1, p. 19; vol. 2, pp. 44 ff. The cylindrical cam finds particular application in the textile industry, as for instance in the 'rotocutter', a machine for winding woollen and worsted yarn on to cones and 'cheeses'. Here the helical groove acts as a traversing device. But no doubt the most familiar example of the use of the grooved cylinder is in the screw-driver-screw sold in every modern tool-shop. The simplest form of the groove system is of course found in the 'face cam', where a pin and roller follows a groove in a rotating plate. Examples of the current use of this may be seen in Jones & Horton (1), vol. 1, pp. 3 ff., vol. 3, pp. 191 ff. It was already used in the 16th century by Ramelli; cf. Beck (I), p. 219. In his design levers were worked up and down by a single channel mounted eccentrically upon a rotating horizontal wheel. I am indebted to Dr Norman Heatley and Dr A. J. W. Haigh of Oxford for discussions on this subject.

\(^c\) Cf. Beck (I), p. 419.

\(^d\) And not only with them. Intermittent gears are quite common in modern machinery; cf. Jones & Horton (1), vol. 1, pp. 68 ff., 93 ff.; vol. 2, p. 71; vol. 3, pp. 44, 46 ff., 129. The principle is used in all kinds of ways, with right-angle bevel gears, epicyclic gears, reciprocating racks and so on.
rectilinear motion by two windlass chains or other means (Fig. 613). All these complicated arrangements proved useful in one way or another in the machinery of later centuries, but the simpler and fundamentally important steam-engine system derives from Wang Chén rather than from Leonardo. Why this aversion from it in Europe is not at all clear. Serious difficulties were perhaps encountered in assembling the moving parts so that friction and wear were sufficiently overcome, but in this case we should like to know just how and why the technique of the medieval Chinese engineers was more advanced. Better availability of steel bearings might well be the answer.

Perhaps the most extraordinary part of the whole story is that James Watt was driven to the invention of the sun-and-planet gear by the fact that the basic method of converting rotary to rectilinear motion by eccentric and connecting-rod had been patented for steam-engines by James Pickard in 1780. Watt had not patented it himself because he knew that it was old, but probably none of those involved knew anything of the +15th-century German engineers, and certainly no one at that time could have had any suspicion that the Chinese of the Sung period had been intimately and practically acquainted with it. Indeed, on our present information, they were its real inventors.

In considering the ancestry of the component parts of all reciprocating steam-engines and derivative prime movers there is one more thing to remember. Not only, as we found, was the combination of eccentric, connecting-rod and piston-rod apparently first worked out in Sung or Thang (if not in Han) China, achieving there rather than in Europe the most effective of all inventions for the interchange of rotary and rectilinear motion, but also the double-acting piston and cylinder principle made its first appearance in the Chinese air-pump, sucking and expelling on both strokes (cf. pp. 135, 149), which again was fully developed certainly in the Sung, probably in the Thang, and possibly in the Han. In these inventions the Hellenistic age does not compete, and it is noteworthy that all Chinese datings long precede not only the Renaissance, but also the times of Leonardo da Vinci and even Guido da Vigevaro (+14th century). What constituted the fundamental revolution of the European 17th and 18th centuries was the inversion of the direction of motion so that force was transmitted not but from the piston. One may thus justly conclude (if it is not putting too much strain on our adopted terminology) that the great 'physiological' triumphs of 'ex-pistonian' Europe were built upon a foundation of formal or 'morphological' identity laid by 'ad-pistonian' China. If there was, as seems most probable, a direct genetic connection, this is the place to look for it—not in that strange episode already related when Jesuit mechanicians put a model steam-turbine locomotive through its paces in the palace gardens of the Kbang Hái emperor.

It only remains to add a word or two about the coming of the steam-engine to China in the 19th century. The steamboat was the carrier. It has generally been thought that the East India Company's steamer Forbes was the first to arrive, in 1830, but a passage in the Hai Kuo Thu Chih (Illustrated Record of the Maritime Nations), of 1844, shows that the true date was two years before that. Early in the 8th year of the Tao-Kuang reign-period (April 1828), suddenly came from Bengal a 'fire-wheel boat' (hau han chuuan). Now the fire-wheel boat has an empty copper cylinder inside to burn coal, with a machine on the top. When the flames are burning,
the machine moves automatically, and so do the wheels on both sides of the ship. It can travel at a speed of a thousand li in a day and a night. From Bengal to Canton it took only 37 days. According to the foreigners the steamship was invented early in the twenties, but it could not be used for shipping cargo; it is good only for carrying urgent messages.

From this time onwards, steamships became more and more familiar in Chinese waters, and by the decisive assistance which they gave to foreign sea-power during the Opium Wars, caused the greatest consternation among officials and populace alike.

Fig. 614. The first Chinese drawing of a steam locomotive, in Ting Kung-Chhen’s *Yen Phao Thu Shuo* (1841), ch. 4, pp. 15a ff. The title is ‘Diagram of a Western Fire-Wheel Carriage’. Many of the markings correspond to a, b, c, etc., but the parts of the boiler are appropriately labelled. Above, centre, the crankshaft (shua chu), with legends saying that the bearings fit into hubs and that the narrow parts are grasped by the two hands (liang shou), i.e. the big ends of the connecting-rod, and turn in them. Above, to the left, two diagrams of screw valve cocks, with a note to say that the position of the handles shows whether open or shut.

It was now realised that a fundamental problem existed, the necessity of mastering all the advances in technology which had come about in European civilisation since the Renaissance; but naturally the growth of a body of Chinese engineers in the modern sense was a slow process. Great credit is due to the earlier pioneers of this movement. One of them was Ting Kung-Chhen, whose *Yen Phao Thu Shuo* (Illustrated Treatise on Gunnery) of 1841 contained diagrams of a model steamboat and steam locomotive (Fig. 614) which he had succeeded in constructing without occidental assistance.

Many years were to pass, however, before the prevailing conservatism was to allow the construction of railways. The building of the Shanghai-Wusung tramway in 1876 and its discontinuance in the following year was an event which long loomed large in Western-language accounts of China. Not till 1881 was the first working line established, as the result of great efforts by the statesman Li Hung-Chang, namely that between Tientsin and the Thangshan coal-mines.

In the meantime, increasing use of steamers had been made by Chinese officials and military men in the fifties and sixties. Chhen Chhi-Thien (2, 3) in his biographies of Tseng Kuo-Fan and Tso Tsung-Thang, written to elucidate their role in the modernisation of China, has described the efforts of the Chinese engineers of this
time. The former leader was the founder of the Kiangnan Arsenal near Shanghai, the latter originated the Fuchow Dockyard and the Lanchow woollen mills. Tseng's temporary arsenal at Anking was the scene of experiments with Chinese-built steam launches in 1862. For 30 July Tseng Kuo-Fan wrote in his diary:

Hua Heng-Fang¹ and Hsi Shou² brought here the engine of the fire-wheel boat which had been made by them, for a demonstration. The method is to use fire to make steam, and direct the steam into a cylinder which has three holes. When two of the front holes are closed, the steam goes into the other front hole. The piston automatically goes backward and the wheel turns the upper half circle. When two of the back holes are closed, the steam goes to the other back hole; then the piston automatically moves forward and the wheel completes the rest of the circle. The bigger the fire the greater the quantity of steam. The engine moves forward and backward as if it were flying. This demonstration lasted for an hour. I was so happy that we Chinese could make these ingenious things like the foreigners. No longer will they be able to take advantage of our ignorance.

The scholar-general was evidently trying to explain the action of the valves, but either he failed to get it clear or the text was confused by his secretaries. In the following year the engine served to propel a 29-ft. launch built by another of Tseng's engineers, Ts'ai Kuo-Hsiang.³ Tso Tsung-Thang was at work at the same time with a trial vessel on the West Lake at Handchow. Only a few years later (1868) the first steamships of substantial size were launched from the Kiangnan Arsenal and the Fuchow Dockyard almost simultaneously.⁴

(5) **Hydraulic Trip-Hammers in the Han and Chin**

Of all the different types of machines driven by water-power in early times in China, that which is most mentioned in literature is the trip-hammer (shui tui).⁵ This was a simple mechanisation of the pedal tilt-hammer mentioned above (p. 183), in which the hammers were operated by a series of catches or lugs on the main revolving shaft. All the books from +1300 onwards illustrate this (cf. Table 56), but here I reproduce (Fig. 617) the picture in the Thien Kung Khai Wu.⁶ An important point to note is that while the horizontal water-wheel is much the simplest arrangement for rotary millstones, the trip-hammer is best suited by the vertical water-wheel, and so it is

¹ Chien Chi-Chi, (Thien), p. 49. Hua Heng-Fang was a distinguished mathematician.
² Chien Chi-Chi, (Thien), p. 11.
³ Ibid., p. 47. They were the Thien Chi and the Wan Nien Chhing respectively. Between 1869 and 1874, the Dockyard built 15 vessels of about 1000 tons each, with engines of up to 250 h.p. After Tso Tsung-Thang had to leave for the North-west, Shen Pao-Chen⁷ became Commissioner, with two French engineers, Prosper Giquel (Jih I-Ko)⁸ and Paul d'Aiguebelle (Te Kho-Pei), as technicians in charge. The former became Chief Engineer and wrote an account of the development of the whole enterprise when he retired in 1874 (Giquel, 2).
⁴ From the Thung Su Wu, written by Fu Chhien about +180, we know of another term for it, fan chih⁹ (YHSF, ch. 61, p. 23b), but this is less commonly met with.
⁵ Ch. 4, p. 114, first ed., pp. 618, 624. With this we may compare the scale drawing in Louis (1) of a modern Chinese traditional-type trip-hammer battery used for quartz-crushing. Cf. the descriptions of Barrow (1), p. 565 (+1793); van Braam Houckgeest (1), Fr. ed. vol. 1, pp. 428ff., Eng. ed. vol. 2, pp. 384ff (+1797).
usually figured. One cannot help wondering, however, whether many of the early machines now to be mentioned were not horizontal water-wheels with right-angle gearing. Another point is that in Chinese practice the hammers were always recumbent, and not vertically-acting stamp-mill pestles such as we find in medieval Europe; this permitted of a considerably heavier installation.

One might be tempted to see a reference to the invention of the hydraulic trip-hammer in the story reported in the 3rd century Li Shih Ch'uan Chhiu about the mother of I Yin, who dreamed that she saw water flowing out of a mortar. However this may be, the earliest explicit statement seems to be in the Hsin Lun (New Discourses) of Huan Than (c. +20), who remarked:

Fu Hsi invented the pestle and mortar, which is so useful, and later on it was cleverly improved in such a way that the whole weight of the body could be used for treading on the tilt-hammer (tui I), thus increasing the efficiency ten times. Afterwards the power of animals—donkeys, oxen and horses—was applied by means of machinery, and water-power too used for pounding, so that the benefit was increased a hundredfold.

Words so general and so assured authorise the conclusion that from at least the time of Wang Mang onwards water-wheels were used more and more for working pounding machinery. Later in the Han dynasty Ma Jung has a poem on the long flute in which he mentions the hammers 'pounding in the water-echoing caves', and in +129 Yu Hao reported to the emperor that in the lands of the Western Chhiang people water-driven trip-hammers were being introduced along the canals deriving from the mountain streams of the Chhilian Shan.

In the +3rd and +4th centuries references are abundant. Khung Jung (d. +298) made a remark in his Jou Huang Lun (Discourse on Mutilative Punishments) which was often quoted afterwards, that the ideas of intelligent men of the day were often better than those of the sages of old, and gave the water trip-hammer as an example. There were men famous for possessing many such machines, even hundreds of them, such as Wang Jung (d. +306), whom we have met with already as a computer; Teng Yu (d. +326), and Shih Chhung (d. +300) who operated them in more than
thirty districts.² Wei Huan,¹ on the other hand, declined to accept an imperial gift of them,³ and Wei Shu,⁴ afterwards eminent, was so retiring in his youth that he was set to mind them.⁵ Poems were written on them, as by Chhu Thao,⁶ a friend of Chang Hua's.⁷ Tu Yü,⁸ a high official and engineer of the +3rd century, established 'combined' trip-hammer batteries (lien chi tui)⁹ which probably means that several shafts were arranged to work off one large water-wheel. At one time water trip-hammers were not permitted within a certain radius (100 li) of the capital,¹⁰ and there seem also to have been imperial ones, which sometimes caused obstruction on the water-ways.¹¹

It would be superfluous to adduce more references, which are numerous in Thang and Sung—e.g. some comparisons made by Phei Tu in the +9th b and Fang Shao in the +12th.¹² This was the time when Lou Shou wrote his poem for the K'ing Chih Thu:

The graceful moon rides over the wall
The leaves make a noise, shou-shou, in the breeze.
All over the country villages at this time of year
The sound of pounding echoes like mutual question and answer.
You may enjoy at your will the jade fragrance of cooking rice,
Or watch the water flowing in and out of the slippery spoon,
Or listen to the water-turned wheel industriously treading.

During the course of time, moreover, the water trip-hammer was put to many uses other than that of hulling rice. Its use in forges we have already mentioned (pp. 378 ff.), and it is interesting to find a Taoist connection, for the pharmaceutical hermits employed it for crushing mica and other minerals intended as drugs. Li Pai addressed two poems to his wife, who had once been a Taoist nun, when she was visiting a former colleague; one of which goes:¹³

You, on your visit to the nun Rise-in-the-Air
Must have reached by now her home in the grey hills,
Where the streams work the mica-grinding pestles
And the wind sweeps through the flowers of the rose-bay tree.
If you find yourself loth to leave this pleasant retreat
Invite me also to enjoy the sunset glow.

And Pai Chü-I has a poem on 'Visiting Kuo the Taoist and finding him not at home' in which he sees that the trip-hammer for the mica is working on, though unattended.¹⁴

² Wáng Yin Chin Shu, cit. TPYL, ch. 762, p. 6b; Chin Shu, ch. 33, p. 170.
³ Wáng Yin Chin Shu, cit. TPYL, ch. 762, p. 6b.
⁴ Chin Shu, ch. 41, p. 1a.
⁵ Shih Shuo Hsin Yu, ch. 2a, p. 50a; Chin Shu, ch. 94, p. 8a.
⁶ Quoted by TPYL, ch. 76a, p. 7a, from the Chin Chu Kung Tsan⁷ (Eulogia of Distinguished Men of the Chin Dynasty) by Fu Chiang.¹⁰
⁷ TPYL, ch. 76a, p. 7a, referring to Wang Hun.¹¹
⁸ Wáng Yin Chin Shu, cit. TPYL, ch. 762, p. 6b, referring to Liu Sung.¹² His biography in Chin Shu, ch. 46, p. 1a, says that flooding was caused by the blockage they made, so he recommended that they should be torn down. The emperor gave way and the people were much benefited.
⁹ Thang Yü Lin, ch. 3, p. 399.
¹⁰ Po Chai Pien (Papers from the Anchored Dwelling), ch. 2, p. 4b.
¹¹ Tr. Waley (13), p. 74.
Then in the Ming we have an account of the use of trip-hammers by the paper-makers of Fukien; Wang Shih-Mou in his Min Pu Su (Records of Fukien) says that the noise of them is constantly audible to those who travel in boats on the rivers. And the same was said a little later of the perfume-makers of Kuangtung, where the fragrance from the mills was often carried away downstream for miles.

Once more we may note that the water-trip-hammer of Tu Yü and Wang Jung was the lineal ancestor of all heavy mechanical hammers ('martinet') until the introduction of the steam-hammer. Eighteenth-century occidental types of forge-hammer reproduce the design systematically with hardly any modification. It was as characteristically Chinese as the vertical pestle stamp-mill (Fig. 619) was European, while

Leonardo often sketched it. Apart from this, the oldest European printed illustration of a martinet forge-hammer is probably the +1565 cut in Olaus Magnus (Fig. 620). Gille (7, 11), following Pereme, takes the forge-hammer of +1116 at Isoudun as the first of such machines in Western Europe, but a more recent study prefers a Catalan

Leonardo often sketched it. Apart from this, the oldest European printed illustration of a martinet forge-hammer is probably the +1565 cut in Olaus Magnus (Fig. 620). Gille (7, 11), following Pereme, takes the forge-hammer of +1116 at Isoudun as the first of such machines in Western Europe, but a more recent study prefers a Catalan
document of +1190. In all probability these were of the vertical stamp-mill type before Leonardo. Perhaps there may be some significance in the fact that the other great use of the tilt- or trip-hammer operated by water-power was for fulling cloth, since on different grounds (as will be seen in Sect. 31 below) there is reason for thinking that much Chinese textile machine design made its way to Europe about the time of Marco Polo.* The fulling-mills at Prato in Italy used trip-hammers traditionally,* but it is doubtful whether their design goes back, as suggested, to the beginning of the industry there about +985. Gille (4, 7), following Bloch (3), claims a number of French examples from c. +1050 onwards, but the earliest of these are very doubtful cases. Carus-Wilson (1) gives +1185 as the date of the first fulling-mill in England; it belonged to the Yorkshire Templars. Yet again it is most probable that all these pre-Leonardo fulling machines were of the vertical stamp-mill type.* Perhaps further evidence will reveal the exact time at which Europe received the recumbent hydraulic trip-hammer from the Chinese culture-area.

(6) Water-Mills from the Han Onwards

It is curious that references in early Chinese literature to the mill par excellence, the rotary millstones driven by water-power, are much rarer than those to the water-driven trip-hammer. This may arise perhaps from a fluidity of terminology at that time, especially among the scholars whose qualifications were not technical.* It would not have been difficult to confuse *chhui,* the equivalent of the grain-mill proper, or even *wen* (cf. p. 188 above) with the word *chui* (hammer) used for *tui* (the tilt- or trip-hammer). Moreover, in the texts already referred to, some books and some editions* write *wen* or *mo* instead of *tui,* thus attributing to Tu Yu (+222 to +284) multiple mills worked from a single water-wheel by gearing; and water-mills instead of water-powered trip-hammers to Chhu Thao (c. +240 to +280) and Wang Jung (+235 to +306). There seems, in effect, little reason to doubt that water-driven quern mills were working at least as early as the hydraulic blowing-engines of the +1st century, and perhaps some time before them.

The first water-mill illustrations in the main iconographic tradition start from +1313; we reproduce the picture from the *Nung Shu* (Fig. 621) showing the characteristic horizontal water-wheel.* Another shows a breast- or over-shot vertical water-

* Marco Polo was in China, c. +1280, just about two centuries before Leonardo's prime.
* Uccelli (1), p. 131; Lynn White (7), pp. 83 ff.
* On the history of fulling machinery in general see E. K. Scott (1); Pelham (1).
* Nevertheless, it must be said that in later ages and among more technical writers the terminology is remarkably clear and self-consistent (cf. pp. +330 ff. above, +440 ff. below). Certain difficulties discussed by Amano (1) and Twitchett (3) derive, we believe, from Japanese confusions and aberrations of terms which were rather well defined in China.
* Ch. 19, p. +48. The distinct fall of the water upon the wheel should be noted. In his description (ch. 19, p. 48) Wang Chen also gives an account of a mill with a vertical water-wheel and gearing in the Vitruvian style, actuating two pairs of millstones.
wheel driving from six to nine mills geared together by toothed wheels (Fig. 622). A
Wang Chen tells us that in his time there were some installations so large that trip-
hammers and edge-runner mills as well as millstones were all worked by shafts and
gearing from one great water-wheel. Where the conditions suggested it, the main
water-wheel was also equipped as a noria for raising water in times of drought.
Some of these combined factories, as we must call them, could mill enough grain daily for
a thousand families. Wang Chen found when he travelled in Chiangsi that plant of
this kind was widely used for the pounding and rolling of tea-leaves, and from other
sources we know that there were 100 such tea-mills in +1083, and more than 260 in
+1097. Who, asks the poem with which Wang concludes his disquisition, were the
philosophical artisans (ch'ii chang) who devised all this, with the mastery which they
stole from the Author of Change? Alas, we know none of their names.
A whole technical vocabulary must have been used by these millwrights (mei pu shih), and it
would not be difficult to assemble a series of terms equivalent to those
which Curwen (4) gave for several Western languages. For example, the Nung Ch'eng
Ch'iihsu Shu gives us ti for the framework on which the millstones must rest, chu
mo or chhi for the pin supporting the rynd, chu mo or yen for the eye in the upper
stone and iou for the hopper above it, while tsun or tshun, a word originally
meaning the metal-shod butt end of a spear, was applied to the gudgeon or lower
bearing of the main shaft of the horizontal water-wheel. To give life to these
paragraphs we add some pictures of traditional mill-wheels taken in 1958. Figure 623
shows the Chu Chia Nien water-mill near Ch'engtu in Szechuan, with one of its
wheels displaced during conversion to service as the small electric power-station of an
agricultural co-operative. Figure 624 shows a different variety of horizontal rotor
still in the hands of the joiners. In Fig. 625 the horizontal wheel of a mill near
Thienshui in Kansu is seen. In this same countryside I easily found and photogra-
phed in 1958 mills of Vitruvian style with right-angled gearing.

Fig. 622. Geared water-powered milling plant, nine mills worked by an overshot vertical water-wheel and right-angle gearing (shui chuan lien mo).
Celebrated water-mills, which the emperor himself came to inspect, were erected by the great 5th-century mathematician and engineer Tsu Chhung-Chih, about +488. About +600, Yang Su, one of the chief technologists of the Sui dynasty, was in control or ownership of thousands of them. As time went on, however, conflict between the interests of water-power users and irrigation controllers greatly increased until from the Sui onwards physiocratic officialdom came into head-on collision with developing mercantile initiative. That the water-mills must not interfere with water-conservancy was explicitly laid down in the Thang Liu Tien. The existing fragment of the Thang 'Ordinances of the Department of Waterways (Shui Pu Shih)', dating from +737, which has been studied and translated by Twitchett (2), has several references to water-mills. Their owners are to construct adequate sluices and to ensure no interruption of traffic (Art. 7), they must remove silt and sandbanks on pain of demolition (Art. 13), and in some cases use of the water-mills is allowed only during certain seasons (Art. 23). At other times, and if the water-supply suffices only for irrigation, the mill is sealed and the millstones impounded by the local government. In this period certain officials distinguished themselves as persecutors of millers (wei chia) — for example Li Yuan-Hung, who in +721 complained that water-mills (nien nvei) belonging to wealthy families were jeopardising irrigation, and got authority to destroy them. In +764 Li Hsi-Yi, as aggressive as Don Quixote, demanded that no less than seventy such installations (owned not only by great families but also by Buddhist abbeys) should be demolished, and this was duly done. But the largest destruction of millwrights' work occurred in +778, when eighty plants were torn down, not excluding two water-wheels belonging to the saviour of the empire, the general Kuo Tzu-I who had conquered An Lu-Shan. Our information about these proceedings reveals that the mills were generally the property of imperial concubines and powerful eunuchs or Buddhist abbeys and rich merchants, so the opposition of the Confucian bureaucrats was only one aspect of a perennial antagonism.

A few words may be added about each of these types of ownership. The eminent eunuch of Hsian-Tung, Kao Li-Shih, was famed about +748 as possessing a mill with five water-wheels which ground 300 bushels of wheat a day. Similar wealth was ascribed to the abbot Hui-Chou about the same time. Already in +612 there...

Note: The text contains references to various historical and cultural references, which are not translated here.
were quarrels with monks about water-mill revenues, and two hundred years later Li Chi-Fu, the geographer and meteorologist, came into conflict with them over their claim for tax immunity. Indeed historians are now recognising that mill dues (wei kho) were one of the richest sources of income for great abbeys during the Chinese Middle Ages. But enterprising merchants were also fighting the hydraulic bureaucracy. When Wang Fang-I became governor of Suchow in +653 his restoration of order in the city and its neighbourhood included the repair of the moat, and one of the first things he did was to remove some of their water-mills and tax the others heavily to feed the poor. A few years later another official elsewhere, Chhangsun Hsiang, attacked the merchants in the same way. Eventually the whole milling industry had to be co-ordinated officially with the bureaucratic water-control, and we find that in +970 the two offices of Commissioner of Water-Mills (Eastern Region) and Commissioner of Water-Mills (Western Region) were established. Further organisation was called for in +990.

During the Thang the water-mill had radiated to other countries in the Chinese culture-area, to Japan (via Korea) in +610 and +670, and to Tibet about +641. Later on peoples such as the Chi-tan Tartars were quite familiar with them. Late references we may omit, but Chao Meng-Fu about +1280 devoted one of his poems on the Keng Chih Thu to water-mills. Early in the +1oth century the abundance of water-mills in China caught the attention of an Arab traveller, Abii Dulaf Mis'ar ibn al-Muhallil, who described no less than sixty mills on canals in and around what he believed to be the capital city of Sandhibi.

a See the story of Wang Wen-Thung in Kuang Hung Ming Chi, ch. 6.
b Cf. Sections 21 and 22 above (Vol. 3, pp. 490, 520, 544). His denial of their claim is recorded in Thang Hui Yao, ch. 85 (p. 1622).
c There is abundant material in the monograph of Gernet (1), on which see also Twitchett (3).
d Chiu Thang Shu, ch. 183A, p. 12b. It would be interesting indeed to make a study of all water-mill legislation in China for comparison with that of European countries, which has been rather extensively worked out by Koehne (1) and others. Perhaps nothing would elucidate more clearly the differences between feudal and feudal-bureaucratic society. While the collection of dues for milling at the 'lord's mill' formed so important a part of European feudal law and dispute, the Chinese bureaucrats were much more concerned with keeping the waterways free from encumbrances which interfered with irrigation and grain-tax traffic. To what extent this official discouragement of mill-work acted as a social factor inhibitory to medieval engineering in China remains to be seen—there were other sides to it as well, e.g. the official interest in the iron and steel industry and the water-power which it needed. This is not the place to enlarge upon the social aspects of water-mills, but these few paragraphs seemed necessary to give some background for the life and work of the artisans concerned.
e Nihongi; Aston tr. (1), vol. 2, pp. 140, 209. The intermediary of +610 was a Korean monk named Tamjing. He was a remarkable carrier of technological culture, knowledgeable in many arts and crafts besides millwright's work; see Tamura Senmontsu (1), pp. 118 ff. In +840 Ennin still found water-mills remarkable (Reischauer (2), p. 267, (3), p. 156).
f So at least Lauffer (3), p. 35, but he was only following the general tradition which attributes so many technical introductions to Tibet to the Chinese princess Wen Chheng Kung Chu (1) who married King Strong-btsan-sgam-po. How much there is in it remains rather obscure.
g TsCC, Shih hsu tien, ch. 33, hui kho, 5, p. 21b.
i Translation in Ferrand (1), vol. 1, p. 219; cf. von Schlozer (1); Marquardt (1); von Rohr-Sauer (1).
This account of Ibn al-Muhalhil will involve us in a momentary digression. Taken Chung-Mien (7), who has made a special study of the subject, believes that the place Sandibil was the city of Shantan\(^1\) in Kansu province on the Old Silk Road, and that the travellers erred in supposing it to be a capital. His identification is confirmed by the traces of some remarkable water-works which still exist there.\(^2\) At the top of the city walls and all along them there runs a wide conduit,\(^b\) giving rise, at intervals of a hundred yards, to a succession of flared brick down-conducts\(^c\) which once conducted the water to dozens of internal water-ways or channels exactly as Ibn al-Muhalhil said about +940. In his time each channel turned two mills,\(^d\) and each street had two streams, one bringing pure water and the other intended to carry away drainage.\(^9\) So long as the system was in operation, the water was raised to the level of the ramparts by very large norias\(^b\) located at the south-east corner of the city, the emplacements of which remained still visible beside a small deviated river until a year or two ago. The whole system may well have been at work until late in the Chhing dynasty, and it would be interesting to know whether it had a parallel in any other Chinese city. Perhaps Muslim ritual hygiene had exerted a stimulating influence in this frontier region earlier than Ibn al-Muhalhil’s time.

There remains little to add to this subsection. The Thang references which we have been considering speak indiscriminately of shui nien\(^1\) and shui wei\(^2\) or both together, and indeed it was quite natural that the edge-runner mill (cf. Fig. 453 and p. 190) above should have been powered by water from an early time. The machine is illustrated in the Thien Kung Khi Wu,\(^c\) but the oldest picture is of +1313;\(^d\) these may be compared with many modern photographs. I found these mills especially common in Szechuan; generally with only one running stone. Their origin seems fixed rather definitely between +390 and +410, for in the biography of Tshui Liang\(^e\) we read:

When (Tshui) Liang was in Yungchow, he read the biography of Tu Yu, from which he learnt that Tu had devised the ‘eight (geared) mills’, greatly benefiting his contemporaries thereby. Tshui therefore taught the people (to apply water-power to) edge-runner mills and roller mills ((shui) nien\(^4\)). After he had attained the position of Grand Counsellor, he memorialised the emperor suggesting that a dam should be built on the Ku Shui east of the Chang-fang bridge (to provide water) for water-powered runner-mills and roller-mills.\(^f\) So these were established in several tens of places, and the profit to the country was ten times greater than ever before.

In +550 the first emperor of the Northern Chhii presented a ‘set’ of edge-runner mills to the dethroned emperor of Eastern Wei.\(^g\) Although this type of mill shared with others the vicissitudes of government regulation in the Thang period, it persisted virtually unchanged until the present time. Moreover, like others of these simple Chinese designs, it probably made its way to Europe,\(^b\) and in a book such as that of Zonca (+1621) one may see a vertical undershot water-wheel operating an edge-runner mill by right-angle gearing,\(^1\) in no essential way different from that of Tshui

\(^{1}\) In +1231 each of the streets of Samaráqand also had two channels of water running along it, according to the Chhing-Ohkan Chun Jen Ju Yu Chi (Waley (10), p. 93). The Tshing Shih (ch. 490, p. 109) remarks on the water-rolls of Yürban; one would like to know of what sort they were and whether they had come from east or west.

\(^{2}\) See p. 356.

\(^{3}\) Ch. 4, p. 146.

\(^{4}\) Nung Shu, ch. 19, p. 8a.

\(^{6}\) On this place see Lo-Yang Chihhsien Lan Chi, ch. 4, pp. 92, 190, 5 (pp. 90 fl.). It was seven li west of the city.

\(^{7}\) Pei Chi Shih, ch. 4, p. 117. Cf. p. 202 above for a +9th-century mention.

\(^{8}\) As we have already suggested (p. 204 above), the common European name of ‘gunpowder mill’ may point to a Chinese origin.

that which we have come upon already in the reign of the Thang emperor Ming which needs no sawing. Even if marble had been available it would have been sawn, according to the description of this occurs, as we have seen, about the earliest instance of a fully automatic industrial machine involving two separate but correlated motions about by a separate toothed wheel on the main shaft. Lynn White (3), (7), p. 118, considers this 'the ancient practice, by horizontal smooth saws and abrasives, not by vertical toothed saws. Indeed the location does not fit, for although the poet speaks of marble the only regional stone is blue roofing slate the main shaft of a vertical water-wheel and raised by a spring pole, the feed of the log being brought by a separate toothed wheel on the main shaft working a multiple-bobbin spinning-machine for hemp and ramie, perhaps also for cotton. It is shown in Fig. 627a. This should be enough to give pause to any economic historian, especially as Wang Chên clearly says that such installations were common in his time in districts which grew these textile crops.

Particularly remarkable was the use, at least as early as +1373, of water-power for textile machinery. The Nung Shu illustrates a spinning-mill (shui chuan ta fang ch'ê) in which we see a vertical undershot water-wheel and a large driving-wheel with a belt-drive on the same shaft working a multiple-bobbin spinning-machine for hemp and ramie, perhaps also for cotton. It is shown in Fig. 627a. This should be enough to give pause to any economic historian, especially as Wang Chên clearly says that such installations were common in his time in districts which grew these textile crops.

It is perhaps curious that the Chinese did not work out (so far as we know) a rotary blowing system (that of the saw and that of the feed). But surely the winder-barrels and the ramping-arm of the Chinese silk-winding machine (shui chuan ta fang ch'ê) have a dual function (pp. 82 fr.). This should be enough to give pause to any economic historian, especially as Wang Chên clearly says that such installations were common in his time in districts which grew these textile crops.

As we shall see in a moment, water-power was in wide application in China for textile machinery by centuries, though it certainly was later on (see immediately below); but power of some sort must always have been applied, and the criterion of separate but correlated motions was fully satisfied in the silk winder-layer.

It is not yet clear whether such a drive was applied to this particular machine in the +1370 and +1470 centuries, though it certainly was later on (see immediately below); but power of some sort must always have been applied, and the criterion of separate but correlated motions was fully satisfied in the silk winder-layer.

A study of the mechanism by Li Chhung-Chou (2) is now available, and Liu Hsien-Chou (7) reproduces the photograph of a model.

![Fig. 627a. Water-power applied to textile machinery in the late +13th and early +14th centuries.](image)

Left, the 'great spinning-mill' for hemp and ramie, perhaps also for cotton (Nung Shu, ch. 22, p. 66).

Right, the undershot vertical water-wheel and the large driving-wheel with a belt-drive which powered the plant (shui chuan ta fang ch'ê); Wang Chên tells us that in his time (+1313) such machinery was common in districts which grew these textile crops (Nung Shu, ch. 19, p. 16a). Cf. Sect. 31 below.
Indeed traditional Chinese culture developed a multifarious use of water-power. When the great Korean scholar Pak Chiwon visited North China in 1370, he saw it at work, and later wrote in his memoirs: "When I was passing through San-ho Hsien (about 40 miles east of Peking), I saw water-power used for all kinds of things, blowing air for furnaces and forges, winding off the silk from cocoons, milling cereals—there was nothing for which the rushing force of water to turn wheels was not employed." a

For us all this raises the question of the date of the appearance of the vertical water-wheel in China; there is no illustration of it earlier than +1300, nor any literary text which positively necessitates it, though as has already been said, it would go more naturally with the trip-hammer batteries which are so common from the Han onwards. b

No solution of the problem seems in view at the present time. In this connection, however, we may note in passing the pleasant sight seen by Troup (1) at a Japanese silk-filature at Tetsu-gawa below Lake Suwa, of a single vertical water-wheel doing double duty as a noria for raising the water needed by the workshop, and as a source of power. This was just what Wang Chên had recommended (cf. p. 398). Finally, we must not forget to mention the most delicate and impressive of all uses of vertical water-wheels, namely their employment, from the 2-nd century onwards in China, for assuring the slow rotation of astronomical apparatus. This will be discussed below (pp. 481 ff.). And with a different conception of useful work, the pious Tibetans applied water-power to the continuous rotation of prayer-wheels. c After all that this survey has revealed it would be hard to agree with Lynn White that China showed no more imagination than Rome in the application of water-power to industrial purposes. d

When we survey the whole of the evidence, we may be moved to wonder whether the horizontal water-wheel and the vertical water-wheel were not two entirely distinct inventions. On this provisional conception, the vertical wheel would have been an adaptation of the (originally Indian?) noria, e while the horizontal wheel would have been, as it were, a downward extension of the runner component of the rotary quern. The right-angle gearing required by the Vitruvian type might be considered primarily Alexandrian, for although the Han engineers were quite expert with gear-wheels, the Alexandrians, going back to Ctesibius in Chhin Shih Huang Ti’s time, were perhaps chronologically a little ahead of them. f On this view, the originally Chinese horizontal water-wheel would have made its appearance in Persian Pontus 27.

(7) The Problem of the Inventions and their Spread

When we survey the whole of the evidence, we may be moved to wonder whether the horizontal water-wheel and the vertical water-wheel were not two entirely distinct inventions. On this provisional conception, the vertical wheel would have been an adaptation of the (originally Indian?) noria, e while the horizontal wheel would have been, as it were, a downward extension of the runner component of the rotary quern. The right-angle gearing required by the Vitruvian type might be considered primarily Alexandrian, for although the Han engineers were quite expert with gear-wheels, the Alexandrians, going back to Ctesibius in Chhin Shih Huang Ti’s time, were perhaps chronologically a little ahead of them. f On this view, the originally Chinese horizontal water-wheel would have made its appearance in Persian Pontus

b In modern, though traditional, China, it is very much in evidence, as Himmel's text and photos show, (1) pp. 81, 85, 121; both overshot and undershot.

b See Sant Chandra Das (1), p. 28; Cunningham (1), p. 375; Rockhill (3), p. 232, (4), p. 391; Waddell (1); Simpson (1), pp. 11, 17, 19, etc. Emery & Emery (1) saw water-wheel prayer-cylinders still working thirty years ago near Nan-p’ing, in the Chon region, an autonomous Tibetan district in southern Kansu above Shang-phun.

c Cf. Drehmann (5). But in the light of the evidence here presented it is impossible to accept the statement of Forbes (1), p. 39, that the water-mill 'came to the East with Buddhism.'
under Mithridates, and then continued its spread, undeterred by the Vitruvian design, around the coasts of Europe to end up finally in Scandinavia as the 'Norse mill'. The fact that Vitruvius makes no mention of the horizontal water-wheel is taken by Bennett & Elton as evidence that it was widely used in the Roman world in his time, but this conclusion has no archaeological basis, and we should prefer to believe that his silence indicates he did not know of it at all. The westward and northward spread of the horizontal wheel must have taken place in the first Christian centuries, by what means exactly remains for further research to elucidate. Somewhere during this process it acquired the oblique setting or 'pitch' of its vanes. The absence of this in Chinese water-wheels perhaps bears witness, as we have said, to their high antiquity. Meanwhile the noria was reaching China, and would have given rise there also to the vertical water-wheel, though perhaps at a later date than in the West; unless, of course, it was the form chiefly used in and before Huan Than's time for the trip-hammers, which always remains possible, indeed probable, for obvious technical reasons.

Let us now return for a moment to the ideas which Troup derived from his study of the Chinese spoon tilt-hammer and stamp-mill, as he saw it at work in Japan. His suggestion was that the spoon tilt-hammer, by a proliferation of its spoons, had been the origin of the overshot vertical water-wheel, while the current-operated noria had given rise to the undershot vertical water-wheel. Unfortunately, the position of the spoon tilt-hammer is a paradoxical one, for while on the one hand it bears all the marks of primordial (its connection with the age-old swape, and the simple flume), on the other hand there are no early references to it, or at least none have been found so far. Moreover, the theory of Troup has to face the difficulty that the most characteristic ancient Chinese water-wheels seem to have been horizontal ones. A possible danger is that what Troup saw may have been machines built by people who were used to making spoon tilt-hammers, but who had come into contact with builders of true vertical water-wheels; and this suspicion is strengthened by the fact that what the Japanese multiple-spoon 'wheels' worked were vertical stamp-mill pestles and not the characteristic Chinese recumbent hammers. For the present these are questions which will have to remain open.

Since this section was first written, however, new information has come to light which might strengthen considerably a belief in the antiquity of the spoon tilt-hammer in China. I refer to the whole remarkable story of the water-powered mechanical clocks which, with their peculiar linkwork escapements, fill the period between the early 8th century and the time of the first mechanical clocks of Europe (the early 14th); this is told in Section 27f below. All the driving-wheels of these time-keepers were fitted with scoops or buckets round the rim, motion being inhibited by the escapement until each 'spoon' successively was full, and Troup, had he known of them, would certainly have been inclined to recognise in them the logical extensions of his eight-spoked spoon-wheels.

As for the comparative dating of water-power as between China and the West, it clearly constitutes a case of approximate simultaneity as puzzling as that of rotary milling itself (cf. p. 190). The Asia Minor date of 70 or so is authorised by subsequent writings of the same century, but the 1st century for China is inescapably indicated by the words of Huan Than (p. 392) written in +20, though in which of its decades a water-wheel was first made to drive the trip-hammers there remains quite obscure. The 1st century is also indicated by the fact that the earliest specific description in a Chinese source refers to metallurgical furnace-blowing, a job more complicated, one would think, than the simple grinding of cereals, and hence implying a longer antecedent development. One must hope that further researches will shed more light, all the more so as (apart from Vitruvius) we know nothing of the mounting, whether vertical or horizontal, of any of the oldest water-wheels.

The vertical water-wheel might seem at first sight to have had the greater future, but in fact it was the other way round, for the horizontal water-wheel was the direct ancestor of one of the most impressive power-sources of the post-Renaissance neotechnical age, namely the hydraulic and steam turbine. Here there would be no space to sketch, even briefly, the history of this machine. In the horizontal water-wheel, as in the vertical undershot wheel, the movement of the rotor results wholly from the impact or impulse of the water acting on the vanes. Vertical overshot wheels, however, are turned mainly by the weight of water rather than its momentum. In Heron's aeolipile, on the other hand, there was neither impulse nor gravitational load, and the movement of the rotor resulted only from the reaction of the steam jets accelerating through the tangential nozzles. But in the turbine rotor water or steam passes through pipes or ducts, or over curved vanes, in such a way that the power derives both from the impulses and the reactions set up between the medium and the curving passages within which it travels. Thus the turbine is essentially a combination of the ancient Chinese water-wheel with the Alexandrian aeolipile. Historically, it springs from the horizontal water-wheels of the South of France (e.g. those at Toulouse already mentioned on p. 368 above), a critical examination of which took place in the 18th century. Already in +1578 Besson had enlarged
the horizontal water-wheel into a cone, with spiral ducts or blades on its surface, and this 'tub-wheel' revolved within a closely confining chamber. The Toulouse wheels also had spiral or curved vanes. During the 18th century great attention was given to the study of turbine principles, and wheels were made using different proportions of impulse and reaction, but decisive advances awaited the work of Fourneyron, who by 1832 was able to construct turbines of essentially modern type up to 50 h.p. capacity. And what the beginning of the century had done for water, the end of it achieved, at the hands of de Laval and Parsons, for steam. The role which the turbine still plays in the generation of electricity and the propulsion of ships is familiar to everyone. It may long be with us.

By now the reader may well have had enough of mills, but there remain two kinds of mill about which nothing has yet been said, namely mills which were mounted on boats, and mills which told the time. In other words, all paddle-wheel ships and all mechanical clocks are children of the water-mill, and China was the land of their infancy. Let us now consider them in turn.

(i) WHEELS EX-AQUEOUS AND AD-AQUEOUS; SHIP-MILL AND PADDLE-BOAT IN EAST AND WEST

The first story begins, unlike most stories in this book, in Rome. In the year +536 the Goths were besieging the city, and having intercepted the water-supply for the Janiculum mills were on the point of reducing the defenders to starvation, when the Byzantine general, Belisarius, who commanded the garrison, conceived the idea of mounting the mills with their water-wheels on moored boats in the Tiber. So at least Procopius tells us:

When the water of the aqueducts was cut off and the mills stopped, it was not possible to work them with animals for the city was short of food, and provision could scarcely be found for the horses. But Belisarius, an ingenious man, found a remedy for the distress. Below the bridge across the Tiber, which arches to the walls of the Janiculum, he extended ropes, well fastened across the river from bank to bank. To these he moored two boats of equal size, two feet apart, at a spot where the current flowed with greatest velocity under the arches; and placing two millstones in the boats, he suspended the machine by which they are usually turned (i.e. the water-wheel) in the space between. He also contrived, at certain intervals downstream, other machines of the like kind, and these being put in motion by the force of the water, drove as many mills as were necessary to grind food for the city.

It would seem that this system was afterwards very widely used. In Rome itself these floating mills were pictured by Giuliano di San Gallo (+1445 to +1516) in an illustrated MS. studied by Horwitz—from this (Fig. 629) it can be seen that by that

Fig. 628. Ship-mills on the Rhône at Lyons, in a drawing of +1550 (cf. Audin, 1). In the center, the Pont de la Guillotière, dating from before +1380. Below, in the right-hand corner, a glimpse of the buildings of the Hôtel Dieu, the hospital where François Rabelais (d. +1553) was physician.
MECHANICAL ENGINEERING

time very broad water-wheels were used. On the Dniester (Cash) and Danube (Reichel) they continued till contemporary times. They were at Venice in the +11th century, and in France from the +12th down to the end of the +18th (cf. Fig. 628); in England they made a brief appearance in the +16th only. From the point of view of the diffusion problem it is interesting that in quite modern times these ship-mills were frequently found in Armenia. For parallels with all the European developments numerous references can be found in Arabic literature, beginning with the Banu Musa in the +9th century, as Wiedemann (6) has shown.

It has been recognised that ship-mills were not confined to Europe, but historians of technology have overlooked the fact that they were Chinese too. Although we have not found any illustration of them in the likely sources, Wang Chen gave a description in his Nung Shu of +1313 which with its single water-wheel working millstones on each of two supporting boats corresponds perfectly with that of the mills of Belisarius. In view of the military supply value of these devices it is interesting to find the description copied in the Wu Pei Chih of +1628. The Thien Kung Khai Wu (+1657) also speaks of ship-mills, saying that they were particularly common in the south. Trip-hammers were mounted on them as well as millstones, and the wheels could be made to act also as norias whatever the level of the water.

Although we have not so far encountered any Chinese description as early as the time of Belisarius, the employment of ship-mills there can hardly have been much later, for the Ordinances of the Thang Department of Waterways dating from +737 forbid (Art. 11) ship-mills (fou wei) on the river and streams near Loyang as if they were something very well known. Other early references are still scarce, but mills on boats were mentioned by Lu Yu in one of the poems which he wrote on the occasion of his journey to Szechuan in +1170. We heard the sound of bells beside the pavilion on its overhanging rock, and could see the mill-boats (wei chuan) moored below in the rushing water.' Then about +1570 Wang Shih-Mou describes in his Min Pu Su how the paper-makers of Fukien mounted their trip-hammers on boats each with two water-wheels and furiously pounded away by the aid of the fast-acting norias. These ship-mills, says Wang, were called huo fa mo, 'live mills', because they could be moved about from place to place according to the amount of water available or other conditions.

Fig. 629. Ship-mills at work on the River Tiber at Rome, a painting by Giuliano di San Gallo, c. +1490 (from Horwitz, 19). Their paddle-wheels are very elongated.
flowing current of their rivers. So also Wang Shih-Chên, writing about his own journey to Szechuan in the early Chhing period:

In Liang-chiang there were many ship-mills (wei chhuan), which work on the same principle as the water-raising wheels (shui chțf), and are all anchored in the rushing water. The operations of grinding, pounding, and sifting (bolting) are all carried on by the use of water-power. The boats make a noise 'ya-ya, ya-ya' incessantly.

Another visitor was Robert Fortune, who in 1848 travelled through the tea country of northern Fukien. While still in Chekiang province, he found a whole colony of ship-mills near Yenchow.

Leaving the town of Yenchow behind us, our course was now in a north-westerly direction. The stream was very rapid in many parts, so much so that it is used for turning the water-wheels which grind and husk rice and other kinds of grain. The first of these machines which I observed was a few miles above Yenchow. At the first glance I thought it was a steamboat, and was greatly surprised; I really thought that the Chinese had been telling the truth when they used to inform our countrymen in the south that steamboats were common in the interior. As I got nearer I found that the 'steamboat' was a machine of the following description. A large barge or boat was firmly moored by stem and stern near the side of the river, in a part where the stream ran most rapidly. Two wheels, not unlike the paddles of a steamer, were placed at the sides of the boat, and connected with an axle which passed through it. On this axle were fixed a number of short cogs, each of which, as it came round, pressed up a heavy mallet to a certain height, and then allowed it to fall down upon the grain placed in a basin below. These mallets were continually rising and falling, as the axle was driven rapidly round by the outside wheels, which were turned by the stream. The boat was thatched over to afford protection from the rain. As we got further up the river, we found that machines of this description were very common.

Thus in Chekiang, if Fortune's account is right, water-trip-hammers were the chief instrument used. The statements of Lu Yu and Wang Shih-Chên, however, both refer to the Yangtze in eastern Szechuan, and their descriptions, though written so long ago, can be complemented by that of a living observer, Worcester, who has given excellent engineering drawings of the ship-mills still in action around the city of Fouchow (Fou-ling), some sixty miles down-river from Chungking (Fig. 630). In this place they carry four water-wheels on two axles, and are known as mien fen chhuan. Those seen by Worcester carried treadle sifters as well, but evidently in former times, or elsewhere, these were connected to the source of power, as shown in books such as the Nung Shu (cf. Fig. 461). A minor point of considerable interest recorded by Worcester is that the power-shaft gear-wheel always had 18 teeth, while the quern gear-wheel had only 16. The system may therefore have been a step towards the modern engineering practice of introducing a 'hunting tooth' to ensure even wear. This principle did not come into regular use in marine engineering before the introduction of geared turbines.
Here we must refer again to the distinction made above between ex-aqueous and ad-aqueous wheels. The water-wheel may be employed to derive work from moving water, or to apply work, with the result of motion, to still water. The ship-mill differs in no way from the ordinary water-mill, since its wheel is ex-aqueous, except in the one essential point that it is mounted upon a structure which has the potentiality of automotive transit over the water if a force intrinsic to it can be brought into operation, i.e. if the wheel can be made ad-aqueous.\(^a\)

There is, however, one rather ingenious way in which an ex-aqueous pair of paddle-wheels can bring about motion, namely if a boat be attached by a cable to a point some distance up-stream, and the paddles then made to wind up the cable by the force of the current acting upon them. This idea was present in 15th-century Europe, as we know from several pictures of it in the military-technological MSS., e.g. Mariano Taccola (+1438).\(^b\) Then it was described and figured by Verantius (+1595 and 1621).

\(^a\) Of course it also differs in that it is quite independent of the level of the water, and one can see from the descriptions that this was a feature which made it particularly attractive to the medieval Chinese millwrights, who had so often to contend with large seasonal variations of water-level. A strange confusion of thought on this subject is manifested in a famous fountain statue of Neptune at Madrid—the crouch on which the god stands is provided with paddle-wheels, but it is also drawn by a team of sea-horses.

\(^b\) Berthelot (2); Feldhaus (1), col. 942.

Fig. 630. Scale drawings of one of the ship-mills at Fou-lung, Szechuan (Worcester, 1). Each mill is worked by two stoutly built paddle-wheels and right-angle gearing. Two treadle-sifters (cf. Fig. 460) are seen mounted within the hull.

Fig. 631. The liburna or paddle-wheel ship proposed in the De Rebus Bellicis of the late Roman Anonymous; a MS. illustration (Thompson & Flower, 1). Six paddle-wheels are powered by three ox-whims within the hull.

Fig. 632. The paddle-wheel boat sketched in the engineering MS. of the Anonymous Hussite (Uccelli, 1), c. +1430. Two crankshafts are operated manually.
and formed the subject of many 18th-century projects and patents, but the rather special conditions required for its successful use doubtless prevented its spread. It was still being taken very seriously in 1825. for an account of that date ascribes it to a Colonel Edward Clark of Philadelphia, and vividly depicts its use below the Trenton Falls on the Delaware, and the Mill Rapids on the Susquehanna.

I have no evidence that it was ever used in China, but at Phang-lo in Kiangsi I saw and photographed in 1944 a somewhat similar system of towing, in which the boat was wound upstream by the labour of men handling a capstan on the boat itself.

Yet another use of floating ex-aqueous paddle-wheels is that described by Vitruvius, in which they operate a hodometer to record the distance traversed by the ship. In its modern form, using the screw rather than paddles, this invention has persisted in universal nautical use to the present day. Some Renaissance illustrations of Vitruvius make the device look remarkably like a paddle-boat proper.

At the true ad-aqueous paddle-wheel boat we now arrive. That the idea of working such paddles by the force of men or animals was fully present by the +14th century in Europe is quite undoubted, but how much earlier in that part of the world the idea goes back has been very uncertain, since it depends upon the authenticity of a MS. known as Anonymus De Rebus Bellicis. First printed by Gelenius in +1552, this was thought by some to go back to the +6th century, and opinions have greatly differed about it, Neher (1) defending such a date, and Schneider (3) maintaining it to be a forgery of the +14th century. We shall have to come back to this problem.

In any case, what the book describes and illustrates is a liburna or ship of Roman type, bearing three pairs of paddle-wheels turned by six oxen on the deck (Fig. 631). At the end of the +13th century Roger Bacon mentioned the idea in words rather similar to those of the Anonymus, whose text some think therefore must have been known to him. Then in the various technological MSS. (da Vigevano in +1335; Kyeser's Bellifortis of +1405; the anonymous Hussite engineer of +1430 (Fig. 631); Valturio in +1472 with as many as five axles, etc.) there are numerous illustrations of paddle-boats of varying degrees of size and complexity. A little later Giuliano di San Gallo reproduced the Anonymus' picture (Horwitz, 10), and Leonardo himself made a number of sketches with attention to the gearing and crankshafts involved.

c Groff & Lau (1) have also illustrated this. Worcester (1), p. 52, describes the process in use with the crooked-stern salt junks of Szechuan (cf. Sect. 29c below).
d Due to Humphrey Cole (+1577); cf. de Lorture & Haffner (1).
f E.g., the Florence edition of +1522, p. 183 a.
g The paper by Horwitz (9) is the best account of its history, though he was not aware of most of the Chinese evidence presented below. There is also a valuable article by McGregor (1) on the patent literature from the +17th century onwards.
h See Sarton (1), vol. 1, pp. 416, 430.
jk Berthelot (4, 5); Feldhaus (1), col. 936 ff.
l Reproduced and discussed in Horwitz (9); Ucelli di Nemi (3), nos. 10, 20; Feldhaus (18), pp. 144 ff. An armoured paddle-boat was projected in a +16th-century MS. of Byzantine-Turkish origin, Scanderbeg's Ingenieurkunst und Wunderbuch (E. Marx, 1); and by Ramelli (+1588), pl. 152.
No practical use of a paddle-wheel boat is recorded in Europe, however, until + 1543, when Blasco de Garay constructed such boats for use as tugs, in the harbours of Barcelona and Malaga. Each one was manned by forty men working capstans or treadmills. After + 1600 such projects became numerous, and small boats of this kind found fairly wide application. Many distinguished men of science interested themselves in the problem of applying more important power-sources (e.g. Papin and the Marquis of Worcester). In 1819 treadmill paddle-boats were still in regular use on the Loire for fast traffic, and also in America on the Yellowstone expedition. As late as 1885, a 'velocipède nautique' was introduced as a novelty for excursions on French rivers. Credit for the first proposal to apply steam to paddle-wheels goes normally to Jonathan Hulls (+1736), but the first practical successes were those of de Jouffroy d'Abbans in France (+1783) and of Miller, Taylor and Symington in Scotland (+1787). By 1867 Robert Fulton's steamboats began regular service on the Hudson River. Subsequent development is a matter of common knowledge.

When the population of the Chinese coastal cities first saw the steam paddle-boats of the Westerners, an old term lun chhuan (wheel-boat) was remembered, and remained in common use for any kind of steamer down to our own times. People in these cities knew little or nothing of their own past, with the exception of a few old-fashioned scholars, for whom much fable was mixed up with fact, and to whom nobody paid any attention. When western historians of technology first saw the picture of a paddle-wheel ship in the Thu Shu Chi Chheng encyclopaedia (+1726), here reproduced as Fig. 633, they did not hesitate to put it down as a garbled reproduction of ideas brought by the Jesuits. Yet the facts were far otherwise. The history of paddle-wheel boats in China goes back to the + 8th century at least, and probably to the + 5th.

* At least, according to the best tradition. Another, deriving from MSS. in the Archivo de Simancas in Castile, and discussed by Arago (2), claims that one of Blasco de Garay's boats had a boiler. Although some rudimentary kind of turbine might not be entirely out of the question (cf. p. 226), it is now considered that the Spanish historian Fernández de Navarrete was misled on this matter by a forged interpolation in the archival sources. Here I am indebted to Captain José-Maria Martinez Hidalgo y Toran, the Director of the Naval Museum installed in the Atarazanas Arsenal at Barcelona, which I had the pleasure of visiting in September 1959. See also Spratt (1, 2). In + 1575 there followed the 'Ark of Deft', an armoured structure resting on two hulls and moved by paddle-wheels set between them (la Ronceire (1), vol. 2, pp. 586 ff.).

* McGregor (1); Anthiaume (2); Reinach (2); cf. Cummins (1), vol. 2, p. 341.

* tissandier (2).

* cf. L. O. Hulls (1); Spratt (1, 2). He may have been anticipated by Denis Papin in +1707.

* See Spratt (2), pp. 74 ff.

* It may be worth remembering that the treadmill-operated paddle-boat is far from dead. It enjoys a genial immortality in the form of those innumerable "bicycles made for two" which ply along the beaches of the Mediterranean.

* I speak of popular knowledge and belief; in fact, as we shall see (p. 431), some of the Chinese naval officials at the time of the Opium Wars were well acquainted with the technological history of their own country, and acted upon it.

* jung chheng tien, ch. 17, shui chun pu, hui kao 1, p. 30 a. The drawing was based on the Wu Pei Chih (cf. p. 443) and often subsequently copied, as in Kanazawa Kanematsu's Wakan Senyoshi (Collected Studies on the Ships used by the Chinese and Japanese) of +1761.
Naturally the earliest references are less clear than the later. But the original inventor may well have been the famous engineer and mathematician T'ai Ch'ung-Chhi, for in both his biographies there is mention of a "thousand-ledge boat" (ch'ien li ch'huang), which was tested on the Hain-Thing river, south of modern Nanking, and proved to be capable of making several hundred li in one day without help of wind. This invention was made between +494 and +497, not long before his death in +501. It is possible, however, that protected treadmill paddle-wheel boats may already have been used at the beginning of the century, in a naval action under the command of Wang Chen-O, one of the admirals of the Liu Sung dynasty.

In his biographies we find the following passage:6

Wang Chen-O's forces sailed in covered swooping assault craft and small war-junks (meng ch'huang hsiao hsien)4. The men propelling the boats were all (hidden) inside the vessels. The Chhiang (barbarians) saw the ships advancing up the Wei (river) but could not see anyone on board making them move. As the northerners had never encountered such boats before, every one of them was sore afraid, and thought that it was the work of spirits.

The passage goes on to describe how after being moored, they cast off upon order being given, and moved away apparently of themselves. Since the barbarians would surely have been familiar with oars and sails, something else is rather strongly suggested. In any case, the date is certain; the action took place in +497.

The following century gives many further indications of paddle-wheel boats. An admiral of the Liu Sung dynasty, Hsü Shih-Phu,6 in the course of the campaign against the rebel Hou Ching7 in +552, constructed a number of different kinds of craft to strengthen his fleet. The lists mention (boats with several decks), pho ch'huang (ships with grappling irons), hao fang (fire-ships), and shui chih (water-wheel boats). While the usual meaning of this last term is of course the water-ralsmg mechanism. Thus in

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

the context here (a list of boats) shows that a vessel of some kind was intended, and the obvious possibility is that paddle-boats were meant. As for the method of construction it was simple and robust so that the boats did not wear out.

The technique of propulsion by pedals appears to have been known at a very early date. The usual many-crewed square-pallet chain-pump, the context here (a list of boats) shows that a vessel of some kind was intended, and the obvious possibility is that paddle-boats were meant. As for the method of construction it was simple and robust so that the boats did not wear out.

The circumstantial evidence, therefore, seems distinctly strong that the original invention was made about the time of T'ai Ch'ung-Chhi towards the end of the +6th century if not a little earlier. When we come to the time of Li Kao,8 prince of the Thang (Tshao Wang Kao), there can be no further doubt. His experiments with paddle-wheel boats were made between +782 and +785, when he was Governor of Hungchow.

Li Kao, always eager about ingenious machines, caused naval vessels (ch'uan hsien) to be constructed, each of which had two wheels attached to the side of the boat, and made to revolve by treadmills. These ships moved like the wind, raising waves as if sails were set. As for the method of construction it was simple and robust so that the boats did not wear out.

As for the method of construction it was simple and robust so that the boats did not wear out.

6 Nan Shih, ch. 72, p. 124; Nan Chhi Shu, ch. 32, p. 214. On his work cf. Vol. 5 above, passim.

7 Literary tradition held long subsequently that T'ai's boat had been moved by some kind of internal mechanism. Thus in +1200 Chu I opined that its machinery might have resembled that of the "wooden oxen" and "gilding horses" of Ch'iao Liang (cf. pp. 260 ff. above), which no one any longer understood (cf. Ch'iao Liang Tzu Chi, ch. 2, p. 354). Chu I naval contemporaries could have enlightened him considerably (cf. p. 422 below).

8 Sung Shu, ch. 45, p. 724; Nan Shih, ch. 16, p. 374; Whitk, ch. 138, (p. 1382.2); tr. auct. adj. Lo Jung-Pang (3).

9 These terms are significant of the beginnings of ship-armour; see further in Sect. 241 below.

10 Ch'en Shu, ch. 13, p. 18; Nan Shih, ch. 67, p. 118.

11 See pp. 339 ff. above.

12 "Foot-Boats:" As for the method of construction it was simple and robust so that the boats did not wear out.
So far the Chiu Thang Shu, the Hsin Thang Shu adds that the prince himself taught his artisans how to make these craft, and that their speed was faster than that of a charging horse.

After this, it would be natural to find various echoes of practical paddle-boats in the literature. The story of the pious layman Yuan Tshang-Chi, reported in the late + 9th-century Tu-Yang Ys Pien, who was sent from an island paradise in the sea in a "wind-riding ship'' (ling feng ko), which stirred (chii) the water, moving like an arrow, was probably one of them.

It was not until the beginning of the Southern Sung, however, early in the + 12th century, that the treadmill paddle-wheel ships really came into their own. After the loss of the capital, Khaifeng, in + 1126, the move of the Sung administration to the southern provinces led (among many other things) to the first establishment of a regular Chinese navy based on the maritime expertise of the south. The Yangtze, it was said, must now be China's Great Wall, and battleships must be her watch-towers. At the same time the situation of vigorous defence called forth an upsurge of military and naval inventions, including new gunpowder weapons on the one hand and much more highly developed paddle-wheel boats on the other. Response to this stimulus was quickly apparent, for certain "flying eight-bladed paddle-wheelers'' (fei lun pa chieh) helped the Sung general Han Shih-Chang to inflict great losses on the army of the Chin Tartars in + 1130 when they were trying to extricate themselves from one of their southern campaigns and retreating across the Yangtze to the north. We shall have more to say presently on this battle. It set the pattern for a century afterwards, for cavalry was the typical Jurchen arm, and the Chin State never developed any effective naval power. Engineers now began to report their achievements. Two years after the victory Wang Yen-Hui memorialised as follows:

To defend the thousand-li vastness south of the Great River, it is necessary to have warships; to halt the horsemen on the northern plains one must have vehicles...Boats and vehicles are best if they are light and fast...I have designed a "flying tiger war-ship'' (fei hu chun hau) with four wheels at the sides. Each wheel, which has eight blades (chii), is rotated by four men. This ship can travel a thousand li a day.

This description is of particular interest because it is the oldest we have which mentions four wheels, exactly as depicted in the Wu Pei Chih and the Chu Shu Chi Chheng.

This was a truly remarkable piece of technology, the flavour of which we have attempted to capture in a small reconstruction (Fig. 634). It is almost surprising that these crafts were not called "centipede-ships'', certainly no other civilisation produced anything like them. But the plan was a very rational one, for in the absence of steam-power and cast-iron wheels it was necessary to distribute the strain over a larger number of paddles. Another source tells us that the biggest wheel-ships (chheng chhuan) of Chheng Chhant-Yu were 200-300 ft. long and capable of carrying from seven to eight hundred men.

Very soon these ships were ploughing the waves in the revolutionary service, for a government fleet of twenty-eight sea-going junks and two eight-wheel paddle-boats was stranded in a tidal river, so that all were captured and Kao Hsian himself taken prisoner. The Ting Li I Min continues:

Apart from the Mongols, as we shall see in Sect. 294 below, though they also were originally a nomadic people.

This is the first appearance of the most characteristic Sung term for paddle-wheel ships. They are always referred to by the number of chii, and Lo Jung-Pang (3) seems to us to be right in taking this to mean a single wheel and not a pair of wheels, i.e. in the 'machine' sense, not in the 'carriage' sense. Otherwise the recorded numbers of wheels would go beyond belief.

We reserve to Sect. 294 a discussion of the largest sizes attained by Chinese traditional ships.
The pirates thus secured the design of the paddle-wheel boat and also the chief designer. He built for Yang Yao a large ship of the Hochow style with several decks and twenty-four wheels, and for Yang Chhin a Ta-te-shan twenty-two wheeler. Within two months the pirate bases had over ten many-decked wheel-ships that were stronger and better constructed (than the government ships).

Another contemporary source explains the meaning of the term 'Ta-te-shan'. Li Kuei-Nien wrote:

In the paddle-wheel ships (chê chhuan) men were stationed fore and aft to tread on pedals so that (the vessels) could go forward or backward. The (rebel) ships had names like Ta-tê-shan, Haï-tê-shan, Wang-san-chou and Hun-chiâng-lung (for their types). They had two or three decks, and some could carry over a thousand men. They were equipped with 'grappling-irons' (pho-han) which were like great masts over a hundred feet high. Large rocks were hoisted up to the top of these by means of pulleys and when a government ship came close, they were suddenly let go to smash her. The Hun-chiâng-lung, which had a dragon as a figurehead, was the ship that Yang Yao himself used during engagements.

The rebel fleet, which comprised at its height several hundred paddle-wheel ships of all sizes, also used rams. The Sung Shih says:

(Yang Yao) launched ships with wheels which churned the water and so moved. They rushed forward as if flying. Moreover they were fitted with rams (chhuang hân) which damaged and sank the vessels of the imperial navy when they came into collision with them.

Conservative government commanders were nonplussed; in +1135 Wang Hsieh was routed, having declined to follow the advice of his colleagues, recorded in an interesting debate, and make full use of the paddle-wheel ships at his disposal. As time went on, however, some of the 18- and 22-wheel ships were captured from the rebels, and since the government had greater resources it was they in the end who built the largest vessels of the type. This we see from an interesting passage in the Lao Hsueh An Pi Chî, written about +1190, which also shows how the rebels and the government vied with one another in developing naval techniques. After describing the various kinds of 'grappling-irons' that were used, the text goes on to say:

Against the paddle-wheel fighting-ship (chê chhuan) of Yang Yao, the government forces used 'lime bombs' (hui phao) thrown from trebuchet catapults. For these they used pottery containers with very thin walls, within which were placed poisonous drugs (or...
minerals, probably arsenic), lime, and fragments of scrap-iron (as well as gunpowder). When these were hurled on to the rebel ships during engagements, the lime filled the air like smoke or fog so that their sailors could not open their eyes. The rebels wished to copy this device, but as the right sort of containers could not be found or made within the territories held by them, they failed. So they suffered heavy defeats.

The imperial forces in their turn imitated the (paddle-wheel) ships of the rebels, but made them larger—as much as 360 ft. in length, 41 ft. in the beam, and (with masts) 734 ft. high. But they had hardly been brought into use before the infantry of (general) Yo Fei decisively conquered the rebels. However, later on, when Wanyen Liang made his invasion (from the north), these paddle-wheel ships were still available, and did excellent service.

These last two remarks need a little explanation. The rebels were finally defeated by the famous commander Yo Fei, who caught the greater part of their fleet in a strange ambush. Having covered the water in an arm of the lake with masses of floating weeds and rotten logs, he lured them in, and when the paddle-wheels were all entangled so that they could not move, his boarding-parties swarmed on to the ships and won a decisive victory. Yang Yao himself was killed. This was in +1135. Scarcely thirty years later, in +1161, the Chin Tartars mounted another expedition against the Sung, and Wanyen Liang, the fourth emperor of the Jurchen Chin (Fei Ti), sought to make a crossing of the Yangtze. This led to the celebrated Battle of Ta-hai-shih, where after many anxious moments the Sung forces under Yu Yün-Wen gained the day. This encounter is important not only for the variety of gunpowder weapons employed at so early a date, but also because the paddle-wheel warships repeated their achievements on the river accomplished under Han Shih-Chung. Cruising rapidly round Chinsnshn Island they constantly let off their trebuchet artillery, and struck great fear into the hearts of the Jurchens, who were not much accustomed to any kind of ships and found these almost supernatural. When it was clear that the Yangtze could not be forced, Wanyen Liang was assassinated by his own staff, and the Chin army retreated to the north next day.

All through the Southern Sung there was great activity in building and employing paddle-wheel ships. In +1134 the Deputy Transport Commissioner in Chekiang, Wu Ko, recommended the construction of 9-wheel and 13-wheel warships in the coastal provinces (chiih chih shih-san chih chan chhuan?). In +1183 a Nanking naval commander, Chhen Thang, was specially rewarded for his work in building ninety paddle-wheel and other ships. The imperial court itself took great interest in its automotive vessels, unknown in any contemporary culture. When in +1176 a Nanking
Our wheel-ships are the fast assault craft (míng ch'iáng) of old. In the campaign of the han-su year (the Battle of Taihái-shih), they brought us victory. How can we afford to have them converted into junks or galleys? Each military district is permitted to design its own ships, but the number of paddle-wheel ships is not to be reduced.\(^a\)

On the contrary, three years later, another edict ordered the equipment of a hundred horse-transport barges with detachable paddle-wheels and caissons to protect them.\(^b\) Most interesting was the report of the Yangtze Admiral Shih Chêng-Chih\(^c\) in +1168 that he had constructed very economically a 100-ton warship propelled by a single twelve-bladed wheel (i ch'êh shih-erh ch'iâng)\(^d\).

This solves a problem which must have been puzzling the reader since the first mention of Kao Hsian's 23-wheel paddle-boat—for evidently that of Shih Chêng-Chih was a stern-wheeler. All the descriptions of ships with odd numbers of wheels must thus refer to vessels with one stern-wheel and a set of pairs of side-wheels. Here we may pause a moment to think a little further about the mechanism of these extraordinary craft.\(^e\) The simplest arrangement which springs to the mind would of course have been to set each pair of paddle-wheels on a single axle and apply the manpower directly to this by means of radial pedals. But one wonders whether in some of these Sung designs the paddle-wheels were not independently mounted on individual bearings amidships; in this case forward action on one side combined with reverse action on the other would have rendered the ship eminently manœuvreable—and some of the descriptions seem to emphasise this. Such an arrangement might have rendered a rudder unnecessary, and that would have been convenient if one of the large stern-wheels was fitted. As for the power available, the number of pedallers carried was quite large. Thus in +1203 Chhin Shih-Fu\(^f\) built at Chhíh-chow two four-wheeled 'sea-hawk' (hai hu) warships, covered over on top, armoured with iron plates on the sides, and equipped with spade-shaped rams.\(^g\) The smaller, of 100 tons burden, needed a propulsion crew of 28 men, the larger, of 250 tons,\(^h\) required 42. The largest numbers of pedallers mentioned in any of the sources for a single ship is 500.

\(^{a}\) Sung Hsi Yoo Kao, tâi 145, Shih huo, ch. 50, p. 276; reproduced in Yu Hsi, ch. 147, p. 20b; tr. Lo Jung-Pang (3), mod.

\(^{b}\) Loc. cit., p. 38a. Many other decrees are recorded in these sources. One gets the impression from them that it was found undesirable to increase the size of the vessels and the number of paddle-wheels beyond a certain point. Thus in +1135 the order was given to scrap some of the 9-wheel and 13-wheel ships, and to replace them by 5-wheel vessels (Chiao-Yen I Lai Hsi Nien Yoo Lu, ch. 86 (p. 1425) and ch. 89 (p. 1483). Similarly in +1181 it was ordered that the construction of 8-wheel ships should cease, and that vessels of 7, 6, and 5 wheels should be built (Sung Hsi Yoo Kao, tâi 145, Shih huo, ch. 50, p. 283).

\(^{c}\) Sung Hsi Yoo Kao, tâi 145, Shih huo, ch. 50, p. 22a.

\(^{d}\) No Sung text so far discovered gives details of the power-producing arrangements. They may well have been considered `restricted information'.

\(^{e}\) Very full specifications are recorded in Sung Hsi Yoo Kao, tâi 145, Shih huo, ch. 50, pp. 328 ff.

\(^{f}\) By way of comparison one may remember that this was about the size of Vasco da Gama's flagship, and that Chhin Shih-Fu's smaller type was twice the size of one of Prince Henry's caravels.

\(^{a}\) As we shall see below, the average speed of the paddle-wheel junk of the 19th century is known to have been about 12 knots.

\(^{b}\) The account of Chhin Shih-Fu's ships distinctly suggests this, for although the number of men in the propulsion crew was large there were only two paddle-wheels.

\(^{c}\) Cf. Vol. 1, p. 180 and Vol. 4, p. 3. It will be remembered that the first effective use of boats with paddle-wheels in +16th-century Europe was as tugs in harbours. In 1555 it was interesting to read in the daily press that the British Admiralty were placing orders for seven diesel-electric paddle tugs. 'Experience has shown,' a correspondent wrote, 'that paddle tugs are more efficient than screw-driven tugs for work in confined basins because of their great manœuvreability and power.' (The Times, 6 June 1955).

\(^{d}\) Ch. 12, p. 13b, tr. Moule (5), (135), pp. 30 ff.; Kuwabara (1), mod. aunc.

\(^{e}\) A description of this famous siege will be found below (Sect. 30).
of a hundred paddle-boats laden with supplies, and succeeded in reaching the beleaguered city, though both leaders were lost, one on the way in and one on the way back. In the Yuan Shi we read:

In the third month (of 1272) the outer defences of Fan-chheng (the secondary city across the Han river from Hsiang-yang) fell, after which A-Chu (the Mongol commander) built trenches and intensified the investment. Then the Sung colonels Chang Shun and Chang Kuei assembled clothing (and other supplies) on a hundred ships and sailed down the river to Hsiang-yang. A-Chu attacked them (fiercely, so that) Chang Shun was killed, and Chang Kuei only just managed to reach the city (with the convoy). Afterwards they suddenly waited, burning straw on both banks to illuminate the river so that it looked like day. A-Chu pursued Chang Kuei as far as Kuei-men-kuan and captured him (and others), all the rest being killed.

We shall have occasion to return to this remarkable action later on in connection with gunpowder weapons, for they were used in it by both sides on a considerable scale.

Even now this agonising struggle between the hosts of Sung and Yuan must keep us for a moment longer, because another incident of the siege involves a strange piece of technology which may have been an ingenious climax in the use of the ship-mill principle. Later in the same year (+ 1272), after the relief convoy had come and gone, the Sung engineers launched baulks of wood on the river, held together with iron links, and on these they made a floating bridge so that the garrison could readily cross back and forth when reinforcements were needed. But A-Chu came down upon it with ‘mechanical saws’ (chi chi) devised by the Yuan engineers to cut through the baulks, and axes to sever the links, after which the bridge was set on fire and totally destroyed by the marines in the Mongol forces. Although the account is somewhat uninformative, its obvious interpretation is that saws were mounted on paddle-wheel boats in such a way that they could be worked from the current when the boats were held stationary.

Reviewing the evidence assembled, one is struck by the fact that the development of paddle-boats in medieval China was primarily associated with their value in sea-fights, especially on lakes and rivers. Indeed the description in the Thu Shu Chi Chheng, already noticed, refers specifically to paddle-boat ships used for naval purposes. The illustration is a century older than this encyclopaedia, being derived from the Wu Pei Chh (Record of War Preparations) by Mao Yuan-I (1268). The accompanying text is also assuredly much earlier than the +18th century, as in the case of some of the preceding warship illustrations, where the encyclopaedia reproduces almost verbatim an +8th-century text. This one is indeed not so old as that; let us see if we can date it from intrinsic evidence. The passage runs as follows:

The paddle-wheel barque (chhe lan ko) is 42 ft. long and 13 ft. broad, having outboard (tsai hai) on (each) side a frame (khuan) 1 ft. broad, with nothing within (and below) it except four wheels, the bottoms of which reach 1 ft. into the water. Men are ordered to work (a treadmill) so that the wheels turn and the speed is like flying. The flat (part of the deck at the bow) is 8 ft. long, the hold 27 ft. long, and the stern (platform) above the steersman’s compartment (luo lao) is 7 ft. long. Above the hold, the deckhouse gives through communication fore and aft, with a great beam supporting bulwark boards on each side, each plank being 5 ft. long and 2 ft. broad. Below this are fixed turning pulleys like those which raise hanging windows (ju tao chhuang). When approaching the enemy (these loopholes are opened) and (those) inside can let loose shen phao (bombs or grenades), shen chien (incendiary arrows or rockets or incendiary rockets), and shen huo (sputtering fire from fire-lances containing rocket composition, or perhaps burning petroleum like Greek Fire). With all this the enemy cannot even see us (because of the protection of the walls of the deckhouse-turret). The enemy being somewhat weakened, our sailors suddenly lift up and fully open the bulwark hatches, (the walls beside the loopholes) acting as a shield, and stand ready within. In addition, raw oxhides are stretched out to protect (huo) the crew (from the enemy’s incendiary weapons), while from inside they throw (phao) huo chhiao (incendiary bombs and toxic smoke bombs), and shoot (fang) iron-pointed javelins (piao chhiao) and use hooks and similar weapons. Thus the enemy ships must (inevitably) be burnt and destroyed.

Now this is certainly not from the Thang, the time of Li Kao, like the other descriptions, but at first sight it might be Sung, for toxic smoke bombs (ho chhiao) containing gunpowder are described in +1044 and mentioned in many battle accounts of that period. But this term continued in use long afterwards, and the early text date of the text is more forcibly asserted by the recurring use of the word shen, ‘magical’, for three of the types of weapons. This was fashionable for all new inventions of this kind from about +1385 onwards. It seems therefore that we may reasonably date these paddle-boats as +13th century, for if the passage were of Mao Yuan-I’s own
time (early +17th) there would be more mention of barrel-guns and culverins and less emphasis on the earlier types of gunpowder weapons.

Apart from the publication of this description in the Wu Pei Chih, this period has not yielded much, but one would probably not have to search very far to find it. The persistence of the naval paddle-boat under the Ming is particularly interesting because it seems to have fallen so much out of the picture during the Yuan. The Mongol dynasty was far from neglecting sea power, but on the contrary it emphasised it so much that vessels especially adapted for lake and river combats such as the paddle-wheel ships suffered a decline. Until the coming of an adequate source of power they were clearly unsuitable at sea, and during the period of the great voyages of Chêng Ho,b

![Fig. 635. A +17th-century Japanese drawing of a small manually operated paddle-wheel boat (Purvis, 1).](image)

for example, we hear nothing of them. Only in the +17th century do they regain any prominence, and then a rather theoretical one. A Japanese drawing of a small hand-operated paddle-boat dating from this period (Fig. 635) was reproduced by Purvis\textsuperscript{(1) in his account of the history of shipping in that country, but he failed to state its source. Whether it was the result of Chinese or Dutch stimulation could not be ascertained without further research, but the former seems much more likely. In any case the paddle-boat continued its millennial life in China, though applied more and more to the humble uses of civilian transportation. For example, we hear of a Suchow craftsman of the Ching period, Hsü Shih-Ming,1 who made ferry-boats with paddle-wheels (chiao th'fei chih kuo ho)6.

Unlike some other medieval Chinese inventions, the treadmill paddle-boats survived in active use down to our own time, especially in the Pearl River at Canton, where they were photographed some thirty years ago (Fig. 636).A If this be compared with pictures of a model made in the last century (Fig. 637) which Horwitz\textsuperscript{(9) reproduced, the only obvious difference is that the eccentrics and coupling-rods are not prominent in the photograph, suggesting perhaps that a chain-drive replaced them, but as the places for the three rows of pedellers can clearly be seen, the coupling-rods are probably hidden by the hull bulwarks. It is known that the treadmills had pedals like those of Hu Chih-ch'êng (cf. Fig. 578).8\end{flushleft}

8 Horwitz noted the interesting point that the eccentrics on the model were set so apart on the port and starboard sides so as to avoid stoppages at dead centre. In build the boats were constructionally related to the Klawam junk type.b Another fleet of these stern-wheelers plied on the Wusung River between Shanghai and Suchow within living memory. In the nineties of the last century there were about fourteen of these ships carrying some seventy passengers in large and roomy accommodation; pedalled by a group of men six to twenty in number, they did the 100-mile journey in about a day and a night, averaging thus a little under 3½ knots.6 In the light of all that has gone before, we can now understand the presence of these Mississippi-like stern-wheelers in the Chinese rivers as late as the present century. They had nothing to do either with Robert Fulton or with the Mississippi; they were in the direct line of descent from Shih Chêng-Ch'i's stern-wheel battleship of +1168.

It is a remarkable fact that when modern Europeans first came to Chinese coastal waters they were quite unable to believe that such paddle-wheel boats could be anything more than an imitation of their own steamboats. A classical encounterd took place during the Opium Wars at the Battle of Wusung,2 where the Huangpho and Wusung rivers enter the Yangtze estuary, in 1842. Here paddle-boats were used on both sides, for the British fleet, advancing to reduce the coastal fortifications, included fourteen such steamers,e while on the Chinese side there were five treadmill-powered paddle-wheel junks capable of making 3½ knots. Though fought with courage and skill by their commander Liu Chiang-Chih,\textsuperscript{\textsuperscript{c}} all were captured or destroyed during the battle. They proved of much interest to the British officers, who believed with much accord that they had been copied from the paddle-wheel steamers as something completely new.

The most remarkable improvement of all [wrote Bernard, patronisingly], and which showed the rapid stride towards a great change which they (the Chinese) were daily making, as well as the ingenuity of the Chinese character, was the construction of several large wheeled vessels which were afterwards brought forward against us with great confidence at the battle of Wusung. We afterwards brought forward against us with great confidence at the

\begin{flushleft}
a G. R. G. Worcester, unpublished material, no. 174, and (24), pp. 88 ff.
b See Lovegrove (1). Other services in South China are described by Audemard (5), pp. 64, 66.
c Worcester (5), vol. 1, p. 244. Very few of the numerous experimental steamboats before 1810 did better than this speed, and most of them not nearly so well; cf. Spratt (5).
d W. D. Bernard (1), vol. 2, p. 354 ff., accompanied by an engraving of the battle. The paddle-wheel junks are shown in this, but with details too small for reproduction. Other descriptions are given by Worcester (1) and Lii Jung-P'ang (1).
e Among them was the newly-built Nemesis under Cdr. W. H. Hall, the first iron ship (as distinguished from iron-armoured ships, cf. Sect. 227) ever to take part in a naval engagement. This was twenty years before the famous action between the Monitor and the Merrimac off Hampton Roads in the American Civil War.
\end{flushleft}

1 胡旋 2 胡旋 3 劉風清
engagement at Woosung, the last naval affair of the war, and were each commanded by a mandarin of high rank, shewing the importance they attached to their new vessels. This, too, was as far north as the Yangtze River, where we had never traded with them; so that the idea must have been suggested to them by the reports they received (from the south) concerning the wonderful power of our steamers or wheeled vessels.a

Elsewhere, after again expatiating on the 'extreme ingenuity' of the Chinese, he described the machinery being fitted into a number of hulls which fell into British hands at the capture of Chenhai1 near Ningpo in 1841.

There were two long shafts [he said], to which were to be attached the paddle-wheels, made of hard wood, about 12 ft. in diameter; and there were also some strong wooden cogwheels nearly finished which were intended to be worked by manual labour inside the vessel. They were not yet fitted to the vessels; but the ingenuity of this first attempt of the Chinese, so far north as Chinhai, where they could only have seen our steamers during their occasional visits to Chusan, when that island was before occupied by us, cannot but be admired.b

This demonstrates that there were variations in the propulsion mechanism, and that for these naval vessels capstans and hand-spikes connected with the paddle-wheel axles by right-angle mill-gearing were employed, so that the arm was used instead of the leg for providing power. Some of the wheel-junks at the Battle of Wusung were also thus constructed.c This system was certainly four or five times as efficient as the direct radial-pedal arrangement, and permitted mechanical advantage by the adjustment of the gear-ratios. One would very much like to know whether the Sung designers ever used it; since they were quite familiar with millwrights' work there is no reason why they should not have done so.d Another observer of the Wusung junks, however, Lt Ouchterlony, spoke of 'cranks' working four paddle-wheels on each vessel:

Among the curiosities in the shape of military machines found at Woosung were two junks each fitted with four paddle-wheels about 5 ft. in diameter, worked by two cranks fitted on axles placed athwart in the fore and aft parts of the vessel. They were clumsy enough, but nevertheless useful craft for transporting troops on smooth water, as by making the whole party take their turn, and by working short spells at the cranks, great expedition could be used.e

These words recall the assault craft of Wang Chen-O fourteen centuries earlier. Ouchterlony was probably referring to an arrangement of eccentrics and coupling-rods like that in Fig. 647, the power unit being situated in the middle and connected thus to the paddle-wheels both fore and aft.

Fig. 636. One of the treadmill paddle-boats of the Pearl River estuary near Canton (photo. Paris, 1929). The large iron stern-wheel, about 9 ft. in diameter, can be seen fitted in the after-gallery under the steerboard. Just forward of it, under the awning, there are three sets of handbars for the peddlers, two rows of whom can be seen at work, resembling those who turn square-paddle chain-pumps (cf. Fig. 579). The funnel belongs to the white Japanese steam-launch behind.

Fig. 637. Stern view of a model of a Cantonese stern-wheel treadmill paddle-boat in the Museum f. Volkerkunde, Vienna (Horwitz, 9). The aft hull bulwarks have been removed so as to show the three eccentrics and coupling rods like those of a steam locomotive; there were set 90° apart on port and starboard sides to prevent dead-centre stoppages.
Ten years after the battle, J. F. Davis, Governor of Hongkong, reported the talk of the coast as follows:

A native of Chusan had built small vessels on the model of our steamers, with paddle-wheels. It was said that, when ready, he endeavoured to propel them by means of smoke made in the hold; but as they declined altogether to move on such terms, it was subsequently found advisable to turn the wheels by relays of men working with their weight, somewhat on the principle of the treadmill. In this condition they were found by our forces. The Chinese officers tried them, and were satisfied with the rate of their movement, and the use of the guns on board.

After all that we have seen in this chapter any comment on Davis’ words would be superfluous. Yet as late as 1950 one of our best authorities could still say of the Battle of Wusung that ‘among them (the Chinese war-junks) were several paddle-wheel ships constructed in imitation of steamers’. Of course there is no need to deny that the Chinese naval technicians were greatly stimulated by the sight of the steam paddle-boats. The ‘native of Chusan’ may long remain anonymous, but Chhen Chhi-Thien (1) has sought to identify him with Kung Chen-Lin, a magistrate of Chia-hsing. Kung was one of the group of followers of the great anti-opium Commissioner Lin Te-Hei, who while cognisant of the past achievements of their own culture were deeply interested in the modern techniques of the West. Kung Chen-Lin afterwards wrote:

In the summer of the keng-tzu year (1840), when the British invaded and occupied Choushan, I was summoned to Ningpo from my post at Ho-chung. There (on the coast) I saw the enemy sails standing like a forest, and among them were ships which stored fire in a

Fig. 638. Design for a treadmill paddle-wheel warship prepared by Chiang Chihing in 1841 during the Opium Wars, including height-adjustable slung rudders fore and aft, an armament of 12 guns, and space for a crew of over a hundred. MS. drawing of Li ang Chi-Phing, from Chhen Chhi-Thien (I). Note the standard of the Great Bear (cf. Vol. 3, p. 240, Figs. 90, 103) flying on the left.

1. Vol. 1, p. 258. I owe this reference to the kindness of my friend Dr Victor Purcell.
2. Worcester (11).
3. Elsewhere, however, Worcester (4) has stated correctly that the Chinese paddle-boats of the early 19th century were not derived from those of the Europeans. McGregor (1) also wrote of the ‘mock steamboats’ used by the Chinese.
4. It would seem that during the Chhing period the Chinese paddle-boats had become purely civilian stern-wheelers on rivers, and that the Sung naval craft had been somewhat forgotten.
5. Though Kung’s birthplace was not in fact Choushan.
6. Each of these men specialised in one or another of the new engineering techniques. Kung Chen-Lin was a notable inventor who developed (ahead of the West) iron moulds for gun-casting (cf. Sect. 30d), and Wang Chung-Yang also wrote on foundry work. Chiang Fu-Kuang (see p. 390 above) devoted himself to optical instruments and to the steam-engine. The most many-sided was Ting Kung-Chhen, who studied all aspects of gunnery from the making of cannon and projectiles to the positioning of defence batteries and the mounting of artillery within them; he also constructed (as we have seen) a model steamboat and a model locomotive. Others who wrote on gunpowder, as also on mines, bombs, fuses and shells, were Huang Mien, Chhen Chieh-Phing and Ting Shou-Tshun. Then there were those like Hsi Hsin-Chiang who devoted themselves to the improvement of shipbuilding. Phan Shih-Chiheng, a wealthy merchant and patron of literature, experimented with sea mines, and the first full-scale steamboat was built under the aegis of Phan Shih-Jung. Memoirs by these men and their colleagues occupy chs. 84 to 95 of the 1852 edition of the Hai Kuo Thu Chih. Several doctoral dissertations could (and we hope some day will) be written on the Chinese technological pioneers of the Opium War period. The English monographs of Chhen Chhi-Thien, good as they are, make but a beginning, and we have not so far come across anything adequate in Chinese.

27. MECHANICAL ENGINEERING

Ten years after the battle, J. F. Davis, Governor of Hongkong, reported the talk of the coast as follows:

A native of Chusan had built small vessels on the model of our steamers, with paddle-wheels. It was said that, when ready, he endeavoured to propel them by means of smoke made in the hold; but as they declined altogether to move on such terms, it was subsequently found advisable to turn the wheels by relays of men working with their weight, somewhat on the principle of the treadmill. In this condition they were found by our forces. The Chinese officers tried them, and were satisfied with the rate of their movement, and the use of the guns on board.

After all that we have seen in this chapter any comment on Davis’ words would be superfluous. Yet as late as 1950 one of our best authorities could still say of the Battle of Wusung that ‘among them (the Chinese war-junks) were several paddle-wheel ships constructed in imitation of steamers’. Of course there is no need to deny that the Chinese naval technicians were greatly stimulated by the sight of the steam paddle-boats. The ‘native of Chusan’ may long remain anonymous, but Chhen Chhi-Thien (1) has sought to identify him with Kung Chen-Lin, a magistrate of Chia-hsing. Kung was one of the group of followers of the great anti-opium Commissioner Lin Te-Hei, who while cognisant of the past achievements of their own culture were deeply interested in the modern techniques of the West. Kung Chen-Lin afterwards wrote:

In the summer of the keng-tzu year (1840), when the British invaded and occupied Choushan, I was summoned to Ningpo from my post at Ho-chung. There (on the coast) I saw the enemy sails standing like a forest, and among them were ships which stored fire in a
cylinder and churned the water with wheels. These were surveying the beach, reconnoitring the situation and guiding the other vessels, appearing and disappearing in the waves, and going where they would. People marvelled at their strangeness and wondered at their being powered by fire. But it occurred to me to copy the pattern of these wheel-ships simply replacing steam by man-power.

I asked some artisans to build a small model, and when this was tested on a lake it proved to be quite fast. Hearing of this, the Governor (of Chekiang), Liu Yün-Kho, authorised me to build several full-scale war-junks according to my design; they were ready in a month or so, and proved very manoeuvrable at sea.

Here then was a strange 'copy'—much older than its prototype. Similar experiments were going on everywhere. Next year, an official in the Salt Administration at Canton, Chhang Chhing, constructed a treadmill paddle-wheel ship 67 ft. long and 20 ft. in beam, with rudders fore and aft, armed with twelve guns and carrying over a hundred men (Fig. 638). Another designer was Wang Chung-Yang, who began to lay down a number of such craft at Chenhai. According to his own description, these had two wheels in the fore compartment and two in the aft, each wheel having six blades, the tips of which were level with the bottom of the ship. The hexagonal shafts were enclosed in housing three feet long. Within the ship two men standing shoulder to shoulder (at each handspike of the capstan) and pushing, could make the ship fly over the water. Or one can use treadmills like those of ordinary chain-pumps... The depth from deck to bottom was rather more than 6 ft., half of which was submerged. If the boat floated too high in the water it was ballasted with stones, for with a draught of 3 ft. the wheels should dip into the water 1 ft.

These were probably the vessels which the British captured at Chenhai when nearly completed. Thus a Chinese technical revival was stimulated by the new steam paddle-boats of the West. But there is every evidence that Kung Chen-Lin and his colleagues knew well of the Thang and Sung antecedents. For example, in a contemporary work, the Fang Hai Chi Yao, the Chiang Chhing's specification is given in Hai Kuo Thu Chih, ch. 84, pp. 289, 290, and this was a case where they would have come in very handy. Chhang Chhing's specification is given in Hai Kuo Thu Chih, ch. 84, pp. 232 ff. His vessel was finished too late to take part in the war.

Much more astonishing than all this is the fact that Chinese scholars had been worrying about the history of the invention long before paddle-steamers ever appeared off the Chinese coasts. That remarkable man Fang I-Chih, mathematician,
scientific encyclopaedist and finally Buddhist monk,\(^{a}\) has an entry on the subject in his \textit{Wu Li Hao Shih} of \(+1604\). In this we read:\(^{b}\)

Foreign ships (\textit{yang chuan})\(^{c}\) have a straight timber beneath (i.e. a keel)\(^{d}\) and are ballasted so as to be heavy below. They use wheels—but this was also done of old.

Yuan Chhiung\(^{2}\) (author of the \textit{Feng Chhuang Hao Tu}, cf. p. 418 above) says that Han (Shih-Chung), prince of Chi,\(^{e}\) used ‘flying’ wheel-boats with eight-bladed (paddle-wheels) worked by treadmills (when he surrounded the enemy)\(^{f}\) at the Battle of Huang-tien-rang (in +1130); they started (and stopped), and sped back and forth steering to left and right all over the river.\(^{g}\)

Shih Chhou\(^{2}\) says\(^{h}\) that Liu Yii\(^{i}\) (first emperor of the Liu Sung, +356 to +422) also used them. In the boats there were wheels which were turned (by treadmills), and no one could be seen on deck.

Chang Sui\(^{1}\) says\(^{i}\) furthermore that they were employed by Yü Yuan-\textit{Wen} \(^{1}\) (+1108 to +1174) at the Battle of Tahai-shih (+1161). Within the ships there were treadmills, and as they sailed forward into action their catapults played upon the enemy.

All this material we quickly recognise. The tradition about Han Shih-Chung has already been mentioned. The third paragraph evidently refers to the paddle-boats used by the general Wang Chang in the \(+573\) battle which is described in the official history as taking part in the preparations of the imperial navy for the battle. The fourth paragraph refers to the paddle-boats of Yü Yuan-Wen in the \(+1161\) battle, and the fifth to the paddle-boats used by the general Wang Chang in the \(+573\) battle as reported by the same source.

The last records the second great victory of automotive warships on the Yangtze. The last entry refers to the paddle-boats used by the general Wang Chang in the battle of Tahai-shih (+1161). Within the ships there were treadmills, and as they sailed forward into action their catapults played upon the enemy.

Chinese and European shipbuilding was the absence of any keel in the hull of the ship. The Chinese wheel-boats, however, are more accurately described by the term \textit{paddle-wheel ships}, or \textit{flying-wheel ships} (\textit{yang chuan}).

This was perspicacious, for as we shall see in \(+573\) the battle which is described in the official history as taking part in the preparations of the imperial navy for the battle of Tahai-shih (+1161), within the ships there were treadmills, and as they sailed forward into action their catapults played upon the enemy.

As for the \textit{flying-wheel ships} of the Liu Sung dynasty, we find the same appellation \textit{flying-wheel ships} (\textit{yang chuan}) in the Chinese text. This is delightful; he tells how as a boy he witnessed one of the sea-fights between Sung and Chìn. Later he was to become a leading statesman and a statesman in his own family, and it would seem that in this combat also paddle-wheel ships took part. The passage in the book by their contemporary Yuan Chhiung\(^{2}\) is delightful; he tells how as a boy he witnessed one of the sea-fights between Sung and Chìn. Later he was to become a leading statesman and a statesman in his own family, and it would seem that in this combat also paddle-wheel ships took part.

Unfortunately, no literary references to the \textit{Yangtze} have been found, apart from its mention in the technical agricultural treatises.\(^{j}\) As for the origin of ship-mills in China, there is nothing definite to be said; they may have been an independent invention, or a quite separate introduction from Arab contacts, or even possibly a

\(^{a}\) We have a new study of him by Hou Wai-Lu (\textit{Jahreshefte für Geschichte} \textbf{25} \textit{Bamberg}, 1975, p. 255).

\(^{b}\) Ch. 8, p. 239, tr. auct., with Lu Gwei-Djen and Ho P'ing-Yu.

\(^{c}\) There is no doubt that he is talking about European ships because the following entry gives a long and graphic account of one such ship which made port in Fuken in \(+1604\). He uses the same appellation for it that was used for Western shipping obtained from the Jesuit Matteo Ricci.

\(^{d}\) This was perspicacious, for as we shall see in Sect. 29, one of the cardinal differences between Chinese and European shipbuilding was the absence of any keel in the hull of the ship. The passage in the book by their contemporary Yuan Chhiung\(^{2}\) is delightful; he tells how as a boy he witnessed one of the sea-fights between Sung and Chìn. Later he was to become a leading statesman and a statesman in his own family, and it would seem that in this combat also paddle-wheel ships took part.

\(^{e}\) We cannot trace this writer, and we are not even sure whether a person is meant, for the words may refer to the \textit{Yangtze}.

\(^{f}\) Ch. 8, p. 239, tr. auct., with Lu Gwei-Djen and Ho P'ing-Yu.

\(^{g}\) Ch. 8, p. 239, tr. auct., with Lu Gwei-Djen and Ho P'ing-Yu.

\(^{h}\) This was perspicacious, for as we shall see in Sect. 29, one of the cardinal differences between Chinese and European shipbuilding was the absence of any keel in the hull of the ship. The passage in the book by their contemporary Yuan Chhiung\(^{2}\) is delightful; he tells how as a boy he witnessed one of the sea-fights between Sung and Chìn. Later he was to become a leading statesman and a statesman in his own family, and it would seem that in this combat also paddle-wheel ships took part. The passage in the book by their contemporary Yuan Chhiung\(^{2}\) is delightful; he tells how as a boy he witnessed one of the sea-fights between Sung and Chìn. Later he was to become a leading statesman and a statesman in his own family, and it would seem that in this combat also paddle-wheel ships took part.

\(^{i}\) As already suggested, Vol. I, p. 246.

\(^{j}\) We must of course not forget the important statement of Huan Than in \(+573\) (cf. p. 392 above) that water-power was then already used for working trip-hammers. For this the vertical mill would always have been much more convenient than the horizontal type. The widespread use of the latter in later ages and the general tendency in Chinese engineering to mount wheels horizontally (cf. pp. 359, 406) should not be allowed to prejudice too much our conceptions of what was going on in China in the first five centuries of the \(+1st\) millennium.

\(^{a}\) We shall discuss these methods in Sect. 29\(1\) below.

\(^{b}\) As already suggested, Vol. I, p. 246.

\(^{c}\) We must of course not forget the important statement of Huan Than in \(+573\) (cf. p. 392 above) that water-power was then already used for working trip-hammers. For this the vertical mill would always have been much more convenient than the horizontal type. The widespread use of the latter in later ages and the general tendency in Chinese engineering to mount wheels horizontally (cf. pp. 359, 406) should not be allowed to prejudice too much our conceptions of what was going on in China in the first five centuries of the \(+1st\) millennium.

\(^{d}\) Even the oldest of these (\textit{Yang Shin}, ch. 18, p. 240) gives no clue as to its history.
secondary adaptation deriving from the paddle-wheel naval boats. We lack adequate information about them from pre-Sung times. These considerations show, at any rate, some of the points on which readers of Chinese literature should be alerted.

Did these medieval paddle-boats have anything to do, one may wonder, with the literature on the 'Magic Boat', the self-moving ship on which voyagers saw neither sailors nor machinery? From the summary of Barry (1), we find that such descriptions are common in the Arthurian cycle, and about +1100 in Irish secular tales, but go back in hagiographic texts to about +690. Automatic motion is caused by the presence of the saint or his relics. Three Coptic examples take this even earlier, to the very beginning of the +7th century, and perhaps for this reason Barry sought the origin of the complex in ancient Egyptian predecessors of Charon—yet any Charon is really superfluous. Perhaps we might suggest that the boat with no ferryman and no sailors is a far-away echo of the hidden pedallers of Tsu Chhung-Chih and Wang Chen-O, testifying to the superiority of Chinese technique in the +5th century, in contrast with its reversed position in the +19th.

In the I Ho Yuan (Summer Palace) gardens, near Peking, there stands a famous stone paddle-boat placed there by the last empress of the Chhing, who is said to have used for it funds destined for the building of a real Chinese Navy (Fig. 640). Future generations will surely never destroy this fantasy, which symbolises an honourable circumstance in the history of technology never realised by its builders, namely, the probability that Tsu Chhung-Chih as a practical engineer anticipated Konrad Kyeser by just on a thousand years.

But still we have not reached the dénouement. The problem of the De Rebus Belligicis has recently been re-examined by Thompson & Flower and by Mazzarini, with the result that we have now to date it in the +4th century. It must have been written in the close neighbourhood of +370, probably by a Latin of Illyria; and at some point before the time of Charlemagne (perhaps the early +7th century) it was combined with several other Byzantine tracts, including the Notitia Dignitatum, to form a kind of corpus. In the +9th or +10th century this was set down in a MS. which afterwards became known as the Speyer Codex, only one leaf of which has survived to provide palaeographers with a dating. The Speyer Codex disappeared about +1602, when it was probably used as binding material, but not before four separate copies had been made of it, the first in +1456 and the fourth in +1542. The whole of the De Rebus Belligicis is not at all likely to be a late medieval forgery because no one would then have been able to reproduce the grammar, tricks of style, neologisms and curious quasi-Greek words, or to understand the circumstances and problems for which the Anonymus made his various proposals. Nor is it likely that the paddle-wheel boat (the liburna) was inserted in the +14th century, because (a) the description

c We have noticed above (p. 418) one form of this motif, from a late +9th-century Chinese source.

d The converse possibility, that Li Kao may have been influenced by a misunderstood report of the mills of Belisarius, has been taken into account above. But even in this case Li Kao's paddle-boat was a practical proposition, anticipating by seven centuries that of Blasco de Garay; quite possibly indirectly generating it.

C Somewhat of a parallel to the Chou Li.
of it comes in the middle of the text and not at either end, while \(b \) it is mentioned by cross-reference at two other places in the text.

For the origins of his idea the Anonymus was no doubt as much indebted to the vertical Vitruvian water-mill as Belisarius later on. But as to its effects, Thompson and all other students of the matter are agreed that there is no contemporary mention of the idea, no evidence that it was anything more than a paper scheme.\(^a\) The memorandum, as he says, was probably intercepted by some civil servant and pigeon-holed without ever reaching the emperor to whom it was addressed, and appears to have stayed in the files for half a millennium after it was written. In these peculiar circumstances it seems extremely unlikely that any word of the invention could have reached Tsu Chhung-Chih or Wang Chen-O a bare century later at the other end of the Old World. Li Kao's paddle-boats, in the latter half of the +8th century, were being built only fifty years or so after the reappearance of the Anonymus' suggestions, so that here again the possibilities of transmission seem small. One cannot help feeling that this constitutes the clearest instance so far unravelled of a strong probability that essentially the same ancient invention was made twice over in different places.\(^b\) Provisionally we can only say that the first specification was Byzantine and the first execution Chinese.

\(j \) CLOCKWORK; SIX HIDDEN CENTURIES

The clock is the earliest and most important of complex scientific machines. Its influence upon the world-outlook of developing modern science was incalculable.\(^c\) No one can doubt that the invention of the mechanical clock was one of the greatest achievements of the history of all science and technology. 'The fundamental solution', wrote von Bertele (1), 'of the problem of securing steady motion by intersecting the progress (of a weight-driven or any powered train) into intervals of equal duration, must be considered as the work of a brain of genius.' The essential engineering task was to devise means of slowing down the rotation of a wheel so that it would keep a constant speed continuously\(^d\) in time with the apparent diurnal revolution of the heavens. The essential invention was the escapement. In what follows we shall show that the first of all escapements arose in China in the middle of a very long line of development of mechanisms for the slow rotation of astronomical models (demonstrational armillary spheres or celestial globes), the primary aim of which was computational rather than time-keeping as such. We shall also show that its first application

\(^a\) It must be admitted also that from the technical point of view a set of ox-driven whims was singularly unsuitable as a nautical power-source. Possibly the plan was tried in one of the European Renaissance experiments. A 'horse-packet' was working successfully at Yarmouth, however, in 1818 (cf. Atkinson (1), pp. 40, 42, 54).

\(^b\) This view is shared by Thompson. Suitable spheres of use might have been an important factor; probably China had more really good navigable rivers, lakes and canals at the times in question than were available to the East Romans.

\(^c\) Cf., for example, Butterfield (1), pp. 8, 44, 59, 111, 120, etc.; Lynn White (7), pp. 124ff.

\(^d\) In the sense that its motion should continue for extended periods without prolonged interruption. In fact, it proved easier to accomplish this by dissecting the motion into very short periods of discontinuity, rather than by any truly continuous braking device.
was to a water-wheel like that of a vertically-mounted water-mill, so that although in later ages mechanical clocks were mostly driven by falling weights or expanding springs, their earliest representatives depended on water-power. The mechanical clock thus owes its existence largely to the art of Chinese millwrights. This story will take some telling. Obviously it differs widely from the account accepted hitherto. How is it that the Chinese contributions to clock-making have been hidden from world history?

It will readily be allowed that few historical events were so rich in consequence as the decision taken by certain southern Chinese officials in +1583 to invite into China some of the Jesuit missionaries who were waiting in Macao. It was the first decisive step in the long process of unification of world science in Eastern Asia, and the better mutual understanding of the great cultures of China and Europe. The two men chiefly concerned were Chhen Jui (+1513 to c. +1585), who was for a short time Viceroy of the two Kuang provinces, and Wang Phan (+1539 to c. +1600), who was Governor of the city of Chao-chhing. They were particularly interested in reports that the Jesuats had, or knew how to make, chiming clocks of modern type, i.e. of metal with spring or weight drives and striking mechanisms. These became known as 'self-sounding bells' (tau ming chung³), by a direct translation of the word 'clock' or cloche, glocke. This is important, for an entirely new name, as this one was, naturally suggested an entirely new thing. The mechanical clocks of the Chinese middle ages had been, as we shall see, extremely cumbrous and probably never very widespread; moreover no special name had distinguished them from non-mechanised astronomical instruments. It was therefore not surprising that the majority of Chinese, even scholars in official positions, now got the impression that the mechanical clock was a new invention of dazzling ingenuity which European intelligence alone could have brought into being. And of course the missionaries (as men of the Renaissance) quite sincerely believed in this higher European science, seeking by analogy to commend the religion of the Europeans as something equally on a higher plane than any indigenous faith.

Both Chhen Jui and Wang Phan obtained the clocks which they desired. The first Jesuit residence, set up at Chao-chhing by Matteo Ricci, had a clock-face on the street with a public self-sounding bell; and this was one of the charges against him when a new governor, Liu Chieh-Chai, closed the mission-house in +1589. But modern horology was irresistible. A magnificent spring clock with chiming bells had been sent to the Jesuats as astronomers in China, a Beauvais tapestry of the late +17th century now at the Musee de l'ancien Ecveché, Le Mans (photo. Archives photographiques d'Art et d'Histoire). On an exotic terrace with a pagoda in the background Jesuits in mandarin robes are discussing scientific matters with their Chinese colleagues of the Imperial Bureau of Astrology, one of whom is examining some heavenly body through a hand-telescope. A bearded father makes some measurements upon a celestial globe like that which Ferdinand Verbiest made for the Peking Observatory in +1673 (cf. Vol. 3, Figs. 157, 191); another dictates some readings to a page, perhaps of sun-spots seen through a reflecting telescope. Behind him stands an ecliptic armillary sphere closely resembling Verbiest's (cf. Vol. 3, Figs. 157, 191); books bound in Western style remind us of the Pei Thang library of European scientific works established by the Jesuats in Peking (cf. Vol. 3, p. 24), on which see Verhaeren (I).
from Rome as a gift for the emperor, and its peregrinations in the care of the Jesuits seeking to present it form a prominent part of the events of the following years. The impatient inquiries of the Wan-Li emperor in + 1583 delivered Ricci and his companions out of the clutches of the eunuch Ma Thang, who had detained them on their way to the capital. After the clock had been installed in the imperial palace, the Jesuits were entrusted with its regulation, and the training of certain eunuchs in clock maintenance and repair. This was the beginning of nearly two centuries of service by the Jesuits, including lay brothers trained as clock-makers, to the Chinese imperial court, where eventually there collected a great variety of clockwork instruments of all kinds.

Moreover, wherever they established themselves in provincial cities their mechanical clocks were made known and appreciated. In sum, it is abundantly clear that one of the reasons why the early Jesuit missionaries were so much welcomed by the Chinese was for their interest in clocks and clock-making, hardly less indeed than for their skill as mathematicians and astronomers (cf. Fig. 641).

There can be no doubt that Ricci and his companions regarded efficient mechanical clocks as something absolutely new and unheard-of in China. He says this in his memoirs on several occasions. The clocks for the Cantonese officials in + 1583, which struck all the hours automatically, were 'beautiful things never seen nor heard of before in China'. The clock with three bells destined for the emperor, a piece 'which struck all the Chinese dumb with astonishment, was a work the like of which had never been seen, nor heard, nor even imagined, in Chinese history'.

The great clock of the Chao-chhing mission house 'with a hand visible from the street which indicated the hours, and a great bell which sounded them, was a thing previously unheard-of'.

There can be no doubt that Ricci and his companions regarded efficient mechanical clocks as something absolutely new and unheard-of in China. He says this in his memoirs on several occasions. The clocks for the Cantonese officials in + 1583, which struck all the hours automatically, were 'beautiful things never seen nor heard of before in China'. The clock with three bells destined for the emperor, a piece 'which struck all the Chinese dumb with astonishment, was a work the like of which had never been seen, nor heard, nor even imagined, in Chinese history'. The great clock of the Chao-chhing mission house 'with a hand visible from the street which indicated the hours, and a great bell which sounded them, was a thing previously unheard-of'.

a D'Elia (3), vol. 1, p. 231; vol. 2, pp. 4, 30, 87, 99; Trigault (Gallagher tr.), pp. 180, 206, 320, 348.
b D'Elia (3), vol. 2, p. 121; Trigault (Gallagher tr.), p. 269.
c D'Elia (3), vol. 2, pp. 126, 128, 159, 313, 421; Trigault (Gallagher tr.), pp. 373, 374, 392, 536.
d See the catalogue of Haucourt-Dieulens (1). In Fig. 643 we illustrate a striking clock or 'self-sounding bell' of European design as it appears in a Chinese work of + 1759.
f For example, the Khang-Hsi emperor came himself to the Jesuit house in Peking to see the carillon of their turret-clock, which played Chinese tunes each hour. This had been set up by the Portuguese father Gabriel de Magalhaens (+ 1609 to + 1677), and is described in Verbiest's *Astronomia Europaea* ... (+ 1687), pp. 92ff. Most of the section entitled 'Homo-tecnia' in this book is concerned with the impression made upon the Peking populace by the clock and carillon. It was operated by a spiked drum and trip-wires in some such way as that depicted in + 1644 by de Caus (1), p. 641. The imperial visit was described by Verbiest in a letter of 11 May 1684, transcribed by Bernard-Maitre (11): 'Rex venit ad aedes nostras, intravit omnia cohibita, vidit organum et campanas majores horologii suspendendas in turre.' This was the time when the emperor was assiduously studying the natural sciences with the Jesuit experts, and fostering the spread of their knowledge in every possible way. Elsewhere in his book (p. 77), Verbiest was led to write (in a delightful passage which his fellow-Jesuit Bernard-Maitre finds rather tedious): 'And now it was as if all the mathematical sciences, led by Astronomy in royal splendour, began together to enter the Imperial Palace—Geometry and Geodesy, Geonotics and Perspective, Statics and Hydraulics, Music and the Mechanical Arts—all arrayed like the companions of an empress, each handmaiden more lovely than the next.' Cf. Fig. 644.
g D'Elia (3), vol. 1, p. 164.
h Ibid. p. 231.
Chinese scholars recognised that the clockwork of the Jesuit 'self-sounding bells' was not something fundamentally new in Chinese culture. The former were not anxious (in China) to exact the achievements of the indigenous past. The latter were insufficiently learned to expound that past as it deserved. This complicated situation had its effects upon the thinking of Europeans later on, and in particular on that of European historians of science. If the Jesuits so firmly believed in the novelty of the mechanical clocks which they introduced to China, who were the later historians of science, penned within the ring fence of the alphabetic languages, to gainsay them?

In an interesting passage of Ricci's memoirs (not included in Trigault's book) he wrote:

What with the great facility, commodity and freedom of printing, one can see wherever one goes in Chinese houses how enthusiastically they collect books, much more than is the case with us. And by the same token they print far more books in any year than any other nation. And since they lack our sciences, they make many on other matters, useless and even harmful. But for them there was the greatest novelty in our tidings, telling so much of our own, and of all other nations, what with new laws (of religion), new science and new philosophy, so that much about us came to be printed in their books—partly concerning the arrival of the Fathers and the things we brought with us, pictures, clocks, books, descriptions and mechanical things—partly concerning the laws and sciences that we taught—partly concerning the printing of our books or quotations from them—partly concerning the many epigrams and poems which were composed in our honour. And stories true and false concerning us flew about to such an extent that there will be great memory of us in this kingdom for centuries to come—and what is better, good memory.

Thus novelty was the keynote of the Jesuit experience. Inevitably it moulded the picture of the time formed by subsequent historians, strengthening them in their conclusion that the invention of clockwork was a European one. Towards the end of his discussion of this, Sarton (1) crystallised the accepted view in the following words:

I may add that mechanical clocks were not discovered independently in the Far East. The Chinese (and the Japanese) were of course familiar from early days with sundials, they had obtained some knowledge of clepsydras (from the Roman West), and they had learned also to measure time with burning tapers or candles; but they never thought of mechanical clocks until some were shown to them by missionaries....

The application of the clock to Far Eastern usage implied some difficulty, because the Chinese (and the Japanese) did not divide the day into twelve equal hours, but into two unequal periods (day and night) each divided into six equal divisions....

It is true that Ricci and Trigault had something to say of Chinese clocks with driving-wheels which they found on their travels, though they laid little emphasis on them and their descriptions are obscure. It is also true that a number of contemporary
Heinze the introduction of mechanical clocks necessarily created a deeper disruption of ancient usage in the Far East than in the Christian West. The fact that the Chinese (and the Japanese) did not invent them and did not adopt them at all. This can be explained only by the necessity of adapting their ways to the Western ways forced upon them.

Here out of eight statements or suggestions only three are right. This should be a warning to all scholars of the provisional nature of their conclusions, and of the danger of preconceived ideas about the comparative contributions of the cultures of East and West. In the first volume of the present work, we ourselves adopted the generally accepted view of the origins of clockwork, and wrote without hesitation. The last important introduction (from the West to China) was clockwork, a distinctively European invention of the early 14th century. The course of research now obliges us to withdraw this statement, once so apparently well-founded, and with it falls one of the greatest bastions of the opinion that a mechanical penchant was always characteristic of occidental, but not of oriental civilisation.

What then was the accepted view, in closer detail? It held that the first successful achievement of slow, regular, and continuous rotation in time with the diurnal revolution of the stars, by means of an escapement acting upon the driving-wheel of a train known as the chih4 portion and the second as the chih5 portion. The first double-hour straddled midnight and the seventh straddled noon. Ginzell, vol. 1, pp. 464 ff., knew all this well, and the system had been explained with clarity to the Western world by G. P. Bayer (1) as early as 1732. An adequate account was again given by Ideler (1) in 1837. The twelve equal double-hours probably came from Babylon, as Rüppel (1) urged long ago, but the hundredquarters have a strongly indigenous flavour in view of the typical Chinese predilection for decimal systems (cf. Vol. 3, pp. 82 ff.). From the Han onwards the personified spirits of the twelve double-hours were often represented by pottery or terracotta figurines (Fig. 644) having the heads of animals and dressed in dignified robes (cf. Thang Lan (1), pl. 97), oracle-bone researches now show that 'unequal' hours were indeed current in the Shang and early Chou periods, but they were abandoned about the middle of the 1st millennium, and by the Warring States period a full association of duodenary cyclical characters (and perhaps also the animal cycle) with the twelve equal double-hours had become established. There remained, however, in China down to modern times a concurrent system of five unequal night-watches (keng3), each divided into five parts (chihw), and varying in length with the seasons. As we shall see below (pp. 455 ff.), many of the designers of clocks from the 11th century onwards made it their aim to mark these intermittent 'unequal' periods as well as the continuously revolving equal double-hours and quarters. Enshoff (1) and Sarreins (1) have maintained that Ricci introduced mechanical clocks keeping 'unequal' or canonical hours to China. There is no foundation whatever for this statement. For further details on the Chinese horary system see Needham, Wang & Price (1), pp. 199 ff. Opportunity may be taken here of amending a mistake on p. 36 of that work. Correcting itself by the text in fig. 14, para. G 8 should read: 'At each fifth of a night-watch a trip-bug is fixed, so that it strikes the gong at every night-watch and division of a night-watch and at sunrise and sunset.'

Again this is an untenable proposition. The 'unequal' or variable-length hours existed only in Japan. Why should more disruption have been created at their suppression there than that which occurred when the first European mechanical clocks obliged the abandonment of the similar canonical hours in the West? See this latter process see Howe (1). On Japanese variable-hour clocks, which embodied many curious devices such as two foliot bars of different lengths, see J. D. Robertson (1); Rambaut (1); Ward (1); Planchnot (1), pp. 209 ff; but especially Takahayashi (1) and Yamaguchi (1).

No Western ways were being forced upon the Chinese until two and a half centuries after Ricci's time. The phrase is appropriate for the period of the Opium Wars and later treaty-port imperialism, but nobody forced the 18th-century emperors to accumulate thousands of clocks in their palaces, nor any of their subjects to use such machines. Disinterested curiosity reigned in good Father Ricci's golden days.

Vol. 1, p. 343.
One may take an authoritative statement from Bassermann-Jordan, who wrote: "We must place the birth of the wheel-clock around +1300. When clocks are mentioned before that time, either sundials or clepsydras are meant, or else there is always something doubtful about the evidence. . . . The soul of the wheel-clock is the escapement, which hinders the rapid revolution of the wheels. This invention is one of the greatest and cleverest ever made by man, yet the inventor remains unknown and forgotten, commemorated neither by stone nor monument." It was indeed a turning-point, yet these first mechanical time-keepers were not so much of an innovation as used to be supposed. They descended in fact from a long series of complicated astronomical "pre-clocks", planetary models, mechanically rotated star-maps, and similar devices designed primarily for exhibition and demonstration rather than for accurate time-measurement. Traces of these remain from Greek, Hellenistic and Arabic times, but the remains are fragmentary and the texts tantalisingly incomplete. We shall make mention of some of them from time to time.

First let us gain a clear idea of the +14th-century mechanisms, and then vivify this skeleton by a few textual references. The simplest form of the early European mechanical clock drew its power from the rotation of a drum brought about by the fall of a suspended weight. This was connected with trains of gearing in great variety, but the movement of the whole was slowed to the required extent by the escapement device known as the verge and foliot. This can best be appreciated by the accompanying illustrations. Figure 645 shows this type of clock in one of its simplest forms, a bracket-clock of about +1380 from St Sebald's church in Nuremberg, described by Zinner (4), and the diagram in Fig. 646 taken from Berthoud (1) gives a clear drawing.

The essential parts of the device were the crown-wheel, a toothed wheel with projections like right-angled triangles set perpendicularly to its main plane; the verge or rod standing across this wheel and bearing (at right angles to each other) its two pallets or little plates so as to engage with the crown-wheel; and finally the foliot (crazy dancer), i.e., two weights carried one at each end of a bar set at the top of the verge. The method of action was very simple. The torque of the crown-wheel pushed...
one of the pallets out of the way, giving a swing to the foliot, but this only led to the coming into action of the other pallet and then a swing of the inert weights in the opposite direction. In this way the motion of the wheel was arrested alternately by the two pallets. Thus an oscillatory component received its impulses from the weight drive and at the same time imposed a step-by-step or ticking movement upon the train.

The more familiar examples of these early time-keepers are the large 'turret' clocks made for church towers and the like. Here a further complication is introduced, namely a striking train as well as the going train. The early forms of this are particularly interesting because the verge and pallets could act as a bell-ringing device if the swinging foliot weights were replaced by small hammers applied to a bell; the device would then, when released, run wild. It is very probable that the earliest European mechanical clocks had no pointer or dial-face but simply set off a striking arrangement when each hour, or other prearranged time, arrived.

There can be no doubt that many of the component parts of these clocks were Hellenistic in origin. The falling weight had originally, no doubt, been a falling float, such as we see in the Roman anaphoric clocks, where a dial bearing astronomical markings was made to rotate slowly by a cord attached to a float sinking in a clepsydra. The idea of a dial would have come from the same source. Presently we shall see some evidence that this kind of system may not have been unknown in China, though never dominant there. In the West there was also the automobile puppet theatre minutely described by Heron of Alexandria and reconstructed by Beck (4), where slow motion was obtained by the descent of a heavy weight as grains of sand or cereal escaped through an hour-glass hole at the bottom of the container. Thorkildsen (7) has drawn attention to a very interesting passage in the commentary of Robertus Anglicus on the Sphere of Sacrobosco. Writing in +1271, he said:

Now it is hardly possible for any time-keeping device (horologium) to follow the indications of astronomy with absolute accuracy. Yet clock-makers (artifices horologiorum) are trying to make a wheel which will accomplish a complete revolution for each one of the equinoctial circles, but they cannot quite perfect their work. If they could, it would be a really accurate clock, and worth more than any astrolabe or other astronomical instrument for reckoning the hours, if one knew how to do this according to the aforesaid method. The way would be this, that a man make a disc of uniform weight in every part so far as could possibly be done. Then a lead weight should be hung from the axis of that wheel, moving it so that it would complete one revolution from sunrise to sunrise.

These words strongly suggest that at this time attempts were being made to construct a practical weight-driven escapement clock, but that success had not yet been

* On this period see Howgrave-Graham (2); R. A. Brown (1), etc. One of the most famous of these machines is the Dover Castle clock, now in the Science Museum at South Kensington, and often reproduced (so by Ward (1), pl. 171). This is no longer ascribed to its traditional date of +1348, but belongs rather to the end of the century. Yet its plan is of the early type.

* Cf. Price (1).

* Based MS. F. IV. 16, and Bib. Nat. MS. Latin 7398. Tr. Driver (1).
achieved. However, the mercury clock described in the *Libros del Saber de Astronomía*, compiled for King Alphonso X at Toledo about +1276, could have worked satisfactorily. Here the weight-drive was combined with a hollow drum containing twelve compartments and half filled with mercury, the escapement effect being obtained by the flow viscosity of the mercury in passing through small holes in the walls of the compartments (Fig. 647). Why this system did not spread remains puzzling. Of much significance, however, is the fact that it was used to rotate an astrolabic or anaphoric dial.

As for the verge-and-foliot escapement, Frémont (7) must surely be right in his suggestion that it derived from the radial bob type of fly-wheel. This became associated with the upper ends of the worms of Hellenistic screw-presses, originally used for making wine or oil, when later on, in the +15th century, they began to print books. In the +16th and probably earlier, it was used to assist crank action. The originality lay in its combination with the pallets and crown-wheel so that it oscillated back and forth rather than continuously turning. Now one of the greatest mysteries of the early European clocks was the origin of the escapement principle. For a long time it was thought to appear in a strange design found in the notebook of Villard de Honnecourt about +1237, where a cord carrying weights at each end is wound round two axles, one vertical and one horizontal, finally passing between the spokes of a large wheel on the second axle. It was supposed that the motion was periodically checked, and then released on the recoil. The object of the device was to make a figure of an angel turn and point its finger at the sun. Another design was intended to make an eagle turn its head towards the place where the priest and clerks stood to read the Gospel. But it is now agreed that these mechanisms cannot have been escapements, but simply a means of turning the figures by hand. If so, no predecessor for the first European escapement remains—except the Chinese type shortly to be described.

For three hundred years the verge-and-foliot clock remained unchanged, save for

* On the general setting of medieval European engineering, cf. Des Noettes (3); Lynn White (1) and C. Stephenson.

b See the edition of Rico y Sinobas. Cf. Feldhaus (22).

c We say 'escapement effect' because the device was a continuously acting brake and not a true escapement.

d Actually in one way it did, giving rise to the falling drum type of water-clock common in the +17th and +18th centuries (cf. Flanchon (1); Britten (1), p. 12). This has been discussed above in the Section on clepsydras (Vol. 3, p. 328). One of the earliest references to it is thought to be the account of the horologium made by Boethius in 497 for the Burgundian king on behalf of Theodoric, king of the Ostrogoths (Cassiodorus, in Mon. Germ. Hist. (Auct. Antiquiss.), ed. Mommsen, vol. 12, p. 39; also in Migne, Patrologia Latina, vol. 69, col. 539 ff.). On the whole subject see now Bedini (3).

e Cf. p. 91 above.

f Drachmann (7), pp. 156, 158; Fremont (8).

On the general setting of medieval European engineering, cf. Des Noettes (3); Lynn White (1) and C. Stephenson.

b See the edition of Rico y Sinobas. Cf. Feldhaus (22).

c We say 'escapement effect' because the device was a continuously acting brake and not a true escapement.

d Actually in one way it did, giving rise to the falling drum type of water-clock common in the +17th and +18th centuries (cf. Flanchon (1); Britten (1), p. 12). This has been discussed above in the Section on clepsydras (Vol. 3, p. 328). One of the earliest references to it is thought to be the account of the horologium made by Boethius in 497 for the Burgundian king on behalf of Theodoric, king of the Ostrogoths (Cassiodorus, in Mon. Germ. Hist. (Auct. Antiquiss.), ed. Mommsen, vol. 12, p. 39; also in Migne, Patrologia Latina, vol. 69, col. 539 ff.). On the whole subject see now Bedini (3).

e Cf. p. 91 above.

f Drachmann (7), pp. 156, 158; Fremont (8).

On the general setting of medieval European engineering, cf. Des Noettes (3); Lynn White (1) and C. Stephenson.

b See the edition of Rico y Sinobas. Cf. Feldhaus (22).

c We say 'escapement effect' because the device was a continuously acting brake and not a true escapement.

d Actually in one way it did, giving rise to the falling drum type of water-clock common in the +17th and +18th centuries (cf. Flanchon (1); Britten (1), p. 12). This has been discussed above in the Section on clepsydras (Vol. 3, p. 328). One of the earliest references to it is thought to be the account of the horologium made by Boethius in 497 for the Burgundian king on behalf of Theodoric, king of the Ostrogoths (Cassiodorus, in Mon. Germ. Hist. (Auct. Antiquiss.), ed. Mommsen, vol. 12, p. 39; also in Migne, Patrologia Latina, vol. 69, col. 539 ff.). On the whole subject see now Bedini (3).

e Cf. p. 91 above.

f Drachmann (7), pp. 156, 158; Fremont (8).

On the general setting of medieval European engineering, cf. Des Noettes (3); Lynn White (1) and C. Stephenson.

b See the edition of Rico y Sinobas. Cf. Feldhaus (22).

c We say 'escapement effect' because the device was a continuously acting brake and not a true escapement.

d Actually in one way it did, giving rise to the falling drum type of water-clock common in the +17th and +18th centuries (cf. Flanchon (1); Britten (1), p. 12). This has been discussed above in the Section on clepsydras (Vol. 3, p. 328). One of the earliest references to it is thought to be the account of the horologium made by Boethius in 497 for the Burgundian king on behalf of Theodoric, king of the Ostrogoths (Cassiodorus, in Mon. Germ. Hist. (Auct. Antiquiss.), ed. Mommsen, vol. 12, p. 39; also in Migne, Patrologia Latina, vol. 69, col. 539 ff.). On the whole subject see now Bedini (3).

e Cf. p. 91 above.
increasing elaboration of striking trains with complex systems of levers and detents. But towards the end of the 16th century the pendulum was coming into wider technological use, and its property of isochronicity began to attract attention. The first application of it to the clock escapement may have been made by Joost Burgi of Prague in +1612, but more credit is due to Galileo and most of all to Huygens. In +1641, after he became blind, a pendulum clock was built for Galileo by his son Vincenzo. But the main features of the pendulum clock, including even the cycloidal arc of swing, were due to Huygens, who constructed his first successful apparatus in +1657, and whose book Horologium Oscillatorium achieved its final form in +1673. At first the pendulum was combined with the verge and pallets, as may be seen in Berthoud’s diagram (Fig. 648). But about +1680 Wm. Clement devised the familiar anchor escapement, shown by Berthoud in Fig. 649, in which the crown-wheel was replaced by a scape-wheel having teeth in the plane of its rotation. This device has persisted till the present day in many modified forms. Probably its most important modification was the dead-beat escapement introduced by George Graham in +1715; by adjusting the shape of the teeth and pallets this eliminated all that recoil which had been one of the most wasteful features of the early clocks. Then, with progressive solutions of problems such as temperature compensation in the 18th and 19th centuries, we are fully in the modern period, into which it is unnecessary to go further for our present purpose.

In the meantime there had been one other invention of major importance, the application of the spring-drive instead of the falling weight. This permitted the making of portable watches as well as stationary clocks. But it introduced a new difficulty, that of compensating for the variable force exerted as the steel spring ran down; this was overcome by various devices, first an auxiliary spring known as the stackfreed, and then the conical drum known as the fusee. This was a driving barrel of varying diameter, so arranged that the maximal leverage of the cord or chain acting

8. E.g. by Besson (cf. Fremont, 7); see also Beck (1), pp. 191 ff., 313 ff., 457.
9. The value of a pendulum escapement had indeed occurred to Leonardo da Vinci, who made a sketch of one, c. +1490, but this had no immediate influence. His priority was pointed out by Reversion (1).
10. What Burgi was certainly responsible for was the cross-beat foliot escapement which he incorporated in a number of fine astronomical clocks (see von Bertele, 1, 2, 3). This attained a regularity of ±30 sec./day, i.e. only 3% of the error previously usual, and nearly as good as many of the early pendulum clocks. Von Bertele does not believe that Burgi ever used the pendulum. Justus Borgen, to give him his proper name (+1552 to +1632), was Astronomospanius to the emperor, and a collaborator of Tycho and Kepler in Prague, where he lived and worked in the HradCin Castle (cf. Thorndike, vol. 7, pp. 614, 623, 630).
11. At this time J. B. van Helmont was also independently experimenting with the pendulum in relation to time-keeping (De Tempore, ch. 50, in Ortus Medicinae, +1648); cf. Pagel (8), pp. 398 ff., 409.
12. Crommelin (1-4, 6); Usher (1), and ed., p. 219.
13. This invention has often been claimed for Robert Hooke, but the latest examination of the evidence by Lloyd (3) favours Clement. It was important because it allowed the pendulum to swing in an arc of only 3 or 4°, and so reduced the error due to lack of isochronism to a very small value (cf. Ward, 2). See Lloyd (4). Graham was also the inventor of the cylinder escapement (Ward (1), vol. 2), in which the teeth escape through a slit in a rocking cylinder; he also made the first ‘orrey’ (on which see p. 474 below, and Vol. 3, p. 390), and the first mercury pendulum.
14. Usher (3), and ed., p. 501, points out that Peter Henlein of Nürnberg (+1510) cannot have been the originator of the spring watch, as has often been supposed. Extant specimens indicate that the invention must have occurred about the last decade of the +15th century, even perhaps as early as +1475.
Fig. 649. Drawings from Berthoud (I) to show the anchor escapement with pendulum oscillation introduced by Clement in the late 17th century. Left, cross-section; right, the operation of the anchor and escape-wheel.

All these conclusions naturally depend upon the evidence of texts as well as of remaining clocks or their parts. It may be considered as quite certain that the earliest type was in use by about +1310 and that all the characteristic features were assembled by +1335. Yet no +14th-century clock has survived immune from later reconstructions so extensive as to render difficult the restoration of the original condition. One of the earliest literary references is due to Dante, who describes quite clearly in a text of +1319 the gear-work of a striking clock. Authentic accounts of clocks occur in the Chronicles of G. Fiamma for +1335 and +1344; the former one erected in the tower of a palace chapel at Milan, the latter in another tower at Padua. This was due to Jacopo di Dondi, whose son Giovanni, besides constructing a great clock at Pavia in +1364, wrote a splendid horological treatise which has been carefully studied and summarised by Lloyd (1). His clock was an astronomical masterpiece embodying gear-trains of great complexity to portray accurately the motions of the planets, and to show the ecclesiastical festivals, both fixed and movable. The first mention of the verge and foliot, by Froissart, occurs about the same time, in +1368, and this is also the year of the first modern escapement clock in England.

Such was the picture of the development of the mechanical clock as it stood on the basis of researches in European history alone. The invention of the escapement seemed to have occurred at the beginning of the +14th century with no recognisable antecedents. As Bolton wrote: 'Weight-driven clocks come suddenly into notice at this period in a very advanced stage as regards design, though their workmanship was rough. Their previous evolution must have taken a long time, but there is no reliable record of its stages nor of the men responsible for it.' In 1955, however, a way of solving this problem opened out before us. For the Hsin I Hsiang Fa Yao, written in +1092 by a distinguished scientific scholar and civil servant of the Northern Sung dynasty, Su Sung, describes the erection in +1088 of elaborate machinery for effecting the measured slow rotation of an armillary sphere and celestial globe, together

1 Lloyd (I), pp. 655 ff.; Lynn White (7), p. 128. This device (the 'schncke' or snail) seems to have been used almost as soon as the spring itself, and Jacob the Czech of Prague (cf. Lloyd, 8) cannot have been, as is often thought, its inventor, about +1325, though doubtless he improved it (cf. Usher (1), 2nd ed., pp. 305, 307, and Lynn White's review of that book). It was known to Leonardo and originated from a mechanism for spanning powerful crossbows (see Feldhaus (18), p. 95, (21) and Berthelot (5, 6) on Kyeser's Bellifortis of +1405). Cf. pp. 205 above, 526 below.
3 Paradiso, x, 153 and xxiv, 13.
5 MSS. in Venice, Milan, Padua, Etion and the Bodleian.
6 It included elliptical gear-wheels, indicators on endless belts of hinged links, and an equatorium similar to that in the Chaucer MS. described and explained by Price (2). A complete working model was made and exhibited at the South Kensington Science Museum in 1914; it is now at the Smithsonian Institution at Washington. On the de Dondi family see Thorndike (1), vol. 3, pp. 316 ff.
7 In Li Ouyihe Zanzue. We cannot be quite sure, however, that this was driven by a falling weight and not by a water-wheel (cf. below, p. 543).
8 See Howgrave-Graham (1).
10 联接轴承 域
with a profusion of time-keeping jack-work. The book’s pithy title might be translated ‘New Design for an Astronomical Clock’ (lit. ‘Essentials of a New Method for (Mechanising the Rotation of) an (Armillary) Sphere and a (Celestial) Globe’). The whole ‘Combined Tower’ (Ho Thai) could in fact have been nothing more nor less than a great astronomical clock necessitating some form of escapement. And indeed the full translation and study of the elaborate and detailed text \(^* \) not only showed that this was the case, but revealed the considerably earlier origins and development of time-keeping machinery recorded for posterity in Su Sung’s remarkable historical introduction. In this way six centuries of Chinese horologial engineering, previously hidden, came to light.

\(^* \) Su Tzu-Jung and his Astronomical Clock

To readers of this work Su Sung (Su Tzu-Jung) is by now not an unfamiliar figure. His work has been mentioned frequently in the Section on astronomy \(^{b} \) in many connections. But he was not only an astronomer and mathematician, he was also a naturalist, for in +1070 or thereabouts he produced, no doubt with a number of assistants, the best work of his age on pharmaceutical botany, zoology and mineralogy, the \(^{b} \)Pen Tshao Thu Ching\(^{c} \) (Illustrated Pharmacopoeia). Still today this treatise contains priceless information on subjects such as iron and metallurgy in the +11th century, or the use of drugs such as ephedrine, and we have often referred to it already, notably in the Section on mineralogy.\(^{c} \) Su Sung was primarily an eminent civil servant, but one of those (by no means few in medieval China) who mastered the scientific and technical knowledge of his time and found opportunities for employing it in the service of the State.

Su Sung (Su Tzu-Jung) was born in +1020 in Fukien, not far from Chhiüanchow, the city which Marco Polo was later to know as to Zayton. He pursued his career in the bureaucracy with considerable success, associated neither with the Conservative party, though his friends were mostly members of it, nor with that of the Reformers; and he became a specialist in administration and finance.\(^{b} \) But as was usual in those days, he also received foreign assignments, and in +1077 was despatched as a diplomatic envoy to the Chhi-tan people of the Liao kingdom in the north. Yeh Meng-T\(^{e} \)Te, in his Shih-Ch\(^{f} \), states that nothing could have been more embarrassing. When he asked which of the two calendars was right, Su Sung told him the truth, with the result that the officials of the Bureau of Astronomy and Calendar were all punished and fined. Moreover, since later on (foreign) ambassadors might be repeatedly refused reception because someone (at the Sung capital) did not know about the differences in the beginnings of months, and how the Sung envoy had been allowed to have their way, the emperor decreed that national representatives should follow their own choice of date in celebrating festivals, and that (mutual tolerance of calendars) should be observed for the honour of the empire.\(^{f} \)

At the beginning of the Yuan-Yu reign-period (+1086) the emperor ordered Su Sung to reconstruct the armillary clock (has \(^{i} \)), and it exceeded by far all previous instruments in elaboration. A summary of the specifications was handed down to Yuan Wei-Ch\(^{i} \), Director of protocol in the Chhi-tan (Liao) Foreign Office, who could in fact have been nothing more nor less than an essay was set on the general principles of the heavens and the earth as manifested in the (structure of the) calendar. He came out top of the list, and ever afterwards he was particularly interested in (astronomy and) calendrical science.

Later on, at the end of the Hsi-Ning reign-period (+1077), (Su Sung) was sent as ambassador to offer congratulations (to the Liao emperor) on the occasion of his birthday, which happened to fall on the winter solstice. (At this time) our (Sung) calendar was ahead of that of the Chhi-tan (Liao) kingdom by one day, and thus the assistant envoy considered that the congratulations should be offered on the earlier of the two days. But the secretary of protocol in the Chhi-tan (Liao) Foreign Office declined to receive them on that day. As the (Liao) barbarians had no restrictions on astronomical and calendrical study,\(^{e} \) their experts in these matters\(^{e} \) were generally better (than those of the Sung), and in fact their calendar was correct. Of course, Su Sung was unable to accept it,\(^{b} \) but calmly and tactfully engaged in wide-ranging discussions on calendrical science, quoting many authorities which puzzled the (Liao) barbarian (astronomers)\(^{c} \) who all listened with surprise and appreciation. Finally he said that after all, the discrepancy was a small matter, for a difference of only a quarter of an hour would make a difference of one day if the solstice occurred around midnight, and that is considered much only because of convention.\(^{c} \) The (Liao) barbarians could not reject this argument, and Su Sung was permitted to offer congratulations on the day desired (by his mission).

Upon his return he reported to the emperor Shen Tsung, who was very pleased and said that nothing could have been more embarrassing. When he asked which of the two calendars was right, Su Sung told him the truth, with the result that the officials of the Bureau of Astronomy and Calendar were all punished and fined. Moreover, since later on (foreign) ambassadors might be repeatedly refused reception because someone (at the Sung capital) did not know about the differences in the beginnings of months, and how the Sung envoy had been allowed to have their way, the emperor decreed that national representatives should follow their own choice of date in celebrating festivals, and that (mutual tolerance of calendars) should be observed for the honour of the empire.\(^{f} \)

\(\text{Lin Yen Yu}^{4} \), tells us how the opportunity came to him to utilise his astronomical and calendrical knowledge.\(^{2} \)

When Su Tzu-Jung was taking the provincial examinations (in his youth), it happened that an essay was set on the general principles of the heavens and the earth as manifested in the (structure of the) calendar. He came out top of the list, and ever afterwards he was particularly interested in (astronomy and) calendrical science.

\(^{4} \) This book was written about +1130. It contains two versions of the story (ch. 3, pp. 148 and ch. 9, pp. 79-80), which are conflated here. \(^{b} \) Peking

\(^{e} \) On this aspect of the State’s support of astronomy in medieval China, see above, Vol. 3, pp. 192 ff.

\(^{c} \) These men were of course Chinese also, but they had taken service with the northern ‘barbarian’ dynasty under the reign of the ruling house and aristocracy, nomadic until a short time before, and still tribal in character.

\(^{f} \) As a high official of the Sung dynasty, he naturally had to adhere to the Sung calendar. In Chinese custom the promulgation of the calendar by the emperor was a charismatical right and duty corresponding somewhat to the issuing of minted coins, with image and superscription, in occidental countries. Acceptance of the calendar signified acceptance of Chinese imperial authority.

\(^{2} \) Cf. Maspero (a), p. 258. Owing to an interpolation method then used for plotting the variation of gnomon shadow lengths, Ho Châng-Thien\(^{a} \) missed a solstice in +435 because it occurred half an hour before midnight, but in +440 it occurred three hours after midnight.

\(^{a} \) This part of the story is reported in very similar terms by Chang Pang-Chi\(^{a} \) in his Mo Chung Man Lu\(^{a} \) (Recollections from the Literary Cottage), ch. 2, pp. 154 b, written about +1131.
The historical significance of the mechanical rotation of an observational astronomical instrument (a clock-drive) has already been discussed in Vol. 3, pp. 339ff.; cf. also p. 496 below.

477. MECHANICAL ENGINEERING

of Astronomical Observations (Northern Region), (Tung Kuan Ch'eng ?). The original model was due to Han Kung-Lien, a first-class clerk in the Ministry of Personnel, who was a very ingenious man. By that time Su Sung had become Vice-President (of the Chancellery Secretariat) and simply gave the ideas to him. He could always carry them out, so that the instrument was wonderfully elaborate and precise. When the (Chin) barbarians captured the capital (Khaifeng) they destroyed the astronomical clock-tower (Ho Thai) and took away with them the annulary clock. Now it is said that the design is no longer known, even to the descendants of Su Sung himself.

These concluding remarks will be elucidated hereafter; all that we need to note now is the high reputation of Su Sung and his assistants in the subsequent generation.

Su's promotion to Vice-Minister took place some twelve years after his embassy and nearly twenty years after the appearance of his pharmacopoeia. It must have been partly the result of the success of the complete working wooden pilot model of the clock, which had been set up in the Imperial Palace at Khaifeng in the previous year (+1088). In +1090 the sphere and globe were cast in bronze, and in +1094 the writing of Su Sung's horological monograph was finished and presented. By this time he was 75, the holder of many honourable titles, and one of the Deputy Tutors of the Heir Apparent. Dying in +1101, he did not see the tragedy of the fall of the capital two decades later and the flight of the Sung empire to the southern provinces.

Our central point of interest now is his description of the power-drive of the sphere, globe and jack-work, together with the escapement which controlled its movement. This is contained in the third chapter of the Hsin I Hsiang Fa Yao. But first a word or two on the transmission of the text to us. Though available only in the north at the time of the preceding quotation, it was printed in the south (in Chiangsu) by Shih Yuan-Chih in +1172. A copy of this edition was owned by the late Ming scholar Chhien Tseng (+1629 to +1699), who reproduced it in a new edition with extreme precision far exceed all those made during the past thousand years.

Chhien Hsi-Tsu (+1799 to 1844) in the latter year. With a solicitude for the history of science somewhat unexpected in the imperial editors of +1781, they wrote:

The dynasty of your Imperial Majesty now has instruments which in excellence and precision far exceed all those made during the past thousand years. Of course the invention of Su Sung is not to be compared with them. However, we may have something to learn by paying attention to these old matters, for they show that the people of that time were also interested in new inventions... His book should be considered as something indeed valuable to the descendants of Su Sung himself.

The historical significance of the mechanical rotation of an observational astronomical instrument (a clock-drive) has already been discussed in Vol. 3, pp. 339ff.; cf. also p. 496 below.

27. MECHANICAL ENGINEERING

Fig. 670. Pictorial reconstruction of the astronomical clock-tower built by Su Sung and his collaborators at Khaifeng in Honan, then the capital of the empire, in +1090. The clockwork, driven by a water-wheel, and fully enclosed within the tower, rotated an observational armillary sphere on the top platform and a celestial globe in the upper storey. Its time-announcing function was further fulfilled visually and audibly by the performances of numerous jacks mounted on the eight superimposed wheels of a time-keeping shaft and appearing at windows in the pagoda-like structure at the front of the tower. Within the building, some 42 ft. high, the driving-wheel was provided with a special form of escapement, and the water was pumped back into the tanks periodically by manual means. The time-announcer must have included conversion gearing, since it gave 'unequal' as well as equal time-signals, and the sphere probably also had this (see p. 456). Su Sung's treatise on the clock, the Hsin I Hsiang Fa Yao, constitutes a classic of horological engineering. Orig. drawing by John Christiansen.

The staircase was actually inside the tower, as in the model of Wang Ch'un-To (2).

The historical significance of the mechanical rotation of an observational astronomical instrument (a clock-drive) has already been discussed in Vol. 3, pp. 339ff.; cf. also p. 496 below.

29 N C
Another point of great interest is that it was by no means the only book on astronomical clockwork written during the Sung dynasty. The bibliographical chapter of the Sung Shih also records a Shui Yin Hun Thien Chi Yao (Essentials of the Technique of) written by Water-Power) written by Juun 'Thai-Pa. But nothing can be ascertained about this author, or his work, or date.

We are now in a position to study the illustrations in Su Sung’s book and the working drawings of reconstructions resulting from modern research. Figure 650 shows a pictorial presentation of the general external appearance of the ‘Combined Tower’ (Ho Thai) or Tower for the Water-Powered Sphere and Globe (Shui Yin Hun Thien Thai). The armillary sphere (hun 4) is on the platform at the top, the celestial globe (hun hsiang 2) is in the upper chamber of the tower, half sunk in its wooden casing; and below this stands the pagoda-like façade (mu ka 4) with its five superimposed storeys and doors at which the time-announcing figures (jacks) appeared. On the right the housing is partly removed to show the machinery and the water-storage tanks. The scale of the whole is clearly deducible from the internal evidence of the text, and the height must have been between 30 and 40 ft. in all.

Su Sung’s general diagram of the works appears in Fig. 651, but its explanation may best be followed in the modern drawing of Fig. 652.a The former sees the structure from the south or front, the latter from the south-east. The main driving-wheel (shu lun 2) 11 ft. in diameter (Fig. 653), carries 36 scoops (shou shu lu 2) on its circumference, into each of which in turn water pours at uniform rate from the constant-level tank (phing shui lu 2). The main driving-shaft of iron (tieh shu chu) 4), with its cylindrical necks (yuun hsiang 13) supported on iron crescent-shaped bearings (tieh

a Ch. 206, p. 104.
b Su Sung’s own picture of this has already been given in Vol. 3, Fig. 164, as also in Needham, Wang & Price (1), fig. 5, and in Needham (38), fig. 6. For this pictorial reconstruction we are much indebted to the artist Mr John Christiansen.
c Within a particular culture ideas can show extraordinary tenacity. When Khang Yu-Wei wrote the first draft of his magnificent Utopia in 1885, he proposed (Pt. 2, ch. 4), p. 87 p. that there should be ‘Time Towers’ (tieh hsiang Fa 4) in every city and along the main roads. These should have elaborate clocks, and orreries with models of the sun, moon, earth and planets, giving graphic representation of the various aspects of time, and explaining eclipses, etc., to the people as well as warning them away from the old and inconvenient lunar calendar. Su Sung was, as it were, standing behind Khang Yu-Wei’s shoulder as he wrote. How delighted both of them would have been with the Planetarium and astronomical museum frequented by the people of Peking today!

A provisional engineering drawing based on further study of the text by Combridge (1) and approximately to scale, is reproduced in Fig. 652a.
a Su Sung, as was usual with medieval Chinese engineers, always describes components of machinery by the cardinal points, upper pieces being named ‘heavenly’ and lower ones ‘earthly’. Elsewhere (Needham (38), figs. 9 and 10) I have reproduced two excellent scale drawings by Wang Chien-Ti (2), who constructed a model of the clock-tower in Peking in 1958. One of these is an approximately isometric projection viewed from the south-east, the other is a cross-section seen from the east. The former therefore corresponds in orientation to our Figs. 650 and 652a. Photographs of the model are reproduced in Anon. (19), fig. 20; Li Jen-I (1) and Combridge (2).

The whole cycle of scoops filled once in every hour, and consumed in one double-hour about one and a half tons of water.
Fig. 652a. The ‘Water-Powered Armillary (Sphere) and Celestial (Globe) Tower’ (Shui yun huan) of Su Sung (+ 1092): detailed diagrammatic reconstruction of the power and transmission machinery (Needham, Wang & Price, 1). 10, diurnal motion gear-ring (thien yun han) of the armillary sphere; 11, celestial globe (hun huan); 13, split-ring meridian circle (thien ching shang huan) of the celestial globe; 14, single-ring horizon circle (thien huan huan) of the celestial globe; 15, time-keeping shaft (chi lun chu); 17, upper bearing beam (thien chhu); 18, celestial gear-wheel (thien lun); time-keeping shaft-wheel no. 1; 19, equatorial gear-ring (khii tao yu) of the celestial globe; 20, wheel for striking the double-hours of the day by bells-and-drums (thien chung huan lun) — time-keeping shaft-wheel no. 2; 22, wheel for striking quarters by bells-and-drums (thii kii huan lun) — time-keeping shaft-wheel no. 3; 23, wheel with jacks reporting the beginnings and middles of double-hours (thii chu chang tii lun) — time-keeping shaft-wheel no. 4; 24, wheel with jacks reporting the quarters (thii ho chang lun). 25, night clepsydra indicator-rod wheel for striking the ‘unequal’ time-interval (thii chung lun). This assembly (seen in the foreground of Fig. 654) drives two components. A suitably placed pinion connects it with the time-keeping gear-wheel (thii chu lun) which rotates the whole of the jack-work borne on the time-keeping shaft (chi lun chii lun). 27. MECHANICAL ENGINEERING 453
consists of eight superimposed horizontal wheels, seven carrying round the jacks (ssu chhen). Since each of these wheels is from 6 to 8 ft. in diameter, the total weight involved must have been very considerable, so the base of their shaft is fitted with a pointed cap (tsuan) and supported in an iron mortar-shaped end-bearing (thieh shu chiu).

The jack-work wheels performed a variety of functions, their figures either appearing with placards on which the time was marked, or ringing bells, striking gongs or beating drums as they made their appearances in clothes of different colours at the pagoda doorways. Su Sung’s picture of one of these time-keeping wheels is shown in Fig. 655. Their rotation, however, was not the only duty of the time-keeping shaft.

a Patterns of machinery repeat themselves in a rather remarkable way. If one looks at the sketch of the works of the water-mill at Stratford near West Harptree in Somerset, offered by Stow (1), p. 140, as a typical example of an 18th-century corn-mill, one is surprised to find Su Sung’s design repeated in every particular—the vertical drive-wheel, the right-angle gearing, and the two vertical transmission shafts one of which drives the hoist and the other the millstone. Of course no direct connection is suggested. Another curious parallel exists in the 15th or 16th-century round dovecot tower at Dunster in Somerset, which has been discussed by Wailes (6). On the Habrecht family see particularly Bassermann-Jordan (1), pp. 89 ff., 99 ff. A check in Ungerer (1) shows that 15 monumental clocks of major importance in Europe have one or more horizontally rotating jack-wheels (seven in Germany, two in France, and one each in England, Holland, Czecho-slovakia and Italy.)
27.

MECHANICAL ENGINEERING

for at its upper end it engaged by means of oblique gearing a and an intermediate idling
pinion with a gear-wheel on the polar axis of the celestial globe (Fig. 6S2). The angle
of these gears corresponded of course with the polar altitude at Khaifeng. Now the
text contains a number of notes which record improvements in the clock, probably
dating from the last years of the + 11th century, and in these an alternative globe drive
is given, the uppermost gear-wheel (thim lun I) rotating an equatorial gear-ring (chhih
tao ya Z) on the globe (Fig. 6S2a).b Possibly the original gearing proved difficult to
maintain. c
We must now return to the main vertical transmission-shaft and the second component which it drives. Its uppermost end provides the power for the rotation of the
armillary sphere. This is effected by right-angled gears and oblique gears a connected
by a short idling shaft. The oblique engagement is made with a toothed ring called the
diurnal-motion gear-ring (thim yun huan 3) fitted round the intermediate nest or shell d
a This can hardly have been bevel gearing in the modern sense, but closer description is impossible,
for Su Sung does not explain it in sufficient detail. According to Woodbury (z), bevel gearing appears
first in Leonardo and becomes common among the + 16th-century engineers (Besson, Ramelli, etc.).
But the de Dondi clock of + 1364 incorporates a small obliquely cut pinion.
b Su Sung's original illustrations of these two forms of globe drive are reproduced in Needham,
Wang & Price (I), figs. 21, 28, and in Needham (38), figs. 14, IS.
C An alternative and more subtle suggestion, due to Mr John Combridge, proposes that the equatorial
drive was really additional to the polar axis drive in some clock-towers, the latter being used for the
motion of a sun model round the celestial globe, while the former assured the sidereal rotation, conversion being effected by appropriate gearing. This is strongly supported by the mention of a gear-ring
of 478 teeth in the equatorial drive (Hsin I Hsiang Fa Yao, ch. 2, p. 2a), probably a scribal error for
487, because 487 x t = 36Si, thus being the smallest whole number which will give this year-length
conveniently (cf. Needham, Wang & Price (I), p. 36). Hence conversion gearing is to be inferred. The
same figure (always with the same inversion) crops up at several places in Su Sung's book, and seems
to betray wherever it does so the existence of a sidereal motion as well as the clock's obvious solar
motion. As the same number of teeth appears again in one of the descriptions of the drive to the armillary
sphere (Hsin I Hsiang Fa Yao, ch. I, p. I7a), there is a distinct probability that the sphere had a
sidereal drive to its intermediate component. Work on this is still in progress (cf. Combridge, 2).
Mr Comb ridge has also studied the question of the mechanical conversion of solar to sidereal time
implicit in the structure of the time-keeping shaft. The five upper wheels with their jack-work must
have indicated equal double-hours and quarters, but the sixth and seventh wheels announced sunrise,
sunset, the variable night-watches and other' unequal' events. He believes that the eighth wheel was
not fixed to the time-keeping shaft but free to rotate on it at an annual rate and driven round by appropriate conversion gearing including 487 teeth on the eighth wheel (cf. Needharn, Wang & Price (I),
p. 34), 586 teeth on the seventh, and a lay-shaft with 10- and I2-toothed pinions connecting them. The
jacks and trip-lugs were mounted on radial arms pivoted like the ribs of a fan (cf. the dusk and dawn
culmination diagrams in Hsin I Hsiang Fa Yao, ch. 2, pp. 14afi"., one of which is reproduced as fig. 70
by Needham, Wang & Price), and these were controlled automatically by a cylindrical iron cage penetrating the sixth and seventh wheels and free to slide along their noon-to-midnight diameters. The
position of the cage in its guiumg slots at any season of the year was determined by a horizontal eccentr~c
cam on the upper face of the sidereal eighth wheel consisting of 61 • clepsydra float indicator-rods' of
appropriate lengths (cf. Needham, Wang & Price (I), p. 39). Thus the cage travelled slowly to and fro
in an annual cycle and regulated the solar signalisations automatically. Such a device is implied rather
than described in the text, but its assumption elucidates many hints and details formerly quite obscure
(cf. Combridge, 2).
d From Sect. 20 on astronomy (Vol. 3, p. 352) it will be remembered that the armillary spheres of
this period had three nests or shells of rings. The outer one, the Component of the Six Cardinal Points
(liu ha i-4), had the meridian, horizon and equator. The middle or intermediate one, the Component of
the Three Arrangers of Time (san chhen is), had the solsticial colure, equator and ecliptic. The innermost one, the Component of the Four Displacements (ssu yu i 6), was a polar-mounted declination ring
carrying the sighting-tube.

27.

MECHANICAL ENGINEERING

457

of the armillary sphere not equatorially but along a declination parallel near the
southern pole. a In this case also the original model proved unsatisfactory and
improvements were made as time went on. We know that the main vertical transmission-shaft was made of wood and nearly 20 ft. long. This must soon have showed
itself to be mechanically unsound, and in the later variants (probably c. + 1100)
it was first shortened and finally abolished altogether. These designs are shown
in the inset in Fig. 6S2a. In the first modification the main vertical transmissionshaft had no other duty than to turn the chief time-keeping gear-wheel, while
in the second, the' earth-wheel' pinion (ti ku I) connected the main driving-shaft
directly with the time-keeping gear-wheel itself, so that no transmission-shaft
was necessary. But in both cases the motive power was conveyed to the armillary
sphere on the upper platform by means of an endless chain-drive (thim thi2) rotating
three small pinions (ku 3) in a gear-box (thim tho4-); see Fig. 410. In the final design
the chain-drive achieved shorter and therefore more efficient form. This feature of
the clock may perhaps be considered the most remarkable of all for its time (+ 11th
century), for although an endless belt of a kind had been incorporated in the magazine
arcuballista of Philon of Byzantium (- 3rd century)b there is no evidence that this
was ever built, and it certainly did not transmit power continuously. A likelier source
for Su Sung's chain-drive may be found in the square-pallet chain-pump so widespread in the Chinese culture area, c a device the origin of which we have traced back
at least to the + 2nd century, and probably to the + 1st. Of course this also was for
conveying material and not for transmitting power from one shaft to another-hence
the originality of Su Sung and his assistants, to whom perhaps indeed all true chaindrives are owing. d Such is the interest of this feature that it may be worth while to
give the description of it in the words of Su Sung himself: e
The chain-drive (lit. celestial ladder) is 19·5 ft. long. The system is as follows: an iron
chain with its links joined together to form an endless circuit (thieh kua lien chou tsa S) hangs
down from the upper chain-wheel which is concealed by· the tortoise-and-cloud (column
supporting the armillary sphere centrally), and passes also round the lower chain-wheel
which is mounted on the main driving-shaft. Whenever one link (kua 6) moves, it moves
forward one tooth (chii') of the diurnal motion gear-ring and rotates the Component of the
Three Arrangers of Time, thus following the motion of the heavens.
A brief description of the water-power parts must follow here. Water stored in the
upper reservoir (thim chhih 8) is delivered into the constant-level tank (phing shui
a In our reconstruction the length of the idling shaft is exaggerated. The main vertical transmission
shaft came right up through the central column under the armillary sphere.
b See Beck (3) and Schramm (I). This machine will be discussed further in the Section on military
technology in Vol. 5 below.
C See above, pp. 339 ff.
d Cf. the discussion already given in Sect. 27 b (pp. 109ff. above). It may well be, moreover, that Su Sung
and Han Kung-Lien were not the first to use the chain-drive in an astronomical clock. As we shall
shortly see (p. 471) it probably goes back to one of their predecessors, Chang Ssu-HsUn, about +978.
e Hsin I Hsiang Fa Yao, ch. 3, p. 26a; tr. auct.
6;t8


part clear, enabling the reconstruction of Fig. 658 to be made with some assurance. a
The whole mechanism was called the 'celestial balance' (thien heng) and it did indeed depend upon two steel-yards or weighbridges upon which each of the scoops acted in turn. The first of these, the 'lower balancing lever' (chu heng), prevents the fall of each scoop until full, b by means of a 'checking fork' (ho chha). The basic principle is thus at once revealed, the determination of standard time units by the division of a constant flow of water into equal parts by a repeated process of accurate and automatic weighing in scoops carried on the driving-wheel. After each weighing operation the wheel is released so that it can make one step forwards under the power provided by the combined weight of several previously filled scoops (i.e. those of the quarter-terribly between 3 o'clock' and '6 o'clock' on the wheel as seen in Fig. 651). Release takes place as follows: once the weight of water overcomes the counterweight on the lower balancing lever and trips the checking fork, the scoop swings on its pivot in free fall and smartly trips by means of its projecting pin a second lever, the 'coupling tongue' (kuan shethylene). This is connected by means of a chain (thien thiao) c with another weighbridge, the 'upper balancing lever' (thien

a A beautiful working model of the escapement, using fine sand as the motive fluid, and keeping time within ± 10 to 20 see./hour, was constructed by Mr. John Cambridge of the Engineering Department of the General Post Office in 1961, and demonstrated to the History of Science Colloquium at Worcester College, Oxford, in July of that year (Anon. (61); cf. Fig. 659). During its construction (as was foreseen would be the case, Needham, Wang & Price (1), p. 58), several features were found necessary which we had not been able to visualise clearly from the study of the text alone but which can now be seen to be useful with it. Further models followed, and valuable conclusions drawn from experiments in engineering study have now been published (Combridge, 1). Thus (a) the scoops (preferably cylinder-shaped) must each be counterweighted and free to swing on transverse axles fitted round the rim of the driving-wheel, within a range delimited by back-stops, (b) there must be very little distance between the checking fork of the lower balancing lever and the coupling tongue which operates the release through the upper balancing lever, (c) the left-hand end of the upper balancing lever must be connected by a short length of chain with the free end of the right upper lock (cf. Needham, Wang & Price (1), pp. 23, 57 ff.; the chain can be seen hanging down in Fig. 657), and (d) the two upper locks must immobilise the projecting ends of the spoked. The function of the two locks, formerly uncertain, is therefore now quite clear. In Prof. Aubrey Burstall's model, the first to be attempted (Burstall, 2), a damping effect was produced by having the lower part of the driving-wheel dip into the sump, but the time-keeping was found to be too inaccurate and in consequence this was unnecessary, there is no positive evidence for it in the text, and the known dimensions of the whole clock-tower do not favour it. It would be interesting to know, and it should be possible to find out, whether the time-keeping properties of the Chinese water-clocks with linear escapement clocks were better or worse than the earliest Western verge-and-foliot clocks. In an excellent paper Ward (a) has constructed a semi-logarithmic plot of the error in seconds per day, which ranges from the order of 1000 in + 1350 to 0 0000 in 1962. Judging by the performance of the Combridge models, the daily error in seconds would seem to have been less than 100 as early as the end of the 13th century.

b or nearly full. This is an important point, for although the main part of the time-keeping depended upon the constancy of flow of the water, as if from a clepsydra, adjustment of the weight on this weighbridge could permit the scoops to descend when less than full, and so the time-keeping could be regulated, within certain limits, by mechanical means.

c 天衛 2 槱衛 1 槱興 3 槱夸 4 天衛

The bearings of these norias (Fig. 656) were supported on crutched columns (chha shou chu). We can now examine what Bassermann-Jordan calls the soul of any time-keeping machine, namely the escapement. All that Su Sung's craftsmen could depict of it for his book is seen in Fig. 657, but fortunately the text is elaborate and for the most

Fig. 656. Upper and lower norias with their tanks and the manual wheel for operating them (Hsin I Hsiang Fa Yao, ch. 3, p. 188). Legends in small characters, from left to right, upper row: ya thien shao, right upper lock; thien chuan, upper link; to thao shao, left upper lock; kuang chuan, axle or pivot; thien than; long chain; thien chhuan, upper counter-weight. Lower row: shtu shu heng, sump; ko chha, checking fork of the lower balancing lever, shu heng; kuang sheth, coupling tongue; chu chhuan, main, i.e. lower, counter-weight.

Fig. 657. The 'celestial balance' (thien heng) or escapement mechanism of Su Sung's clockwork (Hsin I Hsiang Fa Yao, ch. 3, p. 188). Legends in small characters, from left to right, upper row: ya thien shao, right upper lock; thien chuan, upper link; to thao shao, left upper lock; kuang chuan, axle or pivot; thien than; long chain; thien chhuan, upper counter-weight. Lower row: shtu shu heng, sump; ko chha, checking fork of the lower balancing lever, shu heng; kuang sheth, coupling tongue; chu chhuan, main, i.e. lower, counter-weight.
The upper balancing lever (which gives its name to the whole escapement) carries a counterweight at its right-hand end, and is fitted at its fulcrum with a crosswise axle. For fuller details see Needham, Wang Ching-kung.}

The progress of experimental study, and the ambiguity of the word kuo in the Chinese calendars, however, gave 100 fēn to the kuo; cf. Maspero (4), p. 211.

The torque-providing weight of water in the double-hours right-hand quadrants, the right-hand lower quadrant, the left-hand lower quadrant, the left-hand upper quadrant, and the right-hand upper quadrant fall under their own weight again to arrest the following spoke. Meanwhile the left-hand upper lock (16) has been raised in ratchet fashion as the spoke has passed through, and now falls again behind the next spoke so as to prevent any recoils of the wheel. The return of the linkwork to its original position, the levers (6, 7) and (11) regain their normal places ready for tripping in the following cycle. All the 'tick' processes are accomplished in an instant.

The progress of experimental study, and the ambiguity of the word kuan, induced Combridge (4) to propose the useful change in technical terminology. The 'stopping tongue' of Needham, Wang Ching-kung, considered as the right in our analysis; (5), scoop (ko chha) being filled by (4), water jet from constant-level tank; (5), small counterweight; (6), checking fork (ko chha) tripped by a projecting pin on the scoop, and forming the near end of (7) the lower balancing lever (shien heng), with (8) its lower counterweight (shien chhiau); (9), coupling tongue (kuan shi), connected by (10) the long chain (thien chiao) with (11) the upper balancing lever (thien heng), which has at its far end (12) the upper counterweight (shien hau), and at its near end, (13) a short length of chain (shien hau) connecting it with (a) the upper lock beneath it; (14), right upper lock (yu thien shou), considered as the left in our analysis.

The water jet is seen issuing from a dragon mouth (cf. Fig. 657 and p. 104 below). At the beginning of each 24-second-time interval the driving-wheel is immobilised by the action of the right lock (a) on the spoke (1). As water (4) from the constant-level tank enters the scoop (5), the scoop-holder counterweight (5) is first overcome, and the excess weight of water then rests on the checking fork (6) of the lower balancing lever (7). When the excess overcomes counterweight (8) the lever is suddenly tripped, and the scoop-holder rotates about its pivot so as to fall sharply upon the coupling tongue (9) and trip it in its turn. The long chain (10), which passes freely between the prongs of the checking fork (6), is thus abruptly pulled downwards, depressing the right-hand end of the upper balancing lever (11) with the aid of the upper counterweight (12), normally insufficient to effect this. Momentum is gathered from the loaded scoop for a brief instant while the levers swing, then the short chain of the upper link (13) tightens and jerks the right upper lock (a) out of the way of the spoke. The wheel now makes one quick step clockwise under the driving force of the filled scoops in the lower right-hand quadrant, while the near or left-hand end of the upper balancing lever and the right-hand upper lock fall under their own weight again to arrest the following spoke. Meanwhile the left-hand upper lock (16) has been raised in ratchet fashion as the spoke has passed through, and now falls again behind the next spoke so as to prevent any recoils as the wheel stops. With the return of the linkwork to its original position, the levers (6, 7) and (11) regain their normal places ready for tripping in the following cycle. The ‘tick’ processes are accomplished in an instant.

Price has shown, therefore, that ‘movement’ here must mean, not one release step or ‘tick’,
Fig. 691. Horizontal windmill of the Persian type with shield-walls, put forward as a new design in the Chhi Chhi Thu Shuo of 1627 (ch. 3, p. 408), because present in the engineering treatise of Verantius (+1615). At the top: 'The Eleventh Diagram' (of the Milling section).

Fig. 692. West Indian horizontal windmill working a sugar-mill (cf. Fig. 459), a drawing in Labat, 1696. Identical in design with the windmills of Seistan, this must surely have been a transmission from Muslim Spain.
This last expression seems to be rather a rare one, absent both from the copious engineering vocabulary of Su Sung himself and from the mass of other texts which concern the development of clockwork in medieval China. Nevertheless, it can only refer to the springs which worked the bells and drums as the figures on Su Sung's jack-wheels made their daily rounds.\(^a\) The text is a notable one, for it was adduced in the time of the Jesuits by the few Chinese scholars who knew enough on such subjects in those days to point out that their Renaissance clocks were not the first which had been known in China.\(^b\)

This completes the account of the hydro-mechanical clockwork of Su Sung's great astronomical tower, set up in the form of a working wooden pilot model in the imperial palace at Khai-feng in +1088. It was the time of our Domesday Book and the youth of Abelard. Two years later the metal parts, i.e. the armillary sphere and celestial globe, were duly cast in bronze. The writing of the explanatory monograph must have been well under way in +1092, and it was finally presented to the throne in +1094. Prefixed to it is a remarkable memorial in which Su Sung not only describes the principles of the clock itself, but gives a historical disquisition on all instruments of a similar kind which had existed in previous centuries. This it was which illuminated many other texts not previously comprehensible, permitting the establishment of a history of Chinese clockwork,\(^c\) the outline of which will be found in the following pages. First, however, we must pause a moment to read a little in Su Sung's memorial, for it contains many matters of the greatest interest. He wrote:\(^d\)

When formerly (i.e. after the edict of +1086 ordering the construction of a new clock) I was seeking for help, I met Han Kung-Lien,\(^1\) a minor official in the Ministry of Personnel, who having mastered the Chiu Chang Suan Shu (Nine Chapters of Mathematical Art),\(^e\) often used geometry (lit. the methods of right-angled triangles) to investigate the degrees of (motion of the) celestial bodies. Thinking it over, I also became convinced that the ancients used the techniques of the Chou Pei (Suán Chéng)\(^f\) in studying the heavens ... I therefore told (Han Kung-Lien) about the apparatus of Chang Heng,\(^2\) I-Hsing\(^3\) and Liang Ling-Tsan,\(^4\) and the designs of Chang Ssu-Hsin,\(^5\) and asked him whether he could study the matter and prepare similar plans. Han Kung-Lien said that they could be successfully completed, if mathematical rules were followed and the (remains of the former

\(^{+1173.}\) We have not been able to locate the source of the quotation in those of his works which have been available to us.

\(^a\) The hodometer must not be forgotten as one of the ancestors of these trip-mechanisms (cf. pp. 281 ff. above).

\(^b\) Cf. p. 523 below.

\(^c\) For fuller detail, the monograph of Needham, Wang & Price may be consulted.

\(^d\) Hsin I Hsiang Fa Yao, ch. I, pp. 22 ff., tr. auct.

\(^e\) The greatest of the mathematical works of the Han, completed in the +1st century but containing some material as old as the Chhin (+3rd). Cf. the discussions in the mathematical Section, Vol. 3, pp. 24 and 150. For a particular study of one of the most interesting of its methods see Wang & Needham (i).

\(^f\) The oldest of the mathematical works of Chinese antiquity, completed in the -1st century but containing some material as old as the -4th or even the -6th. Cf. the discussions in the mathematical and astronomical Sections, Vol. 3, pp. 19, 199 and 256. Tr. Biot (4).

\(^{1}\) 鍾公權 \(^{2}\) 胡 \(^{3}\) 一 \(^{4}\) 力 \(^{5}\) 堂
machines taken as a basis (chi suan shu, an chi hsiang). Afterwards he wrote a memorandum in one chapter, entitled "Verification of the Armillary Clock by Geometry (lit. the Right-Angled "Triangle Method")" (Chia Chang Kou Ku T'ien Han Tien Shu), and he also made a wooden model of the mechanism with time-keeping wheels (mu yang chi lun). After studying this model I formed the opinion that although it was not in complete agreement with ancient principles, yet it showed great ingenuity, especially with regard to the water-powered driving-wheel, and that it would be desirable to entrust him with the building of it. I therefore recommended to your Imperial Majesty that a (complete) wooden pilot model should first be made and presented to you, and that some officials should be ordered to test its use. If the time-recording (hou tien) proved to be correct, then instruments of bronze could be made. On the 16th day of the eighth month in the 2nd year of the Yuan-Yu reign-period, i.e. (+1887) your Imperial Majesty gave an order that my suggestion should be carried out, and that a (special) bureau should be set up, officials appointed and the necessary materials prepared. I therefore recommended that Wang Yuan-Chih, Professor at the Public College of Shouchow, formerly Acting Registrar of Yuan-wu in Chenchou prefecture, should be in charge of construction and the receipt and issue of public materials; while Chou Jih-Yen, Director of Astronomical Observations (Southern Region) of the Bureau of Astronomy and Calendar, Yu Thai-Ku, Director of Astronomical Observations (Western Region) of the same Bureau, Chang Chung-Hsian, Director of Astronomical Observations (Northern Region), and Han Kung-Lien, should be appointed to supervise the construction. (I further recommended) the Assistants in the Bureau, Yuan Wei-Chi, Miao Ching and Chang Yuan, and the Superintendent (Chieh-Chi) Liu Chung-Ching, together with the Students, Hou Yung-Ho and Yu Chang-Chien, as investigators of the sun's shadow, the clepsydras, and so on. (Lastly, I recommended) the Bureau of Works Foreman Yin Ching to be Clerk of the Works.

In the fifth month of the 3rd year of the Yuan-Yu reign-period (+1888) a small pilot model was finished, and at your Imperial Majesty's order presented for testing. Afterwards the full-scale machinery was built in wood and completed by the intercalary twelfth month.

I then begged your Imperial Majesty to send a court official to the Bureau (of Astronomy and Calendar) to explain the parts to the workmen in preparation for moving the clock to the palace for presentation... In the tenth month we had sent in a request for instructions regarding the installation, and the Palace Guard Superintendent detailed the Aide-de-Camp Huang Chih-Tsung (to look after the matter). On the 2nd day of the twelfth month, a letter arrived asking exactly where (the clock) was to be placed, and your Imperial Majesty's order came to erect it in the Hall of All Heroes (Chi Ying Tien, in the Palace).

With all its vividness of detail, this passage concerning the organisation of one of the greatest technical achievements of the medieval time in any civilisation is certainly worthy of appreciation. Moreover, reading rightly 'between the lines' brings out several significant points. Han Kung-Lien, that man of brilliant mathematical and mechanical talent, had no post in which he could use it but was found by Su Sung in the minor ranks of his own administrative Ministry. Contrary to common conceptions of medieval working, the new armillary clock was not put together haphazardly by trial and error, but planned in a special memorandum with all the geometrical knowledge that Han could put into it. This certainly makes it easier to understand how the gearing, chain-drives, and other devices were made to carry out successfully their duty of rotating steadily an armillary sphere weighing some 10-20 tons as well as a bronze celestial globe 4½ ft. in diameter. It is also noteworthy that a small wooden model was first made, then a full-scale one was tested against four types of clepsydra as well as star transits, and only after four years were the parts destined for bronze duly cast.

In the last paragraph of his memorial Su Sung wrote:

Thus, as we have seen, the (demonstrational) armillary sphere (hun tien), the bronze observational armillary sphere (tung hou), and the celestial globe (hun hsiang), are three things different from one another... (Therefore) if we use only one name, all the marvellous uses of (the three) instruments cannot be included in its meaning. Yet since our newly-built machine embodies two instruments but has three uses, it ought to have some (more general) name such as 'Hun Tien' (Cosmic Engine). We are humbly awaiting your Imperial Majesty's opinion and bestowed of a suitable name upon it.

And he signed with all his ranks and titles, Imperial Tutor to the Crown Prince, Grand Protector of the Army, K'ai-Kuo Marquis of Wukung, etc. Now the two instruments were of course the mechanised observational armillary sphere and the mechanised celestial globe. Clearly the three uses were (a) astronomical demonstrations and (b) astronomical observations, both with the armillary sphere, together with (c) indication on the globe of the positions of all constellations whatever the weather, and their relations to models of the sun, moon, and planets attached to the globe for calendrical verifications. But besides these functions there was also the signalisation of time, both visual and auditory, by elaborate jack-work. Thus Su Sung's request for a new name was of great historical significance. The mechanised astronomical instrument was trembling on the verge of becoming a purely time-keeping machine. Inaudible echo must have had an answer 'A clock!' But history does not record that the young emperor had any good ideas on nomenclature, and the time-measuring function continued to go unnamed until five hundred years later the Jesuits came with their "self-sounding bells" to ring in the age of unified world science with its unlimited expansion of appropriate technical terms.

a We came across an instance of this title a few pages above. Though the actual Chinese terms for these regional officials embody the words for spring, summer, autumn and winter, rather than the cardinal points specifically (cf. des Rotours (i), vol. 1, p. 213), it is tolerably certain that the titles referred to the corresponding palaces of the sky (cf. de Saussure, x6a, b), and that the officials themselves were responsible for observing phenomena, usual or unusual, in those sectors.

b There is a small lacuna in the text here.

round a drum on the horizontal axis bearing the planispheric disc. The disc of the Hellenistic anaphoric clock was separated from the spectator by an immobile network of bronze wires, a vertical wire representing the meridian, three concentric ones the equator and the tropics, and between the tropics other wires indicating the zodiacal months. Across all the circles was an arc denoting the horizon of the place, and there were crosswires dividing the concentric circles into twelve day and twelve night hours, above and below the horizon respectively. Neugebauer (7) and, more completely, Dracont (6), have shown that this arrangement was the forerunner of the astrolabe of medieval times with its rete. We need not follow further this development since the astrolabe was not known or used in Chinese civilisation. But the question does arise whether any similar kind of mechanism planisphere was employed there. Apart from the Vitruvian description, actual bronze engraved discs from the Roman empire have survived in fragmentary form.² No such objects have yet come to light in China, or at least none such has so far been recognised. However, there are certain literary evidences which suggest that simple anaphoric clocks were not unknown there.

The following text, for example, dates from the +13th century but refers to devices which were in use in the early part of the +11th.

In his Tung Chien Chih Ling (Clarifications of Strange Things), Chao Hsi-Ku² maintains that old bronze objects are good demonfuges and have other strange virtues. He goes on to say:³

The reconstruction of Diels (I), p. 213, is reproduced in Usher (I), p. 97, and ed. p. 145; cf. Price (I, 4). A better reconstruction is given in Price (5).

The best known is that found at Salzburg and described by Benndorf, Weiss & Rehm; it dates from about +890. Another, reported by Mass-Werly (I), comes from the Vosges. Cf. Kibitschek (I), pp. 209 ff.

It has occasionally been glimpsed, but through a glass darkly. A century ago, a medical missionary in Nanking, McGowan (I), seeking to advise American clock-makers on the Chinese market, put together some material translated for him from some encyclopaedia, perhaps the Yu Hai; but lacking all proper documentation it could not be very convincing. Yet it is still in use (cf. Bedini, 3). More recently the eminent Japanese scholar Hiroki Kurusiki (I) stumbled upon the history of clockwork in the course of his studies on Chinese-Byzantine relations, but his engineering knowledge was insufficient to enable him to translate helpfully the relevant texts which he found.

² P. 312.
³ E IX, viii, 8.
² Although this, to many modern readers, is still a device of the +13th century, it is rarely seen in its early period in its full form. The reason for this is not hard to find. It is simply that the Chinese were not the first to use the device of the +11th century and going back as far as the +1st. We shall be able to make another start from his time in the opposite direction, and following the fate of his own machine, describe the chief events in Chinese clock-making which took place between the +12th century and the arrival of the Jesuits at the end of the +16th. We must first take up an important mechanical point. It will have been noticed that the description of Su Sung's clock contains nothing resembling a dial. Though the stationary dial-face with a moving pointer is a development associated with the first European mechanical clocks of the +14th century, the rotating dial-face had been in use in Hellenistic times. The anaphoric clock, described by Vitruvius about +30, consisted of a bronze disc with a planispheric projection of the stars of the northern hemisphere, and as many as are found between the equator and the tropic of Capricorn which formed the rim of the disc. The circle representing the ecliptic (the zodiac) was provided with 365 small holes, into which was plugged from day to day a little stud representing the sun. The disc was made to rotate by the simple mechanism of a float in a clepsydra attached to a cord terminating in a counterweight and wound down.

b P. 9.

c It has occasionally been glimpsed, but through a glass darkly. A century ago, a medical missionary in Nanking, McGowan (I), seeking to advise American clock-makers on the Chinese market, put together some material translated for him from some encyclopaedia, perhaps the Yu Hai; but lacking all proper documentation it could not be very convincing. Yet it is still in use (cf. Bedini, 3). More recently the eminent Japanese scholar Hiroki Kurusiki (I) stumbled upon the history of clockwork in the course of his studies on Chinese-Byzantine relations, but his engineering knowledge was insufficient to enable him to translate helpfully the relevant texts which he found.

d Although this, to many modern readers, is still a device of the +13th century, it is rarely seen in its early period in its full form. The reason for this is not hard to find. It is simply that the Chinese were not the first to use the device of the +11th century and going back as far as the +1st. We shall be able to make another start from his time in the opposite direction, and following the fate of his own machine, describe the chief events in Chinese clock-making which took place between the +12th century and the arrival of the Jesuits at the end of the +16th. We must first take up an important mechanical point. It will have been noticed that the description of Su Sung's clock contains nothing resembling a dial. Though the stationary dial-face with a moving pointer is a development associated with the first European mechanical clocks of the +14th century, the rotating dial-face had been in use in Hellenistic times. The anaphoric clock, described by Vitruvius about +30, consisted of a bronze disc with a planispheric projection of the stars of the northern hemisphere, and as many as are found between the equator and the tropic of Capricorn which formed the rim of the disc. The circle representing the ecliptic (the zodiac) was provided with 365 small holes, into which was plugged from day to day a little stud representing the sun. The disc was made to rotate by the simple mechanism of a float in a clepsydra attached to a cord terminating in a counterweight and wound down.

a It has occasionally been glimpsed, but through a glass darkly. A century ago, a medical missionary in Nanking, McGowan (I), seeking to advise American clock-makers on the Chinese market, put together some material translated for him from some encyclopaedia, perhaps the Yu Hai; but lacking all proper documentation it could not be very convincing. Yet it is still in use (cf. Bedini, 3). More recently the eminent Japanese scholar Hiroki Kurusiki (I) stumbled upon the history of clockwork in the course of his studies on Chinese-Byzantine relations, but his engineering knowledge was insufficient to enable him to translate helpfully the relevant texts which he found.

b P. 312.

c It has occasionally been glimpsed, but through a glass darkly. A century ago, a medical missionary in Nanking, McGowan (I), seeking to advise American clock-makers on the Chinese market, put together some material translated for him from some encyclopaedia, perhaps the Yu Hai; but lacking all proper documentation it could not be very convincing. Yet it is still in use (cf. Bedini, 3). More recently the eminent Japanese scholar Hiroki Kurusiki (I) stumbled upon the history of clockwork in the course of his studies on Chinese-Byzantine relations, but his engineering knowledge was insufficient to enable him to translate helpfully the relevant texts which he found.
Fan Wen Cheng Kung (i.e. Fan Chung-Yen) had in his home an ancient mirror. On the back of this was a dragon playing among a decoration of flowers and herbs, but when the plate was turned to the right the dragon disappeared, and when it was turned to the left there was a dragon playing among a decoration of flowers and herbs. There was also a device in another scholar's house called a 'Twelve (Double-)Hour Bell' (Shih-erh shih Chung) which sounded automatically as the hours passed (ying shih tsu mung). What magical powers do these old bronze objects have!

Evidently Chao Hsi-Ku was not very mechanically minded, yet there is something here calling for explanation about +1020. A second relevant passage comes from the early 10th century and concerns a device which had been in use at the beginning of the 9th. Thao Ku tells us of another 'mirror' in his Chhing I Lu (Records of the Unworldly and the Strange).

In the Palace Treasury of the Thang dynasty there was a yellow plate with a circumference of three feet. Around the disc there were designs of animals and other things. In the Yuan-Ho reign-period (+806 to +820) it was occasionally used to see how the symbols changed following the passing of the hours. For instance, at the chhen (double-)hour there was a dragon playing among a decoration of flowers and herbs, but when the plate was turned to the south (double-)hour a snake appeared, while when the (double-)hour of south came the turning plate showed a horse. It was therefore called the 'Twelve (Double-)Hour Plate' (Shih-erh shih Phan). This instrument was handed down (at the end of the dynasty) and was still in existence during the Later Liang dynasty (+907 to +943) of the House of Ch'u.

Unfortunately, Thao Ku did not distinctly state whether or not the turning was automatic, but this seems probable.

Another account comes from early and seems to show the beginnings of time-keeping jack-work, the figures making their rounds on a horizontally mounted wheel like those of Su Sung's. It is a paragraph of the Chhiao Yeh Chhien Ts'ai (Stories of Court Life and Rustic Life) written by Chang Ts'ai early in the 8th century, and fortunately preserved in the Tai-Phing Kung Chi.

In the Ju-I reign-period (+692) an artisan from Haichow was presented to the empress Wu Ts'e Thien. He made a 'Wheel (for Reporting) the Twelve (Double-)Hours' (Shih-erh chhen Chhe). When the wheel came to the exact south position (hsu yuan chheng nam), the wheel (south) door opened, and a jack with a horse's head appeared. The wheel revolved round the four directions (as time passed) without the slightest mistake (su fung hai chuan, pu shuang hao li).

Since this device was made several decades before the first escapement clock, that of I-Hsing (see below, p. 473), and since the effects described would not have required much power in the drive, it is reasonable to assume a sinking-float mechanism. Not long before (about +500) a celestial globe had been rotated in India by means of the anaphoric clock principle—i.e. we may trust the late 15th-century commentary of Paramesvara on the Aryabhatiyasa.

But the sinking-float principle seems never to have been prominent in the Chinese culture-area. This was probably because from the outset, as we shall see, it was desired to rotate not only planispheric discs but spherical astronomical instruments, which even if made of wood were quite heavy. The power requirements therefore necessitated the enlistment of the water-wheel—and indeed this was done probably within a century of the first appearance of the water-mill itself. Our immediate hunt is for the first appearance of the escapement.

The most important clock in the Sung dynasty prior to that of Su Sung himself was built by Chang Ssu-Hsün, towards the end of the 10th century. It included sphere and globe, powered by a scoop-bearing driving-wheel and gearing, together with jack-figures to report and sound the hours. Eleven technical terms occur in the description with exactly the same meanings as in Su Sung's text. Chang's clock was a particularly fine and interesting work as it used mercury in the closed circuit instead of water, thus assuring time-keeping in frosty winters. But it must have been somewhat ahead of its time.
At the beginning of the Thang-Phieng Hsing-Kuo reign-period (+976) the Szechuanese Chang Su-Su-hsin, a Student in the Bureau of Astronomy, invented an astronomical clock (lit. armillary sphere, hsiu i) and presented the designs to the emperor Thaï Tsung, who ordered the artisans of the Imperial Workshops to construct it within the Palace. On a tuei-mao day in the first month of the 47th year (+979) the elaborate machine was completed, and the emperor caused it to be placed under the eastern drum-tower of the Wên Ming Hall.

The system of Chang Su-Su-hsin was as follows: they built a tower of three storeys (totalling) more then ten feet in height, within which was concealed all the machinery. It was round (at the top to symbolise) the heavens, and square (at the bottom to symbolise) the earth. Below there was set up the lower wheel (ti lun), a central coupling device (chang kuan) and a smaller coupling device (hsiao kuan) (i.e. the escapement); with a main transmission shaft (thien chu) 11. Seven jack-rang bells on the left, struck a large bell on the right, and beat a drum in the middle to indicate clearly the passing of the quarter-hours.

Each day and night (each 24 hours) the machinery made one complete revolution, and the seven luminaries moved their positions around the ecliptic. Twelve other wooden jacks were also made to come out at each of the (double-)hours, one after the other, bearing tablets of the numbers of the quarters (passing in light or darkness). At the upper part of the machinery the advance and regression of heat and cold depend upon the measured motions of the sun.

Great Bear, together with the equator and the ecliptic which indicated how the changes of the proto-industrial area of the Tzu-liu-ching brine-field (cf. Sect. 37).

There were also horizontal wheels (hseng lun), vertical wheels fixed sideways (tsi lun) 8, and slanting wheels (hsieh lun, i.e. oblique gearing); bearings for fixing them in place (ting chen kuan), a central coupling device (chang kuan) and a smaller coupling device (hsiao kuan) (i.e. the escapement); with a main transmission shaft (thien chu) 11. Seven jack-rang bells on the left, struck a large bell on the right, and beat a drum in the middle to indicate clearly the passing of the quarter-hours.

Each day and night (each 24 hours) the machinery made one complete revolution, and the seven luminaries moved their positions around the ecliptic. Twelve other wooden jacks were also made to come out at each of the (double-)hours, one after the other, bearing tablets indicating the time. The lengths of the days and nights were determined by the (varying) numbers of the quarters (passing in light or darkness). At the upper part of the machinery there were the upper wheel (ti lun) 12, upper gear-wheel or -wheels (thien ya) 11, upper linking device (thien kuan) 12; another part of the escapement, upper (anti recoil) ratchet pin (thien chih) 12, celestial (ladder?) gear-box (thien tho) 12, upper framework beam carrying bearings (thien shu) 12, 13, and the upper connecting- chain (thien kiao). 14. There were also (on a celestial globe) the 360 degrees (to show the movements of the sun, moon and planets; as well as the Purple Palace (north polar region), the lunar mansions (hui) in their ranks, and the Great Bear, together with the equator and the ecliptic which indicated how the changes of the advance and regression of heat and cold depend upon the measured motions of the sun.

The motive power of the clock was water, according to the method which had come down from Chang Heng in the Han dynasty through I-Haing and Liang Ling-Tsan in the Khi-Yuan reign-period (+713 to +741) of the Thang. But the bronze and iron (of their clocks) had long gone to rust (thung thieh chien se) 14 and could no longer move automatically. Moreover, for Su Sung tells us 8 that after Chang’s death it soon went out of order and there was no one able to keep it going. The Sung Shih says: 15

The images of the sun and moon were also attached high up (to the globe) and according to the old method they had been moved by human hand (each day), but now success was attained in having them move automatically. This was a marvellous thing. (Chang) Su-Su-hsin was considered the equal of the Thang clock-makers and was made Special Assistant in charge of the Armillary Sphere (Engine) (Su-Thien Hun I Chêng). 16

This passage shows clearly that Chang’s clock was very like Su Sung’s, with similar drive and similar escapement. 17 The use of mercury was particularly ingenious, however, and it seems certain that a set of planetary models was rotated automatically. Though Su returned to the classical method of moving them by hand (as in the anaphoric clock), later Sung specifications (cf. p. 499 below) also had them on geared wheels, like the orreries and planetaria of later Europe. Perhaps most interesting is the mention of the gear-box, which rather implies the use of a chain-drive like Su Sung’s 18; if so, Chang Su-Su-hsin was an anticipator of Leonardo by five hundred years.

From this we can pass directly to the ‘Thang clockmakers’. Who were these men who made, in the 5th century, the most venerable of all escapement clocks? One was a Tantric Buddhist monk, perhaps the most learned and skilled astronomer and mathematician of his time, I-Haing, 19 the other a scholar, Liang Ling-Tsan, 1 who, like Han Kung-Lien later, occupied a minor administrative post. 20 The technical terms employed in the relevant passages again reveal the essential similarity of the machine to the clock of Su Sung.

These passages are to be found in the official histories of the Thang dynasty 21 and in the Chi Hsien Chu Chi 22 (Records of the College of All Sages) 23 written about +750 by Wei Shu. 24 The context of I-Haing’s astronomical clock was his introduction of the
Ptolemaic ecliptically mounted sighting-tube convenient for studying planetary motions on and near the ecliptic. Ptolemaic ecliptically mounted sighting-tube in the Li-Chêng Library, and when it was finished he presented it (to the emperor). Earlier, he had received an imperial order to reorganise the calendar, and had said that observations were difficult because there was no apparatus with this ecliptic fitting. Just at that time Liang Ling-Tsan made a small model (of the instrument which was wanted) in wood and presented it. The emperor asked I-Hsing to study it, and he reported that it was highly accurate. Therefore a full-scale (sphere) in bronze and iron was made in the Library grounds, taking two years to complete. When it was offered to the throne the emperor praised it exceedingly and asked (Liang) Ling-Tsan and I-Hsing to study (further) Li Shun-Fêng's book, the Fa Hsiang Chêh (The Miniature Cosmos), so that later on they drew up complete plans of the armillary sphere. And the emperor wrote an inscription in 'eight-tenths' style characters which was carved on the ecliptic ring and which said:

'The moon in her waxing and waning is never at fault. Her twenty-eight stedwards escort her and never go straying. Here at last is a trustworthy mirror on earth. To show us the skies never-hasting and never-delaying.'

The scholar Lu Chhi-T'ai received an imperial order to write an inscription containing the year and month of construction, and the names of the workers, underneath the plate. The observatory used the apparatus for observations, and it is still employed nowadays.

After this, the emperor ordered the casting of bronze for yet another astronomical instrument. The Chief Secretary of the Left Imperial Guard, Liang Ling-Tsan, and his colleague of the Right, Huan Chih-Kuei, took charge of the separate parts, and a great (demonstrational) armillary sphere (tien hau hsii) was cast 10 ft in diameter. It showed the lunar mansions (hsii), the equator and all the circumpolar degrees. It was made to turn automatically by the force of water acting on a wheel (chu shui chi lun). Discussing it, people said that what Chang Heng (+2nd century) had described in his Ling Hsin' (Spiritual Constitution of the Universe) could have been better.

Now it is kept in the College of All Ages at the eastern capital (Loyang). In the courtyard there is the observatory (yang huan thai) where I-Hsing used to make his observations.

This brief account was fortunately expanded in the Thang histories. There we read that in +723 I-Hsing and Liang Ling-Tsan 'and other capable technical

Ptolemaic ecliptically mounted sighting-tube convenient for studying planetary motions on and near the ecliptic. Wei Shu wrote:

In the 12th year of the Khai-Yuan reign-period (+724) the monk I-Hsing constructed an armillary sphere with an ecliptically mounted sighting-tube in the Li-Chêng Library, and when it was finished he presented it (to the emperor). Earlier, he had received an imperial order to reorganise the calendar, and had said that observations were difficult because there was no apparatus with this ecliptic fitting. Just at that time Liang Ling-Tsan made a small model (of the instrument which was wanted) in wood and presented it. The emperor asked I-Hsing to study it, and he reported that it was highly accurate. Therefore a full-scale (sphere) in bronze and iron was made in the Library grounds, taking two years to complete. When it was offered to the throne the emperor praised it exceedingly and asked (Liang) Ling-Tsan and I-Hsing to study (further) Li Shun-Fêng's book, the Fa Hsiang Chêh (The Miniature Cosmos), so that later on they drew up complete plans of the armillary sphere. And the emperor wrote an inscription in 'eight-tenths' style characters which was carved on the ecliptic ring and which said:

'The moon in her waxing and waning is never at fault. Her twenty-eight stedwards escort her and never go straying. Here at last is a trustworthy mirror on earth. To show us the skies never-hasting and never-delaying.'

The scholar Lu Chhi-T'ai received an imperial order to write an inscription containing the year and month of construction, and the names of the workers, underneath the plate. The observatory used the apparatus for observations, and it is still employed nowadays.

After this, the emperor ordered the casting of bronze for yet another astronomical instrument. The Chief Secretary of the Left Imperial Guard, Liang Ling-Tsan, and his colleague of the Right, Huan Chih-Kuei, took charge of the separate parts, and a great (demonstrational) armillary sphere (tien hau hsii) was cast 10 ft in diameter. It showed the lunar mansions (hsii), the equator and all the circumpolar degrees. It was made to turn automatically by the force of water acting on a wheel (chu shui chi lun). Discussing it, people said that what Chang Heng (+2nd century) had described in his Ling Hsin' (Spiritual Constitution of the Universe) could have been better.

Now it is kept in the College of All Ages at the eastern capital (Loyang). In the courtyard there is the observatory (yang huan thai) where I-Hsing used to make his observations.

This brief account was fortunately expanded in the Thang histories. There we read that in +723 I-Hsing and Liang Ling-Tsan 'and other capable technical
the sun made its way one degree eastwards, and the moon 3 6 5 degrees (eastwards). After 29 and a fraction rotations (of the celestial sphere) the sun and moon met. After it made 365 rotations the sun accomplished its complete circuit. And they made a wooden casing the surface of which represented the horizon, since the instrument was half sunk in it. This permitted the exact determination of the times of dawns and dusks, full and new moons, tarrying and hurrying. Moreover there were two wooden bells standing on the horizon surface, having one bell and the other a drum in front of it, the bell being struck automatically to indicate the hours, and the drum being beaten automatically to indicate the quarters.

All these motions were brought about (by machinery) within the casing, each depending on wheels and shafts (lan chu), hooks, pins and interlocking rods (lan chien chiao tiao), coupling devices and locks checking mutually (huan so ho hang chih chih) (i.e. the escapement).

Since (the clock) showed good agreement with the Tao of Heaven, everyone at that time praised its ingenuity. When it was all completed (in +735) it was called the `Water-Driven Spherical Bird's-Eye-View Map of the Heavens' (Shui Yun Hun Thien Fu Shih Thu) or 'Celestial Sphere Model Water-Engine' and was set up in front of the Wu Chheng Hall (of the Palace) to be seen by the multitude of officials. Candidates in the imperial examinations (in +730) were asked to write an essay on the new armillary (clock).

But not very long afterwards the mechanism of bronze and iron began to corrode and rust, so that the instrument could no longer rotate automatically. It was therefore relegated to the (museum of the) College of All Sages (Chi Hsien Yuan) and went out of use.

Such are the details of the instrument which, so far as we can see, was the first of all escapement clocks. The reference to the checking linkwork is plain, the technical terms used being closely similar to those in the descriptions of the clock of Su Sung. Although the automatic movement of the sun and moon models is not stated with absolute clarity, it is almost certainly implied; the machine had therefore some at least of the features of an orrery or planetarium.

It is not generally known that an occidental orrery was carried to China about a thousand years later, by the embassy of Lord Macartney in +1793. The first planetarium of this modern kind, demonstrating the heliocentric system, was made by George Graham and Thomas Tompion about +1760 for Prince Eugene of Austria in circumstances described not long afterwards by Desaguliers.

It was immediately apparent that the modern orrery, with its actual movements of the sun and moon, was the type of instrument that the Chinese had been seeking. The Luis Rican-Chou may well be right in all that he attributes to I-Hsing, who will thus have even more claim upon our respect and admiration. A solar-axial conversion gear-train simpler than that of Luis Rican-Chou (6, 7) has been suggested by Mr John Cambridge (p. 456 above). Luis has published a revised version of his two proposals, with a model, in (7), pp. 199 ff.

* This date comes from Yu Hai, ch. 4, pp. 554, 5.
* We interpolate this sentence from Yu Hai, ch. 4, p. 558.
* The chief reason for adopting this view at present is that the phraseology of the descriptions is characteristic of those of the succeeding centuries but cannot be traced earlier. Cambridge (1, 2) suggests, however, on practical grounds, that the essentials of the water-wheel linkwork escapement go back to Chang Hsing (cf. p. 482), so that the phyleological phrase may not be as decisive as it seems.
* Echoes late and garbled of this clock are often found in 19th-century books, e.g. Planck (1), p. 267, and still today, e.g. Strickler (1). Generally they derive from the vague account of Gaspil (2, 3, 4), pp. 514, 574, termed it an 'uranorama' but was not sure that it depended on water-power.
* See Lloyd (4); Gabby & Taylor (1).
* Cf. Taylor & Wilson (1).
* Cf. Orrery (1); Ricc (1).
* 輔教煌告 勇闡師習 水源廣天示觀圖 勝御殿
For its background we have to look at the preceding reign. The emperor served by Li Shan-Feng was Thai Tsung, who ruled with much brilliance from +626 onwards for a quarter of a century. Interested in history and technology as well as in the military arts, he knew how to encourage astronomers, and welcomed Nestorian clergy as well as Taoist priests and Buddhist monks. He entertained cordial diplomatic relations as far west as Byzantium, receiving in +643, for example, an embassy from the Patriarch of Antioch. Such missions may well have brought news of the striking water-clocks at places like Gaza and Antioch. Of course this can be had no more than a "stimulus diffusion," for there is no reason for thinking that the Byzantine works employed anything more than the sinking-float principle. However, the stimulus would have come just at the right time to encourage Chinese engineers to try to out-do the mechanical toys which formed the striking jack-work of the water-clocks of the Eastern Roman Empire. And indeed the description of I-Hsing's clock does seem to be the first mention of horological escapement-operated jacks in Chinese history. Here he was much better placed than his Greek colleagues, if we are right in our supposition that the water-wheel, providing so much more power than the float, had already long before been characteristic of Chinese astro-mechanical technique.

The emperor for whom I-Hsing worked was Hsian Tsung, most unfortunate among the rulers of the Thang. Ascending the throne in +712, he prospered for some thirty years, shining as a patron of music, painting and literature. All the greatest of the Thang poets knew his court. In later life, however, growing social and economic strains exposed the country to the military rebellion of An Lu-Shan, a Sogdian general in the Chinese service, from which the dynasty never recovered. Among its incidental results was the death of Hsian Tsung's famous and beautiful concubine Yang Kuei Fei. Though the Tantrist's clock cannot have been built for her, since she did not join the imperial entourage till +738, her presence evokes considerations of a rather singular kind.

It was, I think, the great mediavilist du Cange who first proposed to explain the sudden interest in mechanical clocks at the beginning of the European +14th century +17th-century Jesuit instruments still extant on the old observatory tower at Peking (cf. Vol. 3, p. 348). The earliest known representation of a 16th-century clock, including ruffs. On the Chinese background of the Macartney embassy see Craenber-Bryng 1.

* Personal name Li Shih-Min 2 (+597 to +649).
* Cf. Vol. 1, p. 244.
* We have noted already the Haichow artisan at work in +692 (p. 469). But his device is not said to have made any sound. We have also noted the "Twelve (Double-)Hour Bell" in the time of Fan Lung-Chi. Here he was much better placed than his Greek colleagues, if we are right in our supposition that the water-wheel, providing so much more power than the float, had already long before been characteristic of Chinese astro-mechanical technique.

For its background we have to look at the preceding reign. The emperor served by Li Shan-Feng was Thai Tsung, who ruled with much brilliance from +626 onwards for a quarter of a century. Interested in history and technology as well as in the military arts, he knew how to encourage astronomers, and welcomed Nestorian clergy as well as Taoist priests and Buddhist monks. He entertained cordial diplomatic relations as far west as Byzantium, receiving in +643, for example, an embassy from the Patriarch of Antioch. Such missions may well have brought news of the striking water-clocks at places like Gaza and Antioch. Of course this can be had no more than a "stimulus diffusion," for there is no reason for thinking that the Byzantine works employed anything more than the sinking-float principle. However, the stimulus would have come just at the right time to encourage Chinese engineers to try to out-do the mechanical toys which formed the striking jack-work of the water-clocks of the Eastern Roman Empire. And indeed the description of I-Hsing's clock does seem to be the first mention of horological escapement-operated jacks in Chinese history. Here he was much better placed than his Greek colleagues, if we are right in our supposition that the water-wheel, providing so much more power than the float, had already long before been characteristic of Chinese astro-mechanical technique.

The emperor for whom I-Hsing worked was Hsian Tsung, most unfortunate among the rulers of the Thang. Ascending the throne in +712, he prospered for some thirty years, shining as a patron of music, painting and literature. All the greatest of the Thang poets knew his court. In later life, however, growing social and economic strains exposed the country to the military rebellion of An Lu-Shan, a Sogdian general in the Chinese service, from which the dynasty never recovered. Among its incidental results was the death of Hsian Tsung's famous and beautiful concubine Yang Kuei Fei. Though the Tantrist's clock cannot have been built for her, since she did not join the imperial entourage till +738, her presence evokes considerations of a rather singular kind.

It was, I think, the great mediavilist du Cange who first proposed to explain the sudden interest in mechanical clocks at the beginning of the European +14th century +17th-century Jesuit instruments still extant on the old observatory tower at Peking (cf. Vol. 3, p. 348). The earliest known representation of a 16th-century clock, including ruffs. On the Chinese background of the Macartney embassy see Craenber-Bryng 1.

* Personal name Li Shih-Min 2 (+597 to +649).
* Cf. Vol. 1, p. 244.
* We have noted already the Haichow artisan at work in +692 (p. 469). But his device is not said to have made any sound. We have also noted the "Twelve (Double-)Hour Bell" in the time of Fan Lung-Chi. Here he was much better placed than his Greek colleagues, if we are right in our supposition that the water-wheel, providing so much more power than the float, had already long before been characteristic of Chinese astro-mechanical technique.

For its background we have to look at the preceding reign. The emperor served by Li Shan-Feng was Thai Tsung, who ruled with much brilliance from +626 onwards for a quarter of a century. Interested in history and technology as well as in the military arts, he knew how to encourage astronomers, and welcomed Nestorian clergy as well as Taoist priests and Buddhist monks. He entertained cordial diplomatic relations as far west as Byzantium, receiving in +643, for example, an embassy from the Patriarch of Antioch. Such missions may well have brought news of the striking water-clocks at places like Gaza and Antioch. Of course this can be had no more than a "stimulus diffusion," for there is no reason for thinking that the Byzantine works employed anything more than the sinking-float principle. However, the stimulus would have come just at the right time to encourage Chinese engineers to try to out-do the mechanical toys which formed the striking jack-work of the water-clocks of the Eastern Roman Empire. And indeed the description of I-Hsing's clock does seem to be the first mention of horological escapement-operated jacks in Chinese history. Here he was much better placed than his Greek colleagues, if we are right in our supposition that the water-wheel, providing so much more power than the float, had already long before been characteristic of Chinese astro-mechanical technique.

The emperor for whom I-Hsing worked was Hsian Tsung, most unfortunate among the rulers of the Thang. Ascending the throne in +712, he prospered for some thirty years, shining as a patron of music, painting and literature. All the greatest of the Thang poets knew his court. In later life, however, growing social and economic strains exposed the country to the military rebellion of An Lu-Shan, a Sogdian general in the Chinese service, from which the dynasty never recovered. Among its incidental results was the death of Hsian Tsung's famous and beautiful concubine Yang Kuei Fei. Though the Tantrist's clock cannot have been built for her, since she did not join the imperial entourage till +738, her presence evokes considerations of a rather singular kind.

It was, I think, the great mediavilist du Cange who first proposed to explain the sudden interest in mechanical clocks at the beginning of the European +14th century +17th-century Jesuit instruments still extant on the old observatory tower at Peking (cf. Vol. 3, p. 348). The earliest known representation of a 16th-century clock, including ruffs. On the Chinese background of the Macartney embassy see Craenber-Bryng 1.
by the desire of the monks of the great abbeys to know more accurately the time of the
night. Thus they could better regulate the hours of their lauds and matins. Whatever
may be the plausibility of this suggestion, it was at any rate an attempt to set the
invention of the weight-driven verge-and-foliot clocks in a social context, and to find
a reason for their rapid adoption. Exactly the same question can be asked about the
invention of the water-wheel weighbridge escapement at the beginning of the +8th
century in China. What possible need could have been felt at such a period within the
Chinese imperial palace—for it was always in close association with the emperor that
these masterpieces of medieval engineering arose—for more accurate knowledge of
the hours of the night, and for a means of following the march of the constellations
even when foul weather rendered them invisible? It is true that time-keeping and
stellar depiction were not the only functions of the water-wheel clocks; there was also
the use of the mechanised globe as a test of calendrical calculations. This was probably
at least as important a determining factor as any other, but we must postpone con­
sideration of it for a few pages. Here let us think only of the bells and gongs auto­
matically giving the time, and the slow rotation of the celestial globe with its map of
the heavens.

It will be recalled that the Chinese emperor was a cosmic figure, the analogue here
below of the pole star on high.a All hierarchies, all officialdom, all works and days,
revolved around his solitary eminence.b It was therefore entirely natural that from
time immemorial the large number of women attending upon him should have been
regulated according to the principles of the numinous cosmism which pervaded
Chinese court life. Ancient texts give us remarkable insight into the ranks of his con­
sorts and concubines. Though their titles differed considerably during the two
millennia which followed the first unification of the empire,c the general order com­
prised one Empress (Hou l), three Consorts (Fu Jen 7, Ho Jen 8 or Fei 9), nine Spouses
(etymologically protégées or client ladies; Phin 10, Phin Jen), twenty-seven Beauties
(concubines; Shih Fu 11, Mei Jen), and eighty-one Attendant Nymphs (assistant
concubines; Nü Yü, Yu Chhi). The total adds up to 121, which (certainly by no
coincidence) is one third of 365 to the nearest round number. A classical passage in
the Chou Li (Record of the Rites of the Chou Dynasty)d even gives us what might be
called a pernoctation rota.

The lower-ranking (women) [it says e] come first, the higher-ranking come last. The
assistant concubines, 81 in number, share the imperial couch 9 nights in groups of 9. The

a Cf. Vol. 3, pp. 230ff., 240, 259ff., Fig. 90.
b See Creel (3) and Granet (3); Southill (3). Cf. Vol. 2, p. 387.
c Principal references: Chou Li, ch. 7; tr. Biot (3), vol. 1, pp. 143, 154, 156; Li Chi, ch. 44 (Hun 1),
p. 424; tr. Legge (3), vol. 3, p. 452; Chhien Han Shu, ch. 99b, p. 23; tr. Dubs (2), vol. 3, p. 438. These
refer to the Han; for the Thang cf. des Rotours (1), pp. 356 ff. Lists of concubine titles are not un­
common; one is given in the anonymous Chih Chiu Shih Lei* (Systematic Guide to Court Etiquette),
a short book of Sung date (Shuo Fu, ch. 34, p. 6b).
d Cf. pp. 11 ff. above.

7 夫人 8 禮人 9 妃 10 閔妃
concubines, in number, are allotted 3 nights in groups of 9. The 9 spouses and the 3 consorts are allotted 1 night to each group, and the empress also alone 1 night. On the 15th day of every month the sequence is complete, after which it repeats in the reverse order.

Thus it is clear that the women of highest rank approached the emperor at times nearest to the full moon, when the Yin influence would be at its height, and matching the powerful Yang force of the Son of Heaven, would give the highest virtues to children so conceived. The primary purpose of the lower ranks of women was rather to feed the emperor’s Yang with their Yin. In the +9th century Pai Hsing-Chien;1 complained that all these rules had fallen into disorder, saying: a

Nine ordinary companions every night, and the empress for two nights at the time of the full moon—that was the ancient rule, and the Duennas-Secretarial (Nü Shih) kept a careful record of everything with their vermilion brushes... But alas, nowadays all the three thousand (palace women) compete in confusion

These secretaries were mentioned already in the Chou Li 2 and it is their activities which show us the relevance of these curious matters to the invention of clockwork.

What was at stake was the imperial succession. Chinese ruling houses did not always follow the primogeniture principle, and the eldest son of the empress was not necessarily the heir apparent. Towards the end of a long reign an emperor would have quite a number of princes from which to choose, and in view of the importance of State astrology in China from very ancient times it may be taken as certain that one of the factors in this choice was the nature of the asterisms which had been culminating at the time of the candidate’s conception. Hence the importance of the records which had been kept by the Duennas-Secretarial, and the value of an instrument which not only told them the time but from which also the eunuchs could read off the star positions at any desired moment. For example:

The Thai-Yang Shou 3 (star) lies to the west of the Hsiang 4 (the Minister), and is the symbol of the commander-in-chief and the prime minister. It governs the readiness of the country to withstand attack, and the preparation of armaments. 5

a Thien Yi Yin Yang Tu Lo Fu, p. 56; tr. van Gulik (3).

b Ch. 7 (Biot (1), see Blochmann (1), p. 44).

c Theoretically only the sons of the empress could be candidates, but this rule was honoured as often in the breach as the observance. C.f.e.g. Erdes (19), p. 152.

d As is well known, ages of individual persons in China are counted not from birth but from conception. In the light of all this, it is rather striking to read in the book of al-Marwaz, written about +1115, when Su Sung’s clock was still working in its original position: ‘Whenever the King of China wants to enter his women’s apartments and to remain alone with the women, the Astrologer gives up to the roof of the house where he is, and observes the stars in order to choose the time propitious for his intercourse with some one of his women’ (Minorcky (4), p. 27). This seems to have been taken from the Zahn al-Abbie 5 of al-Khwarizmi, written about +1050, and that in turn was based on the lost Kitab al-Mamlik w'al-Mamlikh of Abü ‘Abdallah al-Jahiz composed early in the +6th century, i.e. not long before the time of Chang Sau-Hsin. On the importance of genealogical astrology in Thang and Sung China cf. Gernet (5), p. 165, based on Kuei Hsin Tsa Chih (Hsi chu), pp. 525 ff., etc. and on the observations of Marco Polo.

e Chin Shu, ch. 11, p. 9a. 6

2 Thien Yi Yin Yang Tu Lo Fu (3).

3 Chin Shu, ch. 11, p. 114b; both tr. auct. adjuv. Ho Ping-Yü (1). This astrological text was written only a little more than a century before I-Hsing’s time, though certainly containing much ancient material.

5 Mentions of the clepsydra in the Shih Ching (Book of Odes), which might date from about the +7th century, are philologically uncertain but not at all historically improbable. What is probably the earliest reference occurs in the Shih Ching (ch. 64, p. 18). In the biography of a general and politician of the +5th century, Shen Wang, 5 who served Prince Ching of the State of Chhi, we are told that while waiting for a rendezvous with another leader, Chuang Chia, 5 Sauna ‘set up a sundial and started the water-clock dropping’. As Ching ruled from +546 to +588, this is a venerable record, contemporary with Confucius, and there seems no reason for regarding it as an anachronism on the part of Sauna Chien.

6 The most complete study of these clepsydras is that of Maspero (4).

7 This was an admirable means of cumulative regulation, and in later times as many as five tanks above the inflow vessel are known to have been used (cf. de Saussure, 29). In the early +2nd century Chang Hsing had at least one compensating tank in the series. There was also at least one in the clepsydra for which Sun Chio 6 wrote an epigraphic inscription about +760 (Thai-Ping Yu Lien, ch. 2, p. 134).

8 Chin Shu, ch. II, p. 149; both tr. auct. adjuv. Ho Ping-Yü (1). This astrological text was written only a little more than a century before I-Hsing’s time, though certainly containing much ancient material.

10 Mentions of the clepsydra in the Shih Ching (Book of Odes), which might date from about the +7th century, are philologically uncertain but not at all historically improbable. What is probably the earliest reference occurs in the Shih Ching (ch. 64, p. 18). In the biography of a general and politician of the +5th century, Shen Wang, 5 who served Prince Ching of the State of Chhi, we are told that while waiting for a rendezvous with another leader, Chuang Chia, 5 Sauna ‘set up a sundial and started the water-clock dropping’. As Ching ruled from +546 to +588, this is a venerable record, contemporary with Confucius, and there seems no reason for regarding it as an anachronism on the part of Sauna Chien.
the insertion of an overflow or constant-level tank in the series. These were the commonest kinds of clepsydras. But there were others which involved weighing the water on some kind of balance, and these have been less studied.

Balance-clepsydras included at least two types, one in which the typical Chinese steelyard (the balance of unequal arms) was applied to the inflow vessel itself, and another in which it weighed the amount of water in the lowest compensation tank. The first sort naturally dispensed with the float and indicator-rod, and was usually made small and portable, and sometimes adapted for the use of mercury instead of water, so that very short intervals of time could conveniently be measured. These were called 'stopwatch clepsydras' (ma shang kho lou t). The weighing of water in the compensating tank demanded a larger apparatus (shui chihng kho lou t), which was used for public and palace clocks throughout the Thang and Sung periods. It permitted the seasonal adjustment of the pressure-head in the compensating tank by having standard positions for the counterweight graduated on the beam, and hence it could control the rate of flow for different lengths of day and night. With this arrangement no overflow tank was required, and the attendants were warned when the clepsydra needed refilling. When one reads the standard description of this clepsydra and other accounts one realises that the men responsible for designing it were two of the great technicians of the Sui dynasty, Keng Hsün and Yüwen Khai. In other words, the plan was stabilised just about +610, i.e. one hundred and ten years before the work of I-Hsing and Liang Liang-Tsan.

The relevance of these facts is obvious. From the systematic weighing of a water-receiving vessel it was not such a far cry to the weighing of one to which both received and delivered it. That in turn would have pointed the way to the mounting of such a device on a wheel, and the construction of the water-wheel could be attached to a shaft with one trip-lug, quite similar in principle to the water-driven trip-hammer assemblies so common in the Han. Clepsydra drip into the cups would accumulate periodically the torque necessary to turn the lug against the resistance of a leaf-tooth wheel, either itself forming the equatorial ring, or attached to a shaft in the polar axis.

Neccessarily to say, the time-keeping properties of such an arrangement would be extremely poor, so poor indeed that it is hard to understand how they could have justified the explicit claims which have come down to us in the texts. Perhaps the linkwork escapement is older than we have dared to suppose.

Examples can be taken from almost every century between the +8th and the +2nd. One of the most outstanding technicians of the +6th century was Keng Hsün, whom we have already met with on account of his work with clepsydras. A man of matchless technical skill, and witty in argument, he became involved early in life in the mechanical engineering of the +12th century.
we have seen) with a rebellion of southern tribal folk, but when eventually captured was pardoned by the general Wang Shih-Chi on account of his great ingenuity. After a long time Keng Hsin met his old friend Kao Chih-Pao, whose knowledge of the heavens had brought him to the position of Astronomer-Royal, and from him (Keng) Hsin received instruction in astronomy and mathematics. (Keng) Hsin then conceived the idea of making an armillary sphere (hsun hsien chih) which should be turned not by human hands but by the power of (falling) water (pu chia fen li, i shui chuan chih). When it had been made he set it up in a closed room and asked (Kao) Chih-Pao to stand outside and observe the time (as shown by the) heavens (i.e. the star transits). (His instrument) agreed (with the heavens) like the two halves of a tally. (Wang) Shih-Chi, knowing of this, reported the matter to the emperor Kao Tzu, who made (Keng) Hsin a government slave and attached him to the Bureau of Astronomy and Calendar.

This account, referring to work which was going on in the neighbourhood of +590, is closely similar to what we are told in all the other cases. Generally no wheel is mentioned, but no float either, and the mechanised instrument is typically set up inside a closed room, with two observers, one inside calling out the indications of the machine, the other outside checking these against the heavenly movements themselves. There may even be no mention of water in the automatic movement, but a water-drive (hsun) was pardoned by the general emperor Kao Tzu, who made (Keng) Hsin a government slave and attached him to the Bureau of Astronomy and Calendar.

After a long time, for we know that more than a century later they were being cherished by makers of mechanical toys and the like. It is worth translating in full by Needham, Wang Chhi-Ch. The biography of Keng Hsin (Sui Shu, ch. 78, pp. 75 ff. and Pei Shih, ch. 89, pp. 314 ff.) shows how very adventurous and uncertain the life of an engineer could be in the 4th-6th century. It has been translated in full by Needham, Wang & Price (1), whence this excerpt.

This passage is quoted in Shih Chu, ch. 6, p. 114, and in Yi Hai, ch. 4, p. 246. The term suggests that the instrument was a demonstrational armillary sphere (cf. Vol. 3, p. 383), but it may have been a solid globe.

Personal name Yang Chien (c. +540 to +560), first emperor of the Sui; a forceful monarch but not particularly interested in scientific and technical matters. Keng Hsin made advisory inclining vessels and many other things for the second emperor (Yang Ti), Yang Kuang (c. +580 to +618), who greatly encouraged him, it will be remembered (p. 162 above) makers of mechanical toys and the like. It is worth noting that Keng had the idea of filling his hydrostatic trick vessels (cf. Vol. 2, pt. 1, p. 33 above) slowly with clefts and water—another way of using it other than letting it raise a float or run to waste.

There are two alternative accounts of the recovery of the old instruments of Chang Heng at the hands of the (northern Turkic and Hunnish) barbarians, even though the later instruments of (Lu) Chi (cf. Chhi Chit Chu, ch. 2, p. 106) and (Wang) Fan (c. +219 to +257) were all lost. However, in the 14th year of the Hsi reign-period (+418) when the emperor An Ti of the (Eastern) Chin dynasty (4th reign north), captured Chhian-an (the ancient capital) and recovered the old instruments of (Chang) Heng. Although the forms were still recognisable, the marks of graduation had all gone, and nothing was left of the representations of stars, sun, moon and planets.

Later on, in the 13th year of the Yuan-Chia reign-period (+426) the emperor ordered Chien Lo-Chih, the Secretary of the Bureau of Astronomy and Calendar, to re-make and cast a (demonstrational) armillary sphere. Its diameter was slightly less than 6 ft. and its circumference slightly less than 18 ft. * The earth was fixed in the centre of the heavens and there were the two paths of the ecliptic and the equator, the two celestial poles south and north, with the 28 lunar mansions depicted round about, as also the Great Bear and the pole star. Each degree corresponded to 0.5 inch. The sun, moon and five planets were strung along the ecliptic. A clepsydra was set up and the whole apparatus made to rotate by its water (cht li shui chuan chih). The transits of stars at dawn and dusk (shown on the instrument) all agreed exactly with the actual movements of the heavens (+417).

So runs the description in the Sung Shu. Chien Lo-Chih’s instruments listed a long time, for we know that more than a century later they were being cherished by the astronomical bureau of the Liang dynasty (+555). After the conquest of the

Because the Chinese empire withdrew to Nanking south of the Yangtze, and of course the instruments of Chang Heng were also left behind in Chhian-an (modern Shan in Shensi).

This passage is also found in Yi Hai, ch. 4, p. 152. A rather fuller version of the recovery of the instruments was given in the I-Hai Chia Chih Chi (1 Daily Records of the I-Hai reign-period, +416 to +418), not extant now but quoted in Thien-Ping Yü Lan, ch. 2, p. 106. But the date of this source is not much earlier than the Sung Shu.

In spite of this philology, the instrument was almost certainly a demonstrational armillary sphere.

Now Wen Ti, personal name Liao Ling (c. +457 to +555), third of the Liu Sung.

It is curious that these dimensions indicate a value very close to 3, since at that time much more sophisticated values were available (see Vol. 3, p. 101).

As has already been said (Vol. 3, p. 380), this is remarkable development in view of the late (4th-century) appearance of the same idea in Europe; see Price (3). The model would have rested on a pin in the polar axis, but we are rarely told whether it was a ball or a square flat plate—either figure would have support from one or other of the ancient Chinese cosmologists (cf. Vol. 3, pp. 211, 217).

But the date of this source is not much earlier than the Sung Shu.

In spite of this philology, the instrument was almost certainly a demonstrational armillary sphere.

Now Wen Ti, personal name Liao Ling (c. +457 to +555), third of the Liu Sung. It is curious that these dimensions indicate a value very close to 3, since at that time much more sophisticated values were available (see Vol. 3, p. 101).

As has already been said (Vol. 3, p. 380), this is remarkable development in view of the late (4th-century) appearance of the same idea in Europe; see Price (3). The model would have rested on a pin in the polar axis, but we are rarely told whether it was a ball or a square flat plate—either figure would have support from one or other of the ancient Chinese cosmologists (cf. Vol. 3, pp. 211, 217).

But the date of this source is not much earlier than the Sung Shu.

In spite of this philology, the instrument was almost certainly a demonstrational armillary sphere.

Now Wen Ti, personal name Liao Ling (c. +457 to +555), third of the Liu Sung. It is curious that these dimensions indicate a value very close to 3, since at that time much more sophisticated values were available (see Vol. 3, p. 101).

As has already been said (Vol. 3, p. 380), this is remarkable development in view of the late (4th-century) appearance of the same idea in Europe; see Price (3). The model would have rested on a pin in the polar axis, but we are rarely told whether it was a ball or a square flat plate—either figure would have support from one or other of the ancient Chinese cosmologists (cf. Vol. 3, pp. 211, 217).

But the date of this source is not much earlier than the Sung Shu.

In spite of this philology, the instrument was almost certainly a demonstrational armillary sphere.

Now Wen Ti, personal name Liao Ling (c. +457 to +555), third of the Liu Sung. It is curious that these dimensions indicate a value very close to 3, since at that time much more sophisticated values were available (see Vol. 3, p. 101).

As has already been said (Vol. 3, p. 380), this is remarkable development in view of the late (4th-century) appearance of the same idea in Europe; see Price (3). The model would have rested on a pin in the polar axis, but we are rarely told whether it was a ball or a square flat plate—either figure would have support from one or other of the ancient Chinese cosmologists (cf. Vol. 3, pp. 211, 217).

But the date of this source is not much earlier than the Sung Shu.

In spite of this philology, the instrument was almost certainly a demonstrational armillary sphere.

Now Wen Ti, personal name Liao Ling (c. +457 to +555), third of the Liu Sung. It is curious that these dimensions indicate a value very close to 3, since at that time much more sophisticated values were available (see Vol. 3, p. 101).

As has already been said (Vol. 3, p. 380), this is remarkable development in view of the late (4th-century) appearance of the same idea in Europe; see Price (3). The model would have rested on a pin in the polar axis, but we are rarely told whether it was a ball or a square flat plate—either figure would have support from one or other of the ancient Chinese cosmologists (cf. Vol. 3, pp. 211, 217).

But the date of this source is not much earlier than the Sung Shu.

In spite of this philology, the instrument was almost certainly a demonstrational armillary sphere.

Now Wen Ti, personal name Liao Ling (c. +457 to +555), third of the Liu Sung. It is curious that these dimensions indicate a value very close to 3, since at that time much more sophisticated values were available (see Vol. 3, p. 101).

As has already been said (Vol. 3, p. 380), this is remarkable development in view of the late (4th-century) appearance of the same idea in Europe; see Price (3). The model would have rested on a pin in the polar axis, but we are rarely told whether it was a ball or a square flat plate—either figure would have support from one or other of the ancient Chinese cosmologists (cf. Vol. 3, pp. 211, 217).

Chhen by the Sui, they were taken to Sian, and then in +605 moved again to the observatory at the Eastern Capital (Loyang). Chhen's 'pre-clock' was therefore almost certainly known to Keng Hsün and Yuwen K'ai, and, having withstood so many political upheavals it was probably still available for study by I-Hsing and Liang Līng-Tsān when the College of All Sages in the latter city became the scene of their great invention. It united them with Chang Hēng in no more than two stages.

Another intermediate figure, however, of whom we know was Ko Hēng. In the San Kue State of Wu (+222 to +280):

there was also Ko Hēng who was a perfect master of astronomical learning and capable of making ingenious apparatus. He altered the astronomical instrument (hun tien4) in such a way as to show the earth fixed at the centre of the heavens, and these were made to move round by a mechanism (i chi tung chih9) while the earth remained stationary. (This demonstrated) the correspondence of the (shadows on the) graduated sundial with the motions (of the heavens) above (i chung yung hsiu in9). This it was which Chhen Lo-Chih (also) imitated.

We are now within a century of the work of Chang Hēng in the Later Han period. For he was the first of this line of men who accomplished the continuous slow rotation of astronomical instruments (globes or demonstrational spheres) with the best approximation which they could make to constancy of speed. To readers of this book, Chang Hēng (78 to +142) is a familiar figure; in Volume 3 there was hardly a Section in which he did not appear (mathematics, astronomy, cartography, etc.). Particularly relevant is the seismograph which he set up at the capital in +132, the first instrument of the kind in any civilisation. The ingenuity of this device, with its inverted pendulum, which continued in use for many centuries afterwards, was so striking that there is nothing inherently improbable in his application of water-power to a drive for an astronomical instrument.

Our two most explicit sources on this matter both date from the Thang, though compiled of course on the basis of ancient documents then existing. One comes from the Sui Shu (History of the Sui Dynasty), written about +656 by Wei Chêng9 and others, the second from Fang Hsüan-Līng's Chin Shu (History of the Chin Dynasty) of +653. These two works stand out prominently among the official histories for the length and excellence of their chapters on astronomy and calendrical science. As the texts complement each other, we give them both. The Sui Shu says:

Perhaps a relative of Ko Hung (+280 to +360) the great alchemist, or his uncle Ko Hsüan (56, +325 to +525) the Taoist.

Parallel passage from Sun Shháu's Chin Yang Chhun Chhüeh1 quoted in FELY, ch. 2, p. 104; and, much earlier, in Phei Sung-Chih's commentary in San Kue Chih, ch. 52, p. 9.

This paragraph is in the Sui Shu and Yu Hsü texts just cited.

See pp. 90, 343, 357. Biographies of him have been written by Chang Yü-Chê (1, 2); Sun Wên-Ching (4), Li Kung-Pi & Lai Chia-Tu (1); Lai Chia-Tu (3).

It is particularly to be noted that these Thang records cannot have been projections back to Chang Hēng's time of ideas inspired by I-Hsing's clock, for both were written in the previous century.

Ch. 11, p. 58, tr. succ. subj. Ho Ping-Yü (1). Earlier in the same chapter (p. 38) the Chin Shu quotes from some lost work of Ko Hung's, c. +330, which is verbally almost identical with the last two sentences of the Sui Shu version. This evidence is much older than the Thang (cf. Vol. 3, p. 218).

... The Astronomer-Royal Chang Hēng again (cast) a bronze instrument (tsang hau i9) on the scale of 0.4 inch to the degree, its circumference being 14.6 ft. It was placed in a closed chamber (yi mi shih chhing5) and rotated by the water of a clepsydra (lit. dripping water) (i lhou shui chuan chhik9). One observer watched it behind closed doors and called out to another observer who was looking at the heavens on the observatory platform, saying when such and such a star should be rising, or making its transit, or setting, and everything corresponded like the two halves of a tally.

Then the account in the Chin Shu runs:

In the time of the emperor Shun Ti (+126 to +144) Chang Hēng constructed a celestial globe (or more probably a demonstrational armillary sphere; han hsüeh9), which included the inner and outer circles (net wai hsiu3), the south and north celestial poles, the ecliptic and the equator, the 24 fortnightly periods, the stars within (i.e. north of) and beyond (i.e. south of) the xī shān (equatorial lunar mansions), and the paths of the sun, moon and five planets. The instrument was rotated by the water of a clepsydra (lit. dripping water) (i lhou shui chuan chhik9) and was placed inside a (closed) chamber about a half (yi tiin shih shih net9). The transits, risings and settings of the heavenly bodies (shown on the instrument in the chamber) corresponded with (lit. resonated with) those in the (actual) heavens (han sheng chin shih ying9), following the trip-lug (yi chi huan li9) and the turning of the suspicious wheel (yi chuan jui lan9)

The general picture is thus quite clear. The procedure was for two observers to compare the indications of the mechanised sphere with the celestial phenomena actually occurring. But as to the machinery employed, only the last sentence gives a clue.

7b, +238 to +255) a relative of Ko Hung (the Taoist.

8a Ch. 11, p. 58, tr. succ. subj. Ho Ping-Yü (1). Earlier in the same chapter (p. 38) the Chin Shu quotes from some lost work of Ko Hung's, c. +330, which is verbally almost identical with the last two sentences of the Sui Shu version. This evidence is much older than the Thang (cf. Vol. 3, p. 218).

9a These were probably designation-circles of perpetual apparition and invisibility.

10 Note again the use of this philosophically significant technical term (cf. Vol. 3, p. 354).

11 The appearance of the word lawh (wheel) here is of great interest. This is the only text relating to Chang Hēng's device in which it occurs. Perhaps it was called 'auspicious' because it represented, as we shall immediately explain, a great advance in practical technique ancillary to calendar-making. But if lawh were emendable to ten,9 so that we could read 'upright wheel', it would make good sense too.

Our translation of han-li as trip-lug is a bold guess, and requires some justification. It must be some term of hieratical ten, but the lexicographers throw no light on it. That han-li was the word used from six to ten centuries later for the links of the mechanical escapement we know, but we hesitate to take back that precise meaning to the present early date. Another use of this form of han-li occurs in the account of Han Chih-Ho's flying automata at about +890, where it refers to the mechanism within their bodies (Tu Yang Tshin Pien, ch. 2, p. 86); cf. p. 163 above. But one finds a much more precise connotation of it in the Sung Shih's description of the south-pointing carriage and the hodometer made by Wu Tē-Jen in +640 (Tu, ch. 40, pp. 156, 179b), where it can only mean a projecting lug, in fact the pin of their pivots of one, two or three. The point is clinched by the fact that the term thieh po taur, ('iron trip tooth'), appears alongside it as an alternative expression. For further details on these machines, see pp. 102 and 184 above. Phrases somewhat similar have been met with elsewhere, though their orthography slightly differs. For example, han-li is the term used by Chou Chih-Fēi11 in his Lien Wu Tshai Tai (Questions about what is beyond the Passes) of +1175 for a fish-shaped movable stopper of silver placed inside a bamboo tube through which the tribespeople of the south-west drank wine in their ceremonies (Vol. 3, p. 314). Another form of han-li10 was a term used for the interlocking pivots of
It is of course unsatisfactory that our chief sources should all date from two to five centuries after Chang Hêng himself. However, contemporary evidence of his achievement does exist, and four pieces of it may be mentioned. First, two later writers at least quote directly from his own books, which in their time were still existing. Thus Su Sung wrote in his memorial (+ 1092): "Chang Hêng in his Hun Thien (On the Celestial Sphere) says that (one instrument) should be set up in a closed room and rotated by water-power.... And much earlier, about + 750, Wei Shu wrote of I-Hsing’s clock that when people discussed it they said that what Chang Hêng described in his Ling Hieh (Spiritual Constitution of the Universe) could have been no better. Of Chang’s two books, finished in + 115, we have today only a few fragments and these do not contain the description of the apparatus, but it is tolerably certain that both were fully available until the end of the Thăng, and one of them may well have lasted until the collapse of the Northern Sung in + 1126, so that Su Sung could have read it.

Besides this, two fragments of Chang Hêng’s concerning clepsydra technique were preserved by Thăng writers. We have already given them, and need not repeat them, for their content is not their most important feature in the present argument. The first occurs in the Chhua Hsiüeh Chih (Entry into Learning) encyclopedia compiled by Hsi Chien in + 700; it simply describes the inflow clepsydra with a compensation tank. The second occurs also in the Win Hiehân (Spiritual Constitution of the Universe) anthology, in a commentary by Li Shan of about + 660, and mentions the ancestors of jack-work, small statuettes cast on the lids of the inflow vessels, which guided the indicator-rods with their left hand and pointed to the graduations on them with their right. But the important thing is that both Hsi Chien and Li Shan quote these pieces from what appears to be the title of a book, Lou Shui Chuan Hun Thien I Chiih (Apparatus for Rotating an Armillary Sphere by Clepsydra Water). More probably this title was that of a chapter in Chang Hêng’s Hun I or Hun I Thu Chiu (+ 117), or of perhaps an important appendix of it. In any case, the great collectors of fragments were careful to retain the rings of Cardan suspensions in lanterns (cf. p. 235). But it also appears in a parallel description of Wu Té-Jen’s mechanical vehicles, namely the Khua Tham Lu (ch. 13, pp. 42, b6) by Yo Kho, where it is evidently only another way of writing huan-li. Semantically the range of meanings of both words together—connecting, pushing, and inserting something against resistance—covers very well the function of the trip-lug. What it would have had to do here was to push on a geared ring or wheel by the shaft round against the resistance of the astronomical instrument.

Thus he rationalises the common prognosticatory significance attributed by contemporaries to his invention of the clepsydra. It is a Brightnesses). Its most dateable record is of course unsatisfactory that our chief sources should all date from two to five centuries after Chang Hêng himself. However, contemporary evidence of his achievement does exist, and four pieces of it may be mentioned. First, two later writers at least quote directly from his own books, which in their time were still existing. Thus Su Sung wrote in his memorial (+1092): “Chang Hêng in his Hun Thien (On the Celestial Sphere) says that (one instrument) should be set up in a closed room and rotated by water-power.... And much earlier, about +750, Wei Shu wrote of I-Hsing’s clock that when people discussed it they said that what Chang Hêng described in his Ling Hieh (Spiritual Constitution of the Universe) could have been no better. Of Chang’s two books, finished in +115, we have today only a few fragments and these do not contain the description of the apparatus, but it is tolerably certain that both were fully available until the end of the Thăng, and one of them may well have lasted until the collapse of the Northern Sung in +1126, so that Su Sung could have read it.

Besides this, two fragments of Chang Hêng’s concerning clepsydra technique were preserved by Thăng writers. We have already given them, and need not repeat them, for their content is not their most important feature in the present argument. The first occurs in the Chhua Hsiüeh Chih (Entry into Learning) encyclopedia compiled by Hsi Chien in +700; it simply describes the inflow clepsydra with a compensation tank. The second occurs also in the Win Hiehân (Spiritual Constitution of the Universe) anthology, in a commentary by Li Shan of about +660, and mentions the ancestors of jack-work, small statuettes cast on the lids of the inflow vessels, which guided the indicator-rods with their left hand and pointed to the graduations on them with their right. But the important thing is that both Hsi Chien and Li Shan quote these pieces from what appears to be the title of a book, Lou Shui Chuan Hun Thien I Chiih (Apparatus for Rotating an Armillary Sphere by Clepsydra Water). More probably this title was that of a chapter in Chang Hêng’s Hun I or Hun I Thu Chiu (+117), or of perhaps an important appendix of it. In any case, the great collectors of fragments were careful to retain the rings of Cardan suspensions in lanterns (cf. p. 235). But it also appears in a parallel description of Wu Té-Jen’s mechanical vehicles, namely the Khua Tham Lu (ch. 13, pp. 42, b6) by Yo Kho, where it is evidently only another way of writing huan-li. Semantically the range of meanings of both words together—connecting, pushing, and inserting something against resistance—covers very well the function of the trip-lug. What it would have had to do here was to push on a geared ring or wheel by the shaft round against the resistance of the astronomical instrument.

Thus he rationalises the common prognosticatory significance attributed by contemporaries to his invention of the clepsydra. It is a Brightnesses). Its most dateable record is of course unsatisfactory that our chief sources should all date from two to five centuries after Chang Hêng himself. However, contemporary evidence of his achievement does exist, and four pieces of it may be mentioned. First, two later writers at least quote directly from his own books, which in their time were still existing. Thus Su Sung wrote in his memorial (+1092): “Chang Hêng in his Hun Thien (On the Celestial Sphere) says that (one instrument) should be set up in a closed room and rotated by water-power.... And much earlier, about +750, Wei Shu wrote of I-Hsing’s clock that when people discussed it they said that what Chang Hêng described in his Ling Hieh (Spiritual Constitution of the Universe) could have been no better. Of Chang’s two books, finished in +115, we have today only a few fragments and these do not contain the description of the apparatus, but it is tolerably certain that both were fully available until the end of the Thăng, and one of them may well have lasted until the collapse of the Northern Sung in +1126, so that Su Sung could have read it.

Besides this, two fragments of Chang Hêng’s concerning clepsydra technique were preserved by Thăng writers. We have already given them, and need not repeat them, for their content is not their most important feature in the present argument. The first occurs in the Chhua Hsiüeh Chih (Entry into Learning) encyclopedia compiled by Hsi Chien in +700; it simply describes the inflow clepsydra with a compensation tank. The second occurs also in the Win Hiehân (Spiritual Constitution of the Universe) anthology, in a commentary by Li Shan of about +660, and mentions the ancestors of jack-work, small statuettes cast on the lids of the inflow vessels, which guided the indicator-rods with their left hand and pointed to the graduations on them with their right. But the important thing is that both Hsi Chien and Li Shan quote these pieces from what appears to be the title of a book, Lou Shui Chuan Hun Thien I Chiih (Apparatus for Rotating an Armillary Sphere by Clepsydra Water). More probably this title was that of a chapter in Chang Hêng’s Hun I or Hun I Thu Chiu (+117), or of perhaps an important appendix of it. In any case, the great collectors of fragments were careful to retain the rings of Cardan suspensions in lanterns (cf. p. 235). But it also appears in a parallel description of Wu Té-Jen’s mechanical vehicles, namely the Khua Tham Lu (ch. 13, pp. 42, b6) by Yo Kho, where it is evidently only another way of writing huan-li. Semantically the range of meanings of both words together—connecting, pushing, and inserting something against resistance—covers very well the function of the trip-lug. What it would have had to do here was to push on a geared ring or wheel by the shaft round against the resistance of the astronomical instrument.
of the sun and moon on the other (e.g. the equation of time, lunar perturbations, etc.).

If, as is rendered highly probable by several of our texts, the system was to have small objects representing sun, moon and planets attached in some way to the sphere or globe, yet freely moveable thereon (for example, beads on threads), then the computer inside the room would adjust their positions in accordance with the predictions of the calendar currently in use. These formulae could then be tested by having the computer say what ought to be happening, whereupon the observer would if necessary correct him. Thus the calendar could be checked. The Chin Shu says in two places that it was the computer within who normally spoke first.

When Su Sung built his clock-tower in +1088 his celestial globe within the upper storey and his armillary sphere (still observational though mechanised) on the platform above were perfectly conscious allusions to the precedent established by Chang Heng so long before. And although a pure time-keeping function now occupied the ground floor, Su Sung retained the graphic models of former centuries. For he tells us that there are also pearls in different colours denoting the sun, moon and five planets, threaded on silk strings attached at each end by hooks and rings to the south-north axis. Following the waxing and waning, tarrying and hurrying, stopping and retrograding, and all the motions of the seven luminaries, the pearls are made to occupy their corresponding positions. They are rotated day and night following the movements of the heavens. An observer watching the pearls verifies whether the position of a luminary which they indicate agrees with what is observed and measured on the platform (above). If there is no difference (the calendrical formulae are) considered correct; (if there is a difference, the calendar calculations are adjusted). Thus the whole system was a graphic method of detecting any discrepancies between the motions of the sun, moon and stars, the fundamental, though always incom­mensurable, regularities on which all calendars had to be based.

The elucidation of this procedure gives us another opportunity of studying the social context of the inventions of the 'pre-clock' (if we may so term Chang Heng's device) and the escapement clocks. As has already been mentioned, the promulgation of the official calendar was one of the most important acts of the Chinese emperor, and about one hundred of these were issued from the first unification of the empire in the -3rd century until the end of the Ching dynasty in the +19th. Each bore a specific name consisting of two or three characters, and there is a wealth of information about the dates of their introduction and the astronomers who compiled them. Unfortunately, we lack any masterly survey of the whole in a Western language which would summarise the story, distinguishing between those calendars which simply involved new recensions of existing tables using new saecular terms or radices in the calculations, and those which depended on new measurements so that new constants could be established and new tables made. However, the question may be asked whether there was any relation between the horological inventions and the frequency of introduction of new calendars. Were the inventions connected with what one might call periods of 'calendrical uneasiness'?

A preliminary answer is not at all difficult. There are several convenient lists of the Chinese calendars, notably one given by Chu Wen-Hsin (1). If we plot the number of new calendars introduced each century between +400 and +1900 we obtain the graph shown in Fig. 663. The maximum can then be seen to have occurred in the +6th century, when no less than fourteen new calendars were introduced. But a correction is necessary. In order to approach our objective of true astronomical activity it is necessary first to exclude all new calendars which were merely changes of name, and secondly to exclude all those which were introduced to mark the inauguration of new dynasties. Since it was customary for each new ruling house to honour itself in this way, we cannot accept them as evidence of any unavoidable astronomical requirement. We thus have an array of smaller columns. Even these cannot be taken as the true index which we are seeking, for new calendars were often introduced to signalise

* By manual setting.
* In Sect. 20 (Vol. 3, pp. 189 ff.).
* The abundant literature, most of which is in Chinese and Japanese, has been referred to in Vol. 3, pp. 390 ff.

Fig. 663. The relation of calendar-making to the invention of the escapement; plot of the number of new calendars introduced in each century between +400 and +1900. Data from Chu Wen-Hsin (1), orig. graph. For interpretation, see text.
new individual accessions within the same dynasty or even changes of reign-period within the same reign. But the corrected columns may be regarded as a rough barometer of astronomical activity, for calendrical renewals at these shorter intervals by no means always occurred, and would indeed have been so inconvenient that one may assume that they often resulted from astronomical discussions and controversies.\(^8\)

The general picture seen in Fig. 663 is one of a rise to a double maximum (the +6th to the +8th centuries and the +9th to the +11th), followed by a fall. The obvious interpretation is that the problems were beginning to be posed in the Han, and that they had mostly been solved by the Chhiing. Chang Heng's invention occurs in the preparatory Han period, at a time of few calendars, but one must remember that he was setting in motion a technique which would have to be followed for many years to bring useful results. On the other hand, the indubitable use of the escapement by I-Hsing comes just towards the latter part of the burst of 'calendrical uneasiness' and calendar-making activity of the Liu Chhao and Thang periods. The great clocks of later times all come within the similar period of the Sung.

When the same material is plotted from +200 to +1300 in 25-year periods (Fig. 664), the phases acquire further clarity. There is a relative quiescence to about +500, but from then onwards (apart of course from the spate of inaugurations) there is at least one calendar in each quarter-century and once as many as four. The two or three preceding centuries had been a time of rapidly growing experimentation with astronomical instruments such as armillary spheres.\(^b\) Now also the foreign importations of Buddhism were beginning to take effect, and astronomical ideas were certainly among them. But the calendrical activity of this time belongs to a little-known period and deserves much further study.\(^c\) In any case, the uneasiness stimulated by foreign influences greatly increased in the Thang, and at the beginning of the +8th century the merits of other calendars—Indian, Persian, Sogdian—were hotly debated at the capital.\(^d\) This was the very time at which I-Hsing and Liang Ling-Tsan, as if in answer to desperate demands for some more truly time-keeping machine, made their invention of the water-wheel linkwork escapement.

Towards the end of the Thang things were again quieter, but with the establishment of the Sung discrepancies must have become obvious once more,\(^e\) and we find the clock of Chang Su-Hsin (+974) coinciding with a quarter-century in which no less than three calendars were produced. Between +925 and +1225 no quarter-century passed without at least one new calendar, so the clock of Su Sung (+1088) finds its place naturally in the period. The all-time record of six calendars between +1175 and +1200 must almost certainly be a reflection of the hard done to astronomical science of Buddhist influence and the beginning of the Sung.

\(^8\) Frequently we know that this was the case—as in I-Hsing's own time.

\(^b\) See Table 31 in Vol. 3, and the accompanying discussion.

\(^c\) On the work of men such as Hsien Tung, Chen Luan, Liu Hsiao-Sun and Chang Meng-Pin, all good mathematicians as well as astronomers, see Vol. 3, pp. 116, 203, 318, 394.

\(^d\) This was the time when the three families of Indian astronomical mathematicians, to whom belonged, for instance, Chhiithan Hsi-Ts, were established at Chhang-an (see Vol. 3, p. 202). Buddhist scholars were by no means always at one in this period, for I-Hsing was opposed by Chhiithan Meng and the Chinese lay astronomer Nankung Yileh (see Vol. 4, pt. 1, p. 53).

\(^e\) Perhaps the inauguration calendars of the Wu Tai period encouraged calendrical computers.

Fig. 664. The relation of calendar-making to the invention of the escapement; plot of the number of new calendars between +200 and +1300. Data from Chu Wen-Hsin (1), orig. graph. For interpretation, see text.
by the fall of the Sung capital to the Chin Tartars in +1126. We shall have more to say about this shortly. Then in the last part of the +13th century there ensues a burst of activity which is readily explained by Arabic influence analogous to the earlier Indian and Sogdian. Eventually comes the lethargy of the Ming and the beginnings of unified world astronomy with the Jesuits in the early Ch'ing.

Thus side by side with considerations arising from the private life of the imperial family we can place the needs of calendrical computation. It looks as if the invention of Chang Heng about +120 derived from the growing doubts which had led Hipparchus to the discovery of the equinoctial precession in −134 and were to lead Yü Hsi to state the same doctrine about +320. But by +700 the more accurate measurement of time had become a burning problem, and the social need of a predominantly agrarian culture for an accurate calendar as well as the intrinsic evolution of astronomical science itself led to the answer found by I-Hsing. It is indeed a strange conclusion that an apparatus so deeply enrooted in Western mechanical industrial civilisation as the clock should have originated in connection with the calendar required by Eastern agricultural people. But other perspectives no less remarkable must be mentioned. In the present work it has often been emphasized that Chinese astronomy was founded and built on a polar and equatorial system while Hellenistic astronomy was primarily ecliptic and planetary. Each had its peculiar advantages and its corresponding triumphs. If Hipparchus was able to state the fact of precession four and a half centuries before Yü Hsi, it was because he was measuring and comparing star positions on ecliptic co-ordinates, and therefore it became evident that their distances from the equinoctial points had changed. But if astronomical instruments were rotated mechanically by Chang Heng fifteen centuries before the conception of the clock-drive arose in Renaissance Europe, and if in this I-Hsing with his well-documented and successful mechanised time-keeping had priority of

* Cf. p. 477 above.

* See Sect. 20 (Vol. 3, pp. 249, 266 ff).

* As we saw in Vol. 3, pp. 352, 356, the automatic rotation of an observational instrument in Europe was first suggested by Robert Hooke in +1670 and effected by J. D. Cassini using an armillary sphere eight years later. Not until 1884 was an equatorial telescope rotated by clockwork; this was due to Joseph Fraenkel. The automatic rotation of demonstrational instruments arose rather earlier, but not before the +16th century; cf. H. Werner (1), Cronsmolin (5). One of the first was built by Jannele Torriano for Charles V of Spain about +1540 (cf. Morales, 1), but we know very little of it. In his interesting paper on instruments ascended to the planetarium, Michel (16) illustrates a fine mechanism celestial globe made by Christopher Schiastler the younger about +1560, showing automatically the motion of the sun on the ecliptic. From the provisional census published by von Bertele (a, 6) the earliest extant European clockwork-driven demonstrational armillary appears to be that of Josias Habrecht (Fig. 666) dating from +1572. During this period four or five other very splendid ones were made by Jost Burgi, the ingenious colleague of Tycho and Kepler in Prague (see von Bertele, 1, 3). Most of the earlier instruments, such as that of Edward Wright about +1613, were of course constructed on the geocentric system. The oldest extant heliocentric one seems to be the wonderful Gottorp terrarium of +1651 by an unknown maker (Fig. 666), described by von Bertele (a). Another Gottorp instrument, (now in Leningrad), a giant globe 11 ft. in diameter, terrestrial without and celestial within, having seats for observers inside, is of particular interest from the point of view of the Chinese story, since it was rotated by a water-wheel. What escapement mechanism (if any) its builder, Olearius, provided for it about +1680 we should very much like to know, but unfortunately all record of this is lost. The design of Berthoud (Fig. 667) is typical of late 18th-century practice (cf. Vol. 3, Fig. 177, and von Bertele (4), figs. 214, 2, 374), but is still based on essentially the same principles as that of I-Hsing a thousand years before.
Fig. 666. The Copernican terrarium made for the Bishop of Lübeck in 1651 by an unknown master, and later in the possession of the Dukes of Gottorp; probably the oldest extant European heliocentric instrument (von Berente, 2). The discoidal lid of the vase-shaped case revolves once a year round the vertical axis, which extends beyond the disc and carries a small gilt sphere representing the sun. At some distance from the centre there is another disc through the centre of which rises a shaft carrying a relatively large terrestrial globe surrounded by a number of rings. The globe revolves once a day upon this shaft as it is carried round by the annual motion. A moon model, held in the carrier seen on the left of the earth's disc, demonstrates the lunar phases and periods. Meanwhile the earth and moon models are raised and lowered during their circular motions round the sun and earth respectively by means of a number of elliptical wheels and cams, so as to show the varying inclinations of sun and moon to any point of the earth's orbit. Diam. of discoidal top, 2 ft.; location, Frederiksborg Castle National Museum, Denmark.

Fig. 667. Late 18th-century design for a heliocentric demonstrational annular sphere by Berthoud (1); cf. the Jesuit example in the Huang Chhau Li Chi Li Thu Shih of 1739 (Vol. 3, Fig. 177). The ecliptic is horizontal and the planetary models rotate in that plane.
nine or ten, it was because Chinese astronomers thought always in terms of equatorial co-ordinates and therefore of declination parallels. Along these tracks all stellar revolution proceeds, but ecliptic latitude and longitude are only an abstract network made by man, a geometrical waste-land, along the lines of which nothing is ever seen to move. Well might Donne say:

For of Meridians, and Parallels,
Man hath weav'd out a net, and this net throwne
Upon the Heavens, and now they are his owne....

In China therefore it was an entirely natural thought to arrange the rotation of a celestial globe or a demonstrational armillary sphere if the plan promised to be useful. What was not perhaps so easy was how to do it.

This subsection may end, then, with a few words to set against their proper background the means which we think Chang Hêng took to solve his problem. To harness the waste dripping of clepsydra water there was one obvious recourse, the art of the millwrights. In +2nd-century China their workmanship was doubtless primitive, but during the previous century the water-powered trip-hammer (chái t’ai) had come into widespread use. Although the most characteristic form of mill-wheel in China later was the horizontally mounted type, the vertical ‘Vitruvian’ form always persisted, and for the trip-hammer was the more suitable of the two. Moreover, metallurgical blowing-engines powered by water (chái phái) had become common in China during the +1st century. If the Chinese vertical water-wheel really derived from the noria, the transition had been made a good while before Chang’s time, so that his chief originality lay in arranging for a constant drip into scoops rather than a strong flow and fall on to paddles. The trip-lug on his shaft merely corresponded to those which worked the grain-pounding trip-hammers all around him. However, there was originality also in making it push each time the tooth of a ring or gear-wheel, probably bearing leaf teeth, and controlled by a ratchet. There seems nothing at all in the arrangement which would have been beyond the powers of Han technicians. The trip-lug was their own, though to use it as a pinion of one was rather Alexandrian. You

*a An Anatomie of the World; the First Anniversary (+1611).
*b How paradoxical it is, therefore, that traditionally the Greeks receive all the credit due to the first inventors of mechanically rotated astronomical instruments. ‘It was necessary’, writes Michel (16), discussing the limiting factors of this development, ‘to wait the geometrical genius of the Greeks, with their faculty of “seeing through space”, in order to attain the resolution of the mechanics of the heavens as a logical combination of circular motions.’ He is thinking, of course, of the Ptolemaic theory, with all its complexities, but in fact the Greek achievement in practice was confined to the rotation of flat discs by sinking floats, and it is unlikely that even the Anti-Kythera planetarium (if powered at all) or that of Archimedes (see p. 534 below) worked on any other principle. There is no doubt that the Greeks were the more successful theorists, but equally none that the Chinese, on the whole, were the better practical instrument-makers.
*c Cf. pp. 390 ff.
*d Cf. pp. 405 ff.
*f For the evidence indicating an extensive knowledge of gear-wheels in Han China cf. pp. 83 ff. above.
*g Cf. Fig. 391 a, b and pp. 86 ff.
*h One remembers the very elaborate puppet theatre constructed less than a century after Chang Hêng’s death by the engineer Ma Ch’ên (cf. p. 158). The motive power for that was a water-wheel and there must have been plenty of trip-lugs.
{i Cf. pp. 82, 381.
may compare it rather with the peg on the axle of Heron's hodometer in the previous century than with those on the shaft of his organ-blowing windmill. What connections there could have been between the engineers of Alexandria and Han China remains of course a completely unsolved question. It might have been a case of carrying goods to Newcastle, for as we have seen above (pp. 281 ff.) the Chinese hodometers were contemporary, and their acceptable reconstructions involve small pinions of one, two or three teeth.

Presumably Chang Heng's simple machine was at rest during each period when water was slowly accumulating in one of the scoops. As soon as enough had collected, its weight overcame the resistance of the toothed wheel and armillary sphere, and the trip-lug turned it round by one tooth, then coming to rest against the next. Although we are told optimistically that 'everything agreed like the two halves of a tally' we are bound to assume that the chronometric properties of the device were poor. The scoop, the nature of the bearings of the polar axis, and similar factors. Very probably it was maintained in regular motion only with some difficulty, and perhaps the successive astronomers who made instruments of the same kind were all searching for the right conditions for doing what no one until I-Hsing was really able to do. Or perhaps they made the work much better than we are inclined to believe. In any case it is hard to exclude Chang Heng's apparatus absolutely from the horological definition of van Bertele with which this discussion began.

The problem of securing a B

Some time afterwards Hsing and others also said: 'Now what has always been called the armillary sphere has a spherical outer form, so that the (equatorial constellation (-positions) in degree-marks) can be distributed round it. Inside there are the concentric rings and the sighting-tube, which can be used for the observation of the heavens. (Thus we have here two separate instruments, the sphere and the globe, but they could be made into a single instrument.)

Now what has been erected (contains) the two different things, the (equatorial constellation (-positions) in degree-marks) can be distributed round it. Inside there are the concentric rings and the sighting-tube, which can be used for the observation of the heavens.

Hsing's apparatus absolutely from the horological definition of van Bertele with which this discussion began. The problem of securing a B

The second paragraph of our quotation is a slightly condensed form of the text of Sung Shih, ch. 8, pp. 250 ff. The third is a condensation of the account of Chu Wen (see immediately below) in his Chih Wei Chiu Wen, ch. 8, pp. 192 ff. Only these last two texts were known to Needham, Wang & Price (1), p. 195 ff., 177, who therefore misinterpreted Hsing's suggestion (taking it to be a demand for a new observational armillary sphere without a clock-drive), and discounted Chu Wen's story of the large hollow globe (supposing it to be hearsay or lapse of memory). When the accounts are juxtaposed as they are in the Yü Hai and the Sung Hui Yao Kao, it becomes clear that what Chu Fien says that Sung Shih did was in fact the response to what Hsing Chiang asked for. The words and passages enclosed in square brackets are not in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version. The words and passages enclosed in square brackets in the Yü Hai version.
lantern or a bird-cage (kow1, long1) (with bamboo ribs), and the walls (of silk and paper) pierced with holes according to the positions of the stars. It could be rotated by means of a wheel (chi lun hsian chuan chu shih1) so that the star culminations for any particular time before dawn or after dusk4 could all be seen by looking through the holes. The astronomers and calendrical pundits all flocked to watch its operation, and were quite astonished at it, for nothing like it had previously been achieved.b

Thus the auxiliary instrument made at Hsi Chiang's suggestion was a planetarium in the sense that a human observer could enter and study an artificial sky, but not in the sense that the motions of the planets could be mechanically demonstrated. Though the language used resembles that applied so often to water-wheel drives, and the sense that the motions of the planets could be mechanically demonstrated. Though its nuance, the word have been set by hand to whatever hour-angle desired; as in the elegant reconstruction recently proposed by Wang Chen-To (9), who has the observer sitting in a chair which hangs from the main polar axis. Su Sung doubtless met Hsi Chiang to the extent of providing meridian and horizon rings, but the other great circles would be sufficiently marked on the skin of the world-ball. c The year +1094 thus marked the apoage of Su's practical achievements, though he had seven more years to live after finishing his book two years later.

Very soon, however, the masterpieces of Su Sung and Han Kung-Lien were menaced by the controversies of the time. From about +1060 until the fall of the capital in +1126 the public life of the dynasty was torn by violent disputes between the party of the Conservatives and that of the Reformers. Here we cannot enlarge upon the issues which divided them, though perhaps it is not too inaccurate to say that the latter were concerned to strengthen at all costs the bureaucratic character of Chinese society, and were therefore opposed alike to the old-fashioned feudalminded land-owning gentry and to the merchants or small industrialists. d As already mentioned, e Su Sung, though probably not an active member of the Conservatives, was identified with them through his friendships. So when in +1094 the Reformers came back into power there was talk of destroying his clock-tower. Ch'u Pien,4 in his Chii Wei Chia Wen1 (Talks about Bygone Things beside the Winding Wei (River, in Honan)), written about +1146, tells us this.f

a At any particular time of year, of course.
b The Su Sung Shih continues (p. 259). In the fourth month of the 7th year of the Yuan-Yu reign-period (+1092) Su Sung was asked to write an inscription for the (combined) armillary sphere and globe; i.e. the 'planetarium' globe. And then, 'in the sixth month, the Armillary Clock (Tower) was completed'.
c A few pages ago (p. 492) we noted the similar 'planetarium' globe built by Olearius at Gottorp before +1666. Although that was rotated by water-power while Su Sung's may not have been, it is clear from the context that he could easily have provided it with a mechanical drive of that kind if he had wished to do so. One would hardly have expected to find an ancestor of the Gottorp 'planetarium' globe as much as six hundred years before it.
d Cf. Sect. 64 (Vol. 1, p. 128). An introductory account will be found in Fitzgerald (1), pp. 391 ff., but all the histories of the period in Western languages are most unsatisfactory. However, Williamson (1), Ferguson (4, 7) and de Bury (1) may be read with some advantage.
e P. 446 above.
f Ch. 3, p. 106, tr. auct.

27. MECHANICAL ENGINEERING

At the beginning of the Shao-Sheng reign-period (+1094), Tshai Pien (Minister of State) suggested that it ought to be destroyed as something which belonged to the previous Yuan-Yu reign-period. At that time Chhao Mei-Shu 2 was Assistant Director of the Imperial Library, and as he greatly admired the accuracy and beautiful construction of Su Sung's instruments, he struggled to argue against Tshai Pien, but at first his efforts proved unsuccessful. However, he sought the help of Lin Tau-Chung,3 who talked to Chang Tung + (Prime Minister) 4 and thus the destruction of the clock was averted. However, after Tshai Chiang 1 and his brother 2 came into power nobody dared to say anything to prevent Su Sung's machinery being torn down. How shameful!

The idea was, of course, that each new reign-period must 'make all things new', and politicians of that time could hardly be expected to understand the slow growth of practical scientific knowledge. But in fact the clock remained untouched, and continued to tick over the minutes inexcorably until those days of +1126 when the Chin Tartars were at the gates.

Let us follow it's fortunes to the end before returning to the political aspects of horology in the Northern Sung. In this fateful year the capital (Khaifeng) was twice under siege. In September it fell, and both emperors (Hui Tsung and Chin Tsung) were taken away captive to Peking in the north. For a while the princes and the remains of the court wandered about behind the lines, settling first in one place and then in another, till in +1129 it was decided to choose Hangchow as the new capital. This was what became the 'flower of cities all' that Marco Polo was to see 140 years later. But the blow at the technological supremacy of the Sung had been extremely severe. One of the most notable things about the sieges of Khaifeng had been the fact that the Chin Tartars exacted as tribute in the periodical armistices whole families of artisans and skilled workmen. They demanded from the city all sorts of craftsmen, including goldsmiths and silversmiths, blacksmiths, weavers and tailors, and even Taoist priests. e And there is every reason for thinking that when the capital fell, all the clock-making millwrights and maintenance engineers followed the Chin power and migrated to the north. Probably they accompanied the disassembled clock-tower itself. For the Chin Shih says:6

After the (Chin) dynasty had captured Pien-ching (i.e. Khaifeng) all the astronomical instruments were carried away in carts to Yen (modern Peking or more generally the north-
In the eighth month of the 6th year of the Ming-Chang reign-period (+ 1195) there was a terrible storm with rain and wind, thunder and lightning. The armillary sphere, with its dragon columns, cloud-and-tortoise column, and water-level stand, was struck by lightning. The masonry of the observatory tower was also split asunder so that the sphere fell to the ground and was damaged. The emperor ordered the officials to repair it, and it was replaced upon the tower.

In the Chen-Yu reign-period (+ 1214 to + 1216) (the Chin court and people, pressed by the rising Mongol power) crossed the (Yellow) River (flying) southwards. It was proposed that the armillary sphere should be melted down to make things, but the emperor did not have the heart to destroy it. On the other hand its bulk was so large that it would have been difficult to transport by cart, so in the end it was left behind.

Thus the 15-ton armillary sphere of Su Sung eventually fell into the hands of the Mongols towards the beginning of their career of conquest. When Peking became their capital in + 1264 it was still available for the astronomical officials, but by then it had suffered from the ravages of time and could no longer conveniently be used. The Mongols now commanded the services of the best and greatest Chinese scientific minds of the age. Su Sung’s sphere must have been well known to Kuo Shou-Ching before he made his great invention of the equatorial mounting (the 'simplified instrument or equinoctial torquetum'). Kuo himself was, among so many other things, a maker of clocks. We shall therefore also soon return to him, but first let us take another look at that intriguing period, the end of the Northern Sung.

Historians and sinologists have had much to say about it but few have observed that it expired in a blaze of horological exuberance. The use of hard wood is a particularly striking feature. Wang Fu proceeded to mention other technical respects which discussed the construction of astronomical instruments (chi heng) in detail. So afterwards I asked the emperor to order the Supply Department (Ying Feng Shu) to make some models to test what it said, and this they did in the space of two months.

Wang Fu then went on to describe the chief instrument, which seems to have been a demonstrational armillary sphere or a celestial globe, with all the usual features and very elaborately graduated. But it was combined with complicated planetarium machinery which showed automatically not only the positions of the sun and moon but also the phases of the latter. The planets too were shown rising, culminating and setting, moving at varied speeds in advance or retrogradation. The text continues:

A jade balancing mechanism (yi heng) (i.e. the escapement) is erected behind (lit. outside) a curtain, holding and resisting (chi heng) the main scoops (sha tou). Water pours down, rotating the wheel (sha tou chu) with 43 (teeth). There are also hooks, pins and interlocking rods one holding another (hau chien chiao tuo hsiang chih). Each (wheel) moves the next without reliance on any human force. The fastest wheel turns round each day through 2928 teeth (chi heng), the slowest only moves by 1 tooth in every 5 days. Such a great difference is there between the speed of the wheels, yet all of them depend on one single driving mechanism. In precision the engine can be compared with Nature itself (lit. the maker of all things; tao su ch’i). As for the rest, it is much the same as the apparatus made (long ago) by I-Hsing. But that old design employed mainly bronze and iron, which corroded and rusted so that the machine ceased to be able to move automatically. The modern plan substitutes hard wood for these parts, as beautiful as jade.

This description is one of the most interesting specifications for a Sung astronomical clock that we have, tantalisingly abridged though it is. The use of hard wood is a particularly striking feature. Wang Fu proceeded to mention other technical respects in which the apparatus excelled its Thang predecessors, especially in the time-telling and striking components, which included a ‘candle-dragon’ (chu tang) which spot forth a pearl from time to time into a bronze lotus, and a jack representing the God of eastern regions. The celestial (gear-wheel) (tsien huan), the equatorial (gear-wheel) (chih heng taoyu), the time-keeping (gear-wheel) (chi po lu), the celestial globe (hsian hsiang), the bells, drums and quarter-striking (jack) (chang hua tsu-ch’ien huo pao), the upper reservoir (chiin chih), the scoops, sump and tanks (shui lu), etc., all broke or wore out after some years. Only the bronze armillary remained in the observatory (hau that) of the (Chin) Bureau of Astronomy and Calendar. But as Pien (+ 1195) and Yen were more than a thousand li away from one another, the (polar) altitude was quite different, so that it was necessary to alter the arrangement, setting the (south) polar pivot four degrees lower.

As for the rest, it is much the same as the apparatus made (long ago) by I-Hsing. But that old design employed mainly bronze and iron, which corroded and rusted so that the machine ceased to be able to move automatically. The modern plan substitutes hard wood for these parts, as beautiful as jade. This description is one of the most interesting specifications for a Sung astronomical clock that we have, tantalisingly abridged though it is. The use of hard wood is a particularly striking feature.

* * *

Here is a third Sung book on clockwork, besides those of Su Sung and Juan Thai-Pa (p. 449).

And some additions, such as some way of showing the Khun-lun Mountains (the cosmic mountain, Mt. Meru in Indian tradition) obviously showing Buddhist-Taoist influence.

Owing to the prominence of the early iron turret-clocks it is not generally known that wood was widely used for astronomical clock movements in recent centuries in Europe. Even the greatest clock-makers, such as John and James Harrison, made many clocks of this kind, and one of them, dated +1715, is still going in the Science Museum, London; for description see Lloyd (3) and pls. 104 and 127, 128. In +1797 Harrison tells us that the Harrisons were of a carpenter’s family. Wood was used to eliminate friction and avoid oil, with lignum vitae (a naturally oily wood) for the pivots. Oak discs were used for the wheels, the teeth being cut with the grain and screwed in along the rims in groups of from two to five. At the firm of Grauwiler in Basel in the spring of 1956 I saw a 17th-century farmhouse clock with verge-and-foliot escapement, all made of wood except for the weights, pallets, crown-wheel edges, and pins in the lantern pinions. Descriptions of such wooden clocks are often found—for the Black Forest cuckoo clocks and Austria, Kaufman (1); for France, Planson (2); for New England, Mordell (1). In view of the considerable splashing which must have occurred in the Chinese water-wheel clocks, the use of a light and non-corroding material was especially suitable.

This form of auditory signal is extremely reminiscent of the striking water-clocks of the Byzantine and Arabic culture-areas. The description of Antioch in the Chia Thang Shu, ch. 150, p. 194 ff., includes an account of such a system (cf. Hend. (4), p. 132). This would have been written just before +945 and was repeated in later dynastic histories (cf. Vol. 1, p. 103, 208). We have already...
Longevity. He ended by proposing that a special bureau should be set up for constructing several machines of this kind, one to be placed in the Ming Thang, another at the observatory, and three more in other places. A special portable one was to be made to accompany imperial peregrinations. And he added that a book had been written about all this for the benefit of posterity. Eventually construction was ordered, with Wang Fu in charge and Liang Shih-Ch'ung as deputy. But only two years afterwards there came the siege of the capital, and one must suppose that all the half-completed pieces, the designs, and the artisans themselves were carried away to the north by the Chin Tartars. Wang Fu, in any case, did not live to know.

There is one very odd thing about his long memorial. Although his proposals were made only thirty years after the building of Su Sung's clock, and although this notable work was still in full function, there is no mention of it whatever. A political reason is of course to be suspected, and this is indeed very probable. Su Sung's clockwork was associated with the Confucian Conservatives—Wang Fu was one of the Taostic Reformers.

It will be remembered that the Taish brothers first came to power in +1094, when the young emperor Chê Tsung was able to follow his own inclinations and dismiss the quarelsome and divided Conservatives. A 'committee of investigation' was at once set up to examine the existing astronomical instruments, including Su Sung's clock, the very existence of which was thenceforward endangered. After Hui Tsung's accession in +1101 the Reformers held power continuously, and times were therefore favourable for the Taoists with whom they were associated. The full working out of the implications of this situation has never, so far as we know, been attempted, but it would be well worth while, for the Taoists had been from the beginning opposed to feudal and feudal-bureaucratic society, and were involved in all the subversive movements which occurred throughout the centuries. At the same time they were the curators and advanced of all kinds of proto-scientific and technological knowledge and practice—in pharmaceutical botany and mineralogy, in astronomy, alchemy, and various forms of engineering. The Reform party of the Sung were bureaucratic scholars who broke away from the typical Confucian ideology and made an alliance with Taoist science and technique. It was highly significant that Wang An-Shih, and again in +1104 Tshai Ching, included mathematics and medicine among the subjects which could be offered in the imperial examinations.

From the beginning of Hui Tsung's reign, therefore, welcome at court was forthcoming for Taoist adepts of all kinds. In +1104 Wei Han-Chin, a thaumaturgist from Chang Sung-Hsin's province, Szechuan, was entrusted with the casting of nine urns of bronze or iron, in allusion to those legendary vessels which Yu the Great was supposed to have made, bearing upon their outer surfaces some kind of picture-maps of the provinces of the empire. During the first decade of the century, Chu Mien, the son of a Hunanese pharmacist, was despatched by Tshai Ching on a tour of the country with authority to purchase or secure as tribute all kinds of valuable articles for the imperial palace. He forced the people to gather for their paintings and writings, bronzes and jades, precious stones and ornaments, and every object which would help to adorn the palace or to gratify the luxurious taste of the court. So at least is the way historians write about his activities, and there is no doubt that Chu Mien himself profited by them, but if we read between the lines, there was a Taoist flavour about this perquisition. The Taoists at court would assuredly have been concerned with all rare drugs, curious gems and other stones, technical secrets and natural products of every sort. And there was Wang Fu ready to catalogue everything which was brought to the imperial palace.

In +1112 two eminent Taoists were presented at court, where they remained for some years close to the emperor. Wang Lao-Chih was an intimate of Tshai Ching's and friendly with Wang Fu. His successor was Wang Tzu-Hsi, also known as a diviner, but of course skilled in many techniques, as men were in those times when magic and science were imperfectly distinguishable. We are told that Wang Tzu-Hai...
constructed a 'spherical image' (yuan hsiang), no doubt a celestial globe, which the emperor kept in a special pavilion. Possibly, therefore, we should recognize him as the unworldly 'Mr Wang' of +1102, who presented the book on clockwork to Wang Fu. During this period, too, the Taoist church received great imperial favour. In +1114 Tahai Ching proposed the construction of a new Ming Thang (cosmological temple) with a square lake, and an imperial Taoist cathedral (Tao Kuan); the first part of this plan was carried out in +1115. A year later another Taoist came into prominence, Lin Ling-Su, whose specialities seem to have been rain-making and Taoist bibliography. The Taoist patrology was incorporated into the imperial library under specially appointed curators. Finally, there was Liu Hun-Khang the geomancer, whose prowess with the magnetic compass led to a striking increase in male progeny among the imperial concubines.

But this entourage of virtuosi was not the kind of court which could have helped even a military emperor to organise the massive resistance needed against the forces of the Chin. With the loss of the northern provinces, the fall of the capital, and the capture of both emperors, the experimental co-operation of Taoists and Reformers came to an end. Had it continued long it might have affected Chinese society profoundly. In any case the curious facts which we have just related, remote though they may perhaps have seemed from the history of clockwork, bring to our notice the existence of two rival schools of horological artisans, one associated with the Con­fucian, the other with the Reformers. For Han Kung-Lien must have had his group of craftsmen just as Wang Fu (and perhaps Wang Tao-Hsi) had his. Presumably the political parties vied with one another in the planning and erection of monumental clocks. But this is indeed an unexpected conclusion in view of the usual belief that the clock was something absolutely new to the Chinese in +1600.

We have now clarified some of the social background against which Su Sung’s clock was erected, and we have followed its fortunes down to the time of the Mongol power. This pursuit took us to the Chin Tartar State in the north, and so to the Yuan empire. The next question is, what happened in the south, in the area beyond the Yangtze, to which the Sung dynasty withdrew?

Astronomical and engineering science had suffered such a blow that for a considerable time the needs of the imperial observatory could not be met. Although in +1133 astronomers such as Ting Shih-Jen and Li Kung-Chin spoke wistfully about the ‘four famous armillary sphere of the former capital’ and, with Li Chi-Tsung, made wooden prototype models, casting in bronze was not attempted.

About +1176 Yuan Wei-Chi, who had been, it will be remembered, the immediate pupil and collaborator of Su Sung himself, embarked upon the casting of a small armillary, but it was not successful. There was at this time a demand for an astronomical clock, for in +1144 Su Sung’s son, Su Hsi, who had escaped to the south, was called upon to search the family papers, but could produce no designs from which another machine could be made. So the casting of two non-mechanised armillaries was entrusted to Shao O, a palace steward, whose instruments turned out to be usable, if not exactly brilliant. Particularly remarkable is the fact that the great Neo-Confucian philosopher Chu Hsi (+1130 to +1200) interested himself in the clockwork drive and tried hard to reconstruct its mechanism, but without success. In the Sung Shih we read:

As for the water-power drive system (shai yiin chih fu) and the celestial globe, these were no longer available (for use with the armillary sphere). Later on, Chu Hsi had an armillary sphere in his house, and tried hard to investigate the water-drive arrangement (so that it could again be constructed), but without any success. Although some writings of Su Sung were still in existence, they dealt principally with the details of the celestial globe and did not record any working measurements, so it was very difficult to recover his system.

The fact that Chu Hsi took such an active interest in studying the problem of the power-drive for clocks, and also the fact that he proved unable to reconstitute it, are both significant comments on Neo-Confucian philosophy.

The secret of the escape being thus now temporarily lost, it appears that some of the Southern Sung technicians returned to the simpler float principle of the anaplectic clock. Tseng Min-Chan, a scientific worthy of the early +12th century, responsible among other things for the invention or popularisation of the double-pin gnomon equatorial sundial, made water-clocks the description of which suggests this. His son or grandson, Tseng Min-Hsing, wrote of him about +1176 in the Tsu Hung Tsu Chaik (Miscellaneous Records of the Lone Watcher), as follows:

The Yu-Chang (i.e. Chiangpi province) water-clock and sundial were invented by Tseng Nan-Chung, who had mastered astronomy when young. At the beginning of the Hsian-Ho reign-period (+1119) he passed the chih-chih examinations (the third of the degrees) and was posted as magistrate to Nan-chhang (in Chiangpi). When Mr Sun, a Auxiliary Academician of the Lung-Thu Pavilion, became commander-in-chief of the army there (and got to know Mr Tseng) he acquired great respect and affection for him. So when the latter suggested

a Sung Shih, ch. 472, p. 6b.

b I biod. ch. 81, pp. 13b ff.; Yu Hsi, ch. 4, pp. 47b ff.; Hsiao Hsieh Kung Chu, ch. 3, p. 10b; Chih Tang Yeh Yu, ch. 15, p. 56. That Klaikfing had no less than four armillary observatories is a fact of much interest in itself. The passages are fully translated in Needham, Wang & Price (1).

c Much of the difficulty experienced at this time was probably due to the disappearance or death of the necessarily highly qualified artisans.

27. MECHANICAL ENGINEERING

503
the construction of sundials and water-clocks according to new methods, the general was delighted and authorised him to recruit artisans for the purpose.

Thus metal was cast into the shape of vessels, and wooden rods were carved (with graduations). Behind the main vessel four basins and one reservoir were set up.\(^a\) The water in the main vessel (i.e. the inflow receiver) came from the basins (i.e. the compensating tanks) and the water in the basins came from the reservoir. The water poured out through the open mouths of bronze dragon siphons. Beside the indicator-rod stood two wooden figures, the left one in charge of the day quarter-hours and the half (double-)hours of the night. In front of it an iron strip was set up, on which it struck each of these. The right figure was in charge of the (double-)hours of the day, and the night-watches. In front of it there was a bronze gong, which it sounded at each of these times.

(Tseng Nan-Chung) also made two wooden dials (\textit{Mu Shu}) with diagrams on them. One was set upon a wooden support for reading (the hours) by the sun's shadow. The other was rotated by water (\textit{Yung Shui Chuan Chih}) to imitate the motion of the heavens (i.e. \textit{Fa Shien Yin}). This instrument was highly ingenious and the method very precise, so that it exceeded anything known in former times.

(Tseng) Nan-Chung often used to observe the phenomena in the heavens by night, and could predict the motions of the stars and constellations, saying that such and such a star (or planet) would pass such and such a degree on such and such a night. This instrument was highly ingenious and the method very precise, so that it exceeded anything known in former times.

Tseng Nan-Chung died about +1150 and Chu Hsi's efforts would have been about +1170. But, as we have already noted (p. 448 above), Su Sung's book was recovered in full, and first printed, in the south,\(^b\) by Shih Yuan-Chih in +1172. Possibly Chu Hsi's agitation led to this result. In any case it is an interesting comment on the events in the south to find that an elaborate account of the works of Su Sung's clock is contained in the \textit{Chin Shih} but not in the \textit{Sung Shih}. Since these two dynastic histories were both edited by the same scholars, Toktaga\(^c\) the Mongol, and Ouyang Hsüan,\(^d\) in about +1340, the obvious inference is that the engineering description was conserved in the northern Chin archives but not in those of the southern Sung.

This observation restores us to the Mongol period, and to Kuo Shou-Ching, who was mentioned a few pages above. As early as +1262, before Peking became Kublai Khan's capital, Kuo had made for him a 'Precious Mountain Clock' (Pao Shan Lou),\(^e\) presumably at Shangtu.\(^f\) But in the \textit{Yuan Shih}\(^g\) we have an elaborate description of the illuminated clock (\textit{Teng lou})\(^h\) of the Ta Ming Hall, made almost certainly by Kuo Shou-Ching, for it comes in the midst of a long account of his inventions, though not specifically ascribed to him. Since the description describes almost entirely with

\(^a\) It will be found fully translated in Needham, \\cite{Needham1971}, p. 298.

\(^b\) Since it was discovered by H.B. the Astronomer-Royal Kuo, gives simply 'Shih Tao's reign', i.e. officially +1170 to +1180. As Yu Wen \textit{Li}, ch. 50, pp. 1f. 23.

\(^c\) There is of course an Arabic air, as would be expected, perhaps, when the contacts of Kuo Shou-Ching with Jamil al-Din are remembered (Vol. 3, pp. 372 ff.). It resembles the design of al-Jazari (cf. Vo l. 1, Fig. 33). Both have the signs of the zodiac appearing and disappearing, lamps being lit, balls dropped, etc.

\(^d\) Another account of it, Chih Lü-Ch'ien's \textit{Chih Thai Shih Yuan Shih Kuo Hsing Hsien Chwang} (Obituary of H.E. the Astronomer-Royal Kuo), gives simply 'Shih Tao's reign', i.e. officially +1170 to +1180.

\(^e\) It is well worth noting how few men it took to span all the centuries of clockwork drive mechanisms. Ricci saw the globe of Kuo Shou-Ching, but Kuo in the +13th century certainly knew the armillary sphere of Su Sung of two hundred years earlier. There is reason to think that Su Sung and his collaborators in the +11th century had access to the +10th century designs of Chang Shou-Hsin if not to those of the +9th-century workers (I-Hsing and Liang Ling-Yuan). They in their turn must have been acquainted with what Kæng Hsin had done in +990, if not indeed with the remains of the instruments of Chhien Lo-Chih, which are known to have lasted at least as late as +665. And finally Chhien Lo-Chih's work in +945 was directly inspired by the recovery of the remains of Chang Hsing's apparatus. Thus from Chang Hsing to Matteo Ricci there were only six intermediate men (perhaps only four) spanning fifteen centuries. A strange conservatism can also be detected in the transmission of the astronomical constants involved. Su Sung in the +11th century still used for his machinery values for \(\pi\) and for the year length which had then been current when Chang Hsing's work was beginning. Details of this will be found in Needham, \\cite{Needham1971}, p. 78; Combridge (3).

\(^f\) This description of this has a distinctly Arabic air, as would be expected, perhaps, when the contacts of Kuo Shou-Ching with Jamil al-Din are remembered (Vol. 3, pp. 372 ff.). It resembles the design of al-Jazari (cf. Vo l. 1, Fig. 33). Both have the signs of the zodiac appearing and disappearing, lamps being lit, balls dropped, etc.

\(^g\) It will be found fully translated in Needham, \\cite{Needham1971}, p. 137; adjuv. Wylie (5), Sci. sect. p. 12.

\(^h\) It is well worth noting how few men it took to span all the centuries of clockwork drive mechanisms. Ricci saw the globe of Kuo Shou-Ching, but Kuo in the +13th century certainly knew the armillary sphere of Su Sung of two hundred years earlier. There is reason to think that Su Sung and his collaborators in the +11th century had access to the +10th century designs of Chang Shou-Hsin if not to those of the +9th-century workers (I-Hsing and Liang Ling-Yuan). They in their turn must have been acquainted with what Kæng Hsin had done in +990, if not indeed with the remains of the instruments of Chhien Lo-Chih, which are known to have lasted at least as late as +665. And finally Chhien Lo-Chih's work in +945 was directly inspired by the recovery of the remains of Chang Hsing's apparatus. Thus from Chang Hsing to Matteo Ricci there were only six intermediate men (perhaps only four) spanning fifteen centuries. A strange conservatism can also be detected in the transmission of the astronomical constants involved. Su Sung in the +11th century still used for his machinery values for \(\pi\) and for the year length which had then been current when Chang Hsing's work was beginning. Details of this will be found in Needham, \\cite{Needham1971}, p. 78; Combridge (3).
Occasion offered for the Father (Ricci) to go and see the emperor's mathematical instruments, which are set up on a high hill within the city on an open level place surrounded by very beautiful buildings erected of old. Here some of the astronomers take their stand every night to observe whatever may appear in the heavens, whether meteoric fires or comets, and to report them in detail to the emperor. The instruments proved to be all cast of bronze, very carefully worked and gallantly ornamented, so large and elegant that the Father had seen none better in Europe. There they had stood firm against the weather for nearly two hundred and fifty years, and neither rain nor snow had spoiled them.

There were four chief instruments (i.e. the celestial globe, the armillary sphere, a large gnomon, and the equatorial torquetum). The first was a globe (thung chhiu), having all the parallels and meridians marked out degree by degree, and rather large in size, for three men with outstretched arms could hardly have encircled it. It was set into a great cube of pure bronze which served as a pedestal for it, and in this box there was a little door through which one could enter to manipulate the works. There was however nothing engraved on the globe, neither stars nor terrestrial features. It therefore seemed to be an unfinished work, unless perhaps it had been left that way so that it might serve either as a celestial or a terrestrial globe.

Another globe was seen and described by one of Ricci's successors towards the end of the same century, Louis Lecomte, but it was so much smaller (only 3 ft. diameter) that it cannot have been the same instrument. When Ferdinand Verbiest refitted the perhaps it had been left that way so that it might serve either as a celestial or a terrestrial globe. The second was a globe in the Western sense aligned with celestial latitude. There was however nothing engraved on the globe, neither stars nor terrestrial features. It therefore seemed to be an unfinished work, unless perhaps it had been left that way so that it might serve either as a celestial or a terrestrial globe.

Another globe was seen and described by one of Ricci's successors towards the end of the same century, Louis Lecomte, but it was so much smaller (only 3 ft. diameter) that it cannot have been the same instrument. When Ferdinand Verbiest refitted the perhaps it had been left that way so that it might serve either as a celestial or a terrestrial globe. The second was a globe in the Western sense aligned with celestial latitude. There was however nothing engraved on the globe, neither stars nor terrestrial features. It therefore seemed to be an unfinished work, unless perhaps it had been left that way so that it might serve either as a celestial or a terrestrial globe.
acquired any new name, and was called merely a lou, a 'leaker', like the simplest clepsydras of two thousand years before. It was of course far more, as we can deduce from the water-wheel escapement hinted at by the 'scoops'. By a curious coincidence, this clock was almost contemporary with the wonderful astronomical time-pie of Giovanni de Dondi in Italy (+1364), described by Lloyd (1). This translated astronomical data entirely into terms of dials and pointers, with some indications presented to the direct line from the 'pre-clock' of Chang Heng; de Dondi's profiled by the new verge-and-pendulum escapement of its time, as also from medieval computing-devices like the equatorium, but it too was in a direct line from the anaporphic dials and pointers of the Hellenistic age.

The final blow to the indigenous tradition might well be dated about +1368, when the new forces of the Ming dynasty captured Peking and ended the Mongol domination. Hsiao Hsin, about twenty years later, in his Ku Kang I Lu, left a striking account of the architecture and contents of the Yuan palaces which were destroyed by the first Ming emperor's order. Hsiao himself had been present as a Divisional Director of the Ministry of Works. Although he failed to describe the water-wheel clock with its elaborate jack-work, he expatiated on the dragon-fountains with balls dancing on their jets, the tiger automata, the dragons spouting perfumed mist, and the fleet of dragon-headed mechanical boats. The destruction of all these things, understandable though it was as the act of a dynasty representing the people's resentment against economic exploitation, and able to direct it against quasi-alien overlords, was nevertheless very unfortunate. Much that could have been put to better use probably perished—the Ming, like another revolution later, 'had no use for' clock-makers.

No doubt the Chinese horological tradition had become smothered in its own jack-work, and was hopelessly identified with the 'conspicuous waste' of the Mongol court. But its death (if indeed it did not die at that time) was a circumstance of peculiar historical importance, for it meant that when the Jesuits arrived two hundred and fifty years later there was extremely little to show them that mechanical clocks had ever been known in China.

We are thus obliged to believe that still at the time of Ricci and Trigault some remains were left of the old Chinese driving-wheel clocks. The use of sand seems particularly strange, for the hour-glass is considered to have been an introduction from Europe then of very recent date.

Nevertheless, sand there was, and in tanks. The story of what happened in the Ming has been unravelled by the skill and labour of Yabuuchi (4) and Liu Hsien-Chou (5). We have just seen how the monumental striking water-clock of the last Yuan emperor, the Confucian austerity which accompanied the 'new' but not the 'Western', the philosophy but not the theology. The Europeans were far more impressed than the Jesuits intended, and in due course Chinese 'morality without supernaturalism' paved the way for deism and revolution. The early Jesuits in China were a most sympathetic group of men and the results of their actions were enormously influential—but almost wholly contrary to what they themselves were consciously working for. Such is the irony of history. The result which concerns us here was that the indigenous scientific and technical tradition of China was very much underestimated in the West.

One should not suppose that this great nationalist uprising was in all respects anti-technological. On the contrary there is much evidence connecting its success with the first adequate large-scale tactical use of metal-barrel cannon, then a new invention.

As we shall see in a moment, it did not die, but underwent a curious and unexpected reincarnation.

Moreover, for reasons not yet at all clear, there was in Ming times a general decline in most of the autochthonous traditions of physical science and technology (with some exceptions such as the ceramics industry). There was thus almost no one who could explain Chinese mathematics, astronomy or other sciences to the Jesuit missionaries. This situation they naturally exploited in several ways. To the Chinese they emphasised as much as possible the superiority of the natural science of Renaissance Europe, because by the aid of it they hoped to convince them of a corresponding superiority of European religion. To the Europeans they praised the ethical and social philosophy of China as much as possible, in order to raise the prestige of the Jesuit mission, which was converting not savages, but highly civilised people. The Chinese saw through the first analogical argument very quickly, and determined to adopt the...
rise to power of the nationalist movement of the Ming. Hence it is interesting, though not very surprising, to read in the Ming Shih: a

After Thai Tsu had conquered the Yuan people, the Astronomer-Royal presented him with a ‘rock-crystal clock’ (shui ching hsiu lou), within which there were two wooden jacks automatically striking gongs and drums in accordance with the passing hours. But Thai Tsu considered it to be a useless (extravagance) and had it broken up.

Yet if the emperor felt compelled to frown upon anything which savoured of the palatial luxury of alien rulers, he seems to have given positive encouragement to a form of wheel-clock which could be easily made in all provinces and prefectures. The texts which tell us of this new horological design are also in the first of the astronomical chapters of the Ming Shih, but they concern a much later date, and the matter arises incidentally. The Chinese astronomers who were the friends and collaborators of the Jesuits are discussing the making of new equipment for the imperial observatories.

In the 7th year of the Chhng-Chen reign-period (+1634), Li Thien-Ching b reported that Hsi Kuang-Chih c said that for determining time there had anciently been the clepsydra, but now there was the ‘wheels-and-bells’ (instrument, i.e. the mechanical escapement clock). Both required human attention, and were therefore not so reliable as taking time from the movements of the heavens themselves. He therefore petitioned that three kinds of instruments, sun-dials, star-dials, and telescopes, should be made. So the emperor authorised him to take charge of the matter. d

The historian then goes on: e

In the following year (+1635) (Li) Thien-Ching suggested that sand-clocks should be made. At the beginning of the Ming (i.e. about +1360 to +1360) Chan Hsi-Yuan, f finding that in bitter winters the water froze and could not flow, replaced it by sand. But this ran through too fast to agree with the heavenly revolution, so to the (main driving) wheel with wheels he added four wheels each having 36 teeth. Later on, Chou Shu-Hsiih g criticised this design because the orifice was too small so that the sand-grains were liable to block it up, and therefore changed the system to one of six wheels (in all), the five wheels each having 30 teeth, at the same time slightly enlarging the orifice. Then the rotation of the machine really agreed with the movements of the heavens. What (Li) Thien-Ching now petitioned for was surely this design deriving from (Chan and Chou).

In this way we come across a new name, hitherto unknown, but of much importance for our story, Chan Hsi-Yuan about +1370. Chou Shu-Hsiieh we have met before: h he flowered between +1530 and 1558, leaving a well-deserved reputation as a mathematician, astronomer and cartographer. The date of Chan Hsi-Yuan is clearly confirmed by the fact that the great historian Sung Lien, i chief editor of the Yuan Shih, wrote an interesting essay on the ‘Five-Wheeled Sand-Clock and its Inscription’

"..."

written by him for one of these instruments before his death in +1531. The account of the mechanism given in this text is so complete that Liu Hien-Chou had no difficulty in making the working drawing shown here with in Fig. 668. Two things are very clear, first that this type of sand-clock had a scoop-wheel very similar to that in the great water-wheel clocks of Su Sung and others, as well as a certain amount of jack-work just as they did; secondly, that it had a stationary dial-face over which a pointer circulated. The appearance of this feature, so characteristic of all subsequent clocks, in late +14th-century China, is quite curious, since this was just about the time when the dial-face was becoming standardised in Europe too. Perhaps the simplest hypothesis is that both derived independently from the dial of the anaporphic clock, which, as we have seen above (pp. 467, 502), seems to have existed during the earlier Middle Ages in China as well as in the West. Equally important is the evidence of the divorce, now complete, both in China and Europe, between the astronomical functions and the purely time-telling functions of clockwork and proto-clockwork.

The most difficult point to decide about the sand-clocks of the Ming is whether or not they worked with a linkage escapement like the earlier monumental water-wheel clocks from I-Hsing to Toghan Timur. It would have been natural for them to have possessed it, but there is no justification in Sung Lien’s text for supposing that they
did, and it may be, therefore, that Chan Hai-Yuan was more original than Sung Lien realized. For he was, perhaps, the inventor of a type of clock with reduction gearing. Computation shows that whether in its original or its modified form, each scoop took only a matter of seconds to fill, and with such an extensive train of gears there could have been no tendency for the driving-wheel to run wild. Of course, with the level of technique available in the 14th century, or even the 16th, the resulting accuracy may well have deserved the strictures it received from the Jesuits, and no doubt the advent of weight- and spring-driven clocks was a very great gain; yet the work of Chan Hai-Yuan retains all its interest. Reduction gearing had been known in principle to the Alexandrians, and for timekeeping machinery it was of course a commonplace in 14th-century Europe, but the thought of relying completely upon it for slow motion relayed from a prime mover does not seem to have occurred to contemporary Europeans.

What Sung Lien has to say about the history of the Ming sand-clocks is as follows:

Formerly in Luan-yang the water frequently froze, and even though often heated, would still not drive water-wheel clocks. Thus it was that Chan Hai-Yuan of Hain-an brought his ingenuity to bear, and substituted sand for water. When he had finished his (prototype) clock, everyone said that no such thing had ever been heard of before. Indeed it did not need to fear comparison with the Seven-Jewelled Illuminated Water-Clock of Kuo Shou-Ch'ing (c. +1276), which automatically sounded the (double-)hours with bells and drums.

There was also Ch'eng Ch'un-Yung of Phu-yang, who travelled to the capital with (Chan) Hai-Yuan, and therefore knew all the details of his design. After he returned he made (more of these clocks) and asked me for an inscription (for one of them). So I wrote the following words:

"The 'Hoisters of the Water-Pots' were ancient men of State, And as of old the time they told by Water's constant rate, But wintry ice spoilt their device—the water turned to land— Till Chan by Earth did conquer Earth, and moved his wheels with sand; Which being neither firm nor flood, keeps faith with Heaven's round And makes the jacks of Master Ch'ung to beat their rhythmic sound— So now Stone flows where Water can't, ignoring fire and frost— Good people all, mark well the dial, and grudge each moment lost."

And indeed the sand-clocks of the Ming are worth our careful notice too. Their period of dominance was comparatively so recent that the discovery of an actual specimen in the excavation of a Ming tomb is by no means outside the bounds of possibility.

A late appearance of solid particles fulfilling the function of water in the 'mill-wheel' type of clock brings us to the point where the two traditions, Chinese and Western, joined in a single instrument. By the second decade after the death of Ricci collaboration between Jesuit missionaries and Chinese scholars had become a well-established tradition, and it is to the work of one such pair that we owe the earliest Chinese description of the verge-and-foliot escapement. But in this clock the two traditions fused, for while a mechanism of European type kept equal double-hour time in the front of the cabinet, a scoop-wheel system of Chinese type told the night-watches at the back.

The illustration (Fig. 669), and a brief description, was given by Wang Chêng in his Chu Chi Hsu Shou (Diagrams and Explanations of a number of Machines) of +1627. Perhaps to indicate its double nature, he called it a 'wheel clepsydra' (lun hu). A cabinet of two storeys some 2½ ft. high made visible in its central compartment an iron clockwork mechanism driven by a falling weight of lead. One can see the foliot above the gear-train. Wang Chêng described them as follows:

Beside all this there is a cross-shaped (device) having two hitting teeth (po chhîk) (i.e. pallets) to left and right. All the wheels (of the gear train), impelled by the motion transmitted through them, would move quite fast, if it were not for the hitting teeth in the centre, which slow down the movements, seeming to be pushed to the left yet arresting on the right. This is a most delicate piece of machinery, and the very essence of the 'wheel clepsydra'. But though everything depends on it, it is extremely difficult to describe in writing, and can hardly be represented in a diagram.

Then, since no Chinese clock could be complete without jack-work, the upper storey carried a perambulating figure with a pointer, driven by a belt or chain from the clockwork below, and indicating each of twelve tablets for the double-hours in turn. This figure also tripped a striking mechanism which beat upon the drum in the left-hand compartment, while other arrangements sounded both the drum and a bell in the right-hand compartment at other times.

So far all was purely Western, a manifestation of the knowledge of Wang Chêng's friend the Jesuit Johann Schreck. But inside the cabinet, presumably at the back, there was also a 'night-watches clepsydra (hêng low)', with two flumes (tshaow) and

1. Here we regret to differ from Liu Hsien-Chou (6). Nevertheless, his conviction that for any kind of accurate time-keeping the Ming sand-clocks must have had some kind of escapement is shared by Mr John Combrinck and several colleagues. On the other hand, perhaps they really were as inaccurate as Ricci said (p. 190).
2. This place was a Chin Tartar city in Hopei province north of Peking, perhaps a temporary capital at the beginning of the Ming dynasty.
3. A town of this name has long been famous for its magnetic compasses (cf. Vol. 4, pt. 1, p. 294).
4. It is probably the one in Anhui, not its namesake on the Pearl River estuary south of Canton.
5. Undoubtedly the same as the Illuminated Water-Clock of the Ta Ming Hall (p. 304 above).
6. A town on the Puchiang River, a tributary of the Chhien-thang south of Hangchow, in Chekiang province. Southern Chekiang was always associated with the production and working of iron and steel in many small centres.
two tubes (thang¹), filled with lead shot (chhien tan²), and the (rest of the appropriate) machinery. This rather cryptic statement agrees in no way with the weight-driven clock in the front, but does perhaps suggest that for the unequal night-watches Wang Chêng installed a scoop-wheel clock of the Ming type, using not sand but small lead-shot for filling the buckets.

It is unfortunate that he says so little about it; probably it was too familiar to his readers. But one would like to know whether it had a weight-bridge linkwork escapement or depended on reduction gearing, and also what means he took to adjust the mechanism automatically for the varying night-watch periods at the different times of the year. As in the case of the sand-clocks it is not at all impossible that future archaeological discoveries will reveal it to us.

It seems probable that the bucket-wheel sand-driven clocks did not die out until the close of the +17th century. Some time about +1660 a magistrate in Yunnan, Chi Than-Jan,² constructed what was almost certainly an instrument of this kind for a Buddhist temple.¹ Liu Hsien-Thing⁴ tells us about it in his Kuang-Yang Tsa Chi⁵ (Collected Miscellanea), which dates from the last decades of the century.

The Thung-Thien pagoda was really a clock (thou ming chung²). It was designed by (Chi) Than-Jan, and built in the form of an Indian or Turkestan Buddhist stûpa (Hsi-Ya fou-thu²) of three storeys standing on a framework supported on silver blocks. Within the lowest storey of the pagoda there was a bronze wheel revolving in connection with others but not visible from outside. At the front of the middle storey there was an open door showing a 'double-hour drum' as round as a tub, the circumference of which was divided into 12 placards inscribed in seal characters with the names of the (double-)hours. This tub-wheel was rotated by means of the (driving-)wheel below in accordance with the (apparent) diurnal rotation of the heavens. After one revolution of the sun the drum returned to its original starting-point. At each (double-)hour one or other of the placards faced outwards so that it could be fully seen.

There was also a wooden figure which popped out holding placards to announce the quarters, and at the same time striking a bell at the top of the middle storey. Besides this there was a bronze bell hanging in the top storey which was struck by the mechanism. At every quarter the bell sounded one stroke and at each (double-)hour it sounded eight strokes.

In front of the bell there was an image of the guardian god Wei-Tho, controlled (by the mechanism) from inside, which looked all round to left and to right as if inspecting (what was going on).² Above this there was nothing but the roof. The whole design was something hardly ever seen before, and replaced the lotus clepsydra in timing the Buddhist services.

Than-Jan, and built in the form of an Indian or Turkestan Buddhist stûpa (Hsi-Ya fou-thu²) of three storeys standing on a framework supported on silver blocks. Within the lowest storey of the pagoda there was a bronze wheel revolving in connection with others but not visible from outside. At the front of the middle storey there was an open door showing a 'double-hour drum' as round as a tub, the circumference of which was divided into 12 placards inscribed in seal characters with the names of the (double-)hours. This tub-wheel was rotated by means of the (driving-)wheel below in accordance with the (apparent) diurnal rotation of the heavens. After one revolution of the sun the drum returned to its original starting-point. At each (double-)hour one or other of the placards faced outwards so that it could be fully seen.

There was also a wooden figure which popped out holding placards to announce the quarters, and at the same time striking a bell at the top of the middle storey. Besides this there was a bronze bell hanging in the top storey which was struck by the mechanism. At every quarter the bell sounded one stroke and at each (double-)hour it sounded eight strokes.

In front of the bell there was an image of the guardian god Wei-Tho, controlled (by the mechanism) from inside, which looked all round to left and to right as if inspecting (what was going on).² Above this there was nothing but the roof. The whole design was something hardly ever seen before, and replaced the lotus clepsydra in timing the Buddhist services.

I myself begged Than-Jan to open up the works and let me see them; there were of wheels

² This interpretation depends upon one's estimate of the size of the shot. If they were substantial lead balls then Wang Chêng may have used an Arabic type of striking clepsydra something like that of King Sejong in Korea a couple of centuries before (cf. p. 317). This also would explain the audible signalisation from a mechanism hidden in the back of the clock.

³ This non-Christian affiliation, and the absence of any mention of a verge-and-foliot escapement, strongly suggests that the clock did not have a Western weight-drive.

¹ In the front of the middle storey there was a door to a gallery above (mu-hsiu tang-chhiu), pointing to placards of the double-hours one after the other, and tripping a drum-benting mechanism. But strangely, though nothing of this is seen in his diagram, a representative of the classical Chinese horological tradition lurked still at the back of the cabinet, namely a 'clepsydra for the night-watches', which used lead shot. Most probably this was a scoop-wheel of the sand-driven wheel-clock type, with or without a linkwork escapement, and adjustable in some way or other for the 'unequal' intervals throughout the year.
large and little more than twenty, all made of yellow bronze, but the workmanship was not very refined and everything depended on the exact shape. After a short period of service it went wrong altogether.

It is a pity that Mr Liu did not tell us more about the motive power, but the tub-wheel with the placards at any rate was clearly horizontal like the jack-wheels of Su Sung. Perhaps his failure to mention any escapement again suggests that reduction gearing was used. In any case the machinery does not seem to have worked too well, and we have the impression of attending the death-bed of a great tradition. Further research may bring to light more details of the work of Chi Than-Jan.

In this brief subsection we have covered some six hundred years. In following the fate of Su Sung's great clock we became involved in the curious politics, ecclesiastical as well as civil, of the court of Hui Tsung early in the +12th century. We saw how its remains came into the possession of the Mongolian rulers and their brilliant men of science such as Kuo Shou-Ching in the +13th, some of whose own water-powered astronomical instruments were handed down to be studied by Jesuits at the end of the +16th century. In one of the Yuan emperors, Toghan Timur, we found a clockmaker of note, apparently the last in China to use water as the motive force; for from the beginning of the Ming (about +1370) Chan Hsi-Yuan and others substituted tanks of sand. This method survived well into the Jesuit period, but by the end of the +17th century sand and scoop-wheels had given place to the standard forms of Europe, first the falling weight and then the spring. We have come a long way, but something yet remains to be said about developments which occurred during the Ming dynasty, from the +15th century onwards.

(5) Korean Orreries, Asiatick Sing-Songs, and the Mechanisation of Mt Meru

A few pages ago we were listening to the artisans of the Ming in the Yuan palaces, lamentably 'breaking down the carved work with axes and hammers'. If some of Shun Ti's skilled workmen got awry in time, we can hazard a shrewd guess as to where they went. For a few decades later the court of the Yi kingdom of Choson at Seoul in Korea was busied with exactly the same kind of activity, and royal clock-makers were again at work. This merits attention not only for its intrinsic interest but because it was almost the last appearance of water-powered time-keeping instruments.

The fourth king of this dynasty, Sejong (r. +1419 to +1450), gave proof of abilities, and maintained a court, not unworthy to be compared with those of the Caliph al-Ma'mu'n or Alfonso X, king of Castile. An enlightened and scholarly ruler, he was the prime inventor of the Korean alphabet in +1446, a remarkable achievement. But he was also fond of science and scientific instruments so that he was able himself to supervise the complete re-equipment of the astronomical observatory of

the capital, which took seven years from +1432 onwards under the care of Yi Sunji and Chang Yonggi. Here we are more interested, however, in King Sejong's clocks. It is recorded that when quite young he made a clepsydra together with his father, King T'aejong. Then in +1424 he ordered the construction of a kind of clock patterned after a Chinese description. From its name however, king tien chhi (hyangjōng), we might infer that it was some kind of arrangement which indicated the night-watches and their divisions by a series of lamps successively and automatically lit, and balls dropped one after another into ringing bowls, as in the great striking clepsydras of the Arabic world. These of course needed no escapement and depended only on the anaporphic float principle.

Such a surmise is strongly supported by an account of one of the monumental clocks constructed at the Choson capital, preserved in the Yiyo Sillok (Veritable Records of the Yi Dynasty) and noted long ago, though not elucidated, by Rufus. The 'puppet-clock' in question, which was built by Chang Yonggi at Sejong's command in +1434, had three wooden figures of immortals which struck the double-hours on a bell, beat a drum at the beginning of every night-watch, and sounded a gong for every fifth part (tien or chhou) of each night-watch. The mechanism, minutely described, was as follows. From two inflow clepsydra vessels there rose up two floating indicator-rods, one for the day and night double-hours, the other for the night-watches, dislodging as they did so 12 and 25 small bronze balls respectively from vertical bronze racks fixed above the clepsydra. The double-hour bells fell down one after the other through an appropriate conduit to dislodge 12 iron balls as big as hen's eggs; these then sped down a channel to make one immortal ring its bell, and at the same time poke on a horizontal wheel carrying 12 minor immortals with hour-annunciating placards so arranged that they appeared one after the other at a window. The system for the night-watch bronze balls was a little more complicated in that the tube in which they collected gave on to two separate channels with two rows of waiting iron balls, 5 to make the drum immortal do its work and then to sound the gong for the beginnings of the night-watches, and 20 to mark the passage of fifths of night-watches by sounding the gong alone. An ingenious use of levers sufficed for nearly all the effects. In every case it was arranged that the detent orifices where the small balls tripped the large ones in succession should be closed automatically one after the other. At the end of the night the balls were all collected from the sumps where they had assembled, and

\[R. +813 \text{ to } +833; \text{ cf. Hitti (1), p. 310.} \]
\[R. +1424 \text{ to } +1424; \text{ cf. Sarton (1), vol. 2, p. 834.} \]
\[R. +1432 \text{ to } +1424; \text{ cf. Sarton (1), vol. 2, p. 834.} \]
\[R. +1419 \text{ to } +1450; \text{ cf. Hitti (1), p. 310.} \]
\[R. +1419 \text{ to } +1450; \text{ cf. Hitti (1), p. 310.} \]
\[R. +1446; \text{ cf. Yi Sangbaek (1); Ledyard (1).} \]
replaced at their starting-points, no doubt when the water in the clepsydra vessels was changed. Such was the *tsu chi lou* (automatic striking clepsydra) in the Pao Lou Ko* 1 (Poru Kaš, Chinning Clepsydra Pavilion). It is thus evident that the clock of +1434 was a striking clepsydra essentially in the Arabic style,* though containing a horizontal wheel of circulating jacks like those of Su Sung before and Isaac Habrecht afterwards. One may well wonder what connections these Koreans could have had with the Arabic culture-area, * a filiation with a Chinese anaphoric clock tradition as exemplified in T'ae'ng Min-Ch'ao (cf. p. 302) would perhaps be easier to understand.

Three years later the equipping of the royal observatory was at its height. The *Yipo Sillok,* a long and informative passage,* describes nearly forty astronomical instruments of thirteen types, ranging from small portable sundials oriented by magnetic compasses to modified versions of the ‘Simplified Instrument’ or equatorial torquetum, originated by Kuo Shou-Ching at the imperial observatory of the Yuan about a century and a half before. *4 Consciously building on his work and somewhat extending it, the Korean astronomers, notably Yi Sunji, Ch'ong Ch'ho,* 5 Ch'ong Inji,* 6 and Yi Ch'hen,* 7 besides producing instruments of classical type such as the gnomon and the armillary sphere, invented also forms of apparatus hitherto undescribed. Among these were scaphe sundials with stretched wires or threads as the armillary sphere, invented also forms of apparatus hitherto undescribed. Among those were the *jih-ting chih kuei 6,* which introduces the classical phraseology to which we have become accustomed. Thus the 31-ft. diameter celestial globe made of lacquered cloth with a threaded sun model (cf. pp. 471, 488) had an ingenious mechanism driven by the force of rushing water yet hidden from sight.* 8 The same applies to another puppet-clock set up in the Pavilion of Respectful Veneration (*Hümgyông Kak* or Ching Ching Ko* 7). Here an artificial golden sun travelled upon its course among clouds from dawn to sunset over (or round) an artificial mountain 7 ft. high, representing perhaps Mt Meru. Meanwhile a jade girl (immortal) beat the double-hours with a wooden stick upon a bell, and simultaneously four out of twelve warrior jacks advanced and retired amidst scenery which changed according to the seasons. Inside there was an ‘automatic turning mechanism with a *weil she chi lun* ’, using clepsydra tank water from (an orifice of) skillfully-worked jade (or other hard stone) to strike upon it (*yung hsiu lou shui chi chih*).* 9 Such words leave no doubt in the mind that between +1434 and +1438 the astronomers and engineers of the Korean court changed over from typically Arabic to typically Chinese horological contrivances, though the latter may well not have been new in the land of Chosón. We can hardly fail to recognise here the tradition of I-Hsing, Su Sung and Shun Ti.

As had already been said, the Koreans were probably more interested in science and mechanical technology than any other people on the periphery of the medieval Chinese culture-area.* 6 It is thus not perhaps surprising that Korea provides us with a very interesting bi-millennial armillary sphere which, though dating from the +17th and +18th centuries, three or four hundred years after King Sejong, still exemplifies the bi-millennial tradition of East Asian astronomical clockwork.* Many most characteristic features are to be seen in this piece of apparatus, the mechanical drive of which operates time-telling and striking devices as well as the rotation of the sphere itself.

A photograph of the instrument has already been given in Vol. 3, Fig. 179 (pp. 390)* in connection with demonstrational armillary spheres. Its length is about 4 ft., its height 3 ft. and its width 1 ft. 9 in.; the armillary sphere being 1 ft. 4 in. in diameter and the terrestrial globe within it about 3 in. The time of day is shown by discs carried round on arms from a horizontal wheel and displayed through a side window. The sun moves as a model on the ecliptic band (*huang tao*), marked with

* In the great monograph of Wiedemann & Hauscr (4) on Arabic striking clepsydras, there are many descriptions of balls falling through tubes and along channels to activate jacks, cf. pp. 25, 135 ff., 143 ff., 317, 830, 446.

* cf. Wiedemann (5) (cf. Vol. 3, pt. 3.) 'At the furthest end of Chinese territory', wrote Chhi shui chi chhiao (ch. 48, p. 7). ‘At the furthest end of Chinese territory, at the imperial observatory of the Yuan about a century and a half before.’

* Dr. Minorsky’s translation of the Jih ting chih kuei 1 (automatic striking clepsydra) is rather fuller (ch. 2, pp. 307, 310, and Needham, and reference to the astronomers who produced the Koryo.* 4 Ch'ong Ch'ho was an Amdanidem and Intendant of Education; Yi Ch'hen seems to have been in charge of the engineering aspect of the works.

* This may require a revaluation of our previous impression that the stretched-thread sundial (Type A) was a Jesuit introduction (cf. Vol. 3, p. 310). It seems here to have developed from a prolongation of the south-pointing style of the equatorial sundial. The forms described are called_kuan chi chu iih kwun* and chih ping jih shih.* 10

* Cf. Vol. 3, pp. 307, 328. The description of this is largely due to another astronomer, Kim T'on.* 11
of the court turned more to mechanical time-keeping. Sejong's water-wheel clock with the jade girl immortal in the Pavilion of Respectful Veneration was burnt down and rebuilt twice, first in +1534 and then again in +1614, when Yi Chhung was restored. Yi Chhung also restored at the same time the Chiming Clepsydra and its Pavilion.

A new chapter opened when in +1657 King Hyojong ordered Hong Chöhun to make an astronomical clock, termed in antique parlance by his edict-writer a hūn-čh'i yü-héng (sin-gi okhyông). This instrument turned out to be not much good, so at the instance of the Hongsung Kwan Chhoe Yujì was entrusted with the task and succeeded to perfection. That his clock had a water-wheel linkwork escapement is certain. The court's appetite for armillary clocks now grew rapidly, and under King Hyojong in +1664 two engineers, Yi Minchöll and Song Iyong, were commissioned to make two further ones. The difference between these two productions is clearly discernible from a memorial by Kim Sökeü dated five years later, which by good fortune has been preserved. While Yi Minchöll remained faithful to the water-wheel drive and escapement (hun thien i shi chi chih fa), Song Iyong introduced 'Western gear-wheels', i.e. in all probability a weight-drive or spring-drive clockwork mechanism with verge-and-foliot or even pendulum. Thus we find our-selves in a new era and globe were made by Yi Hangbók in +1661. After this it becomes difficult to distinguish observational spheres from the armillary spheres which were incorporated in the clocks, but it seems that one of the former was cast by Yi Minchöll and Song Iyong in +1669, and another by An Chungtae and Yi Shiva in +1704. A general account of astronomy and horology under the Yi dynasty (which favoured these sciences from its inception) has been given by Rufus (2), pp. 34 ff., but all its particulars need careful revision.

How long it lasted after that we do not know, but in +1669 Song Chunggil petitioned for its restoration, so by that time it must have been in working order again. A water-wheel had previously been provided for it, which it seems to have contained as part of it was preserved, together with Yi Kökköe's equatorial torquetum, at Seoul as late as 1907.

The College for the Cultivation of Literature (Hái Wén Kwan,13) founded in +641, or, to give it the definitive name which it received five years later, the College for the Propagation of Literature (Hung Wén Kwan), was yet another of those erudite government organisations, somewhat parallel to the Han-Lin Academy and the College of All Sciences (cf. pp. 471 ff., above), to which Chinese feudal bureaucratism gave rise. The original home of the Library of the Four Categories of Literature, its Scholars and Assistant Scholars (established posts, as we should say) was attached to the Imperial Library. From Hun Thang Shu, ch. 47 (cf. des Rotours (1), vol. 1, pp. 189 ff.) it is interesting to learn that the College had its own printing-presses, copists, binders, brush-makers and paper-makers. The corresponding institution in Korea dated only from c. +1460, but it seems to have played the same role in astronomy and horology as the College of All Sciences did in Thang China, for we constantly hear of its sending out field missions to theRoyal Observatory.

It is interesting to learn that the College had its own printing-presses, copists, binders, brush-makers and paper-makers. The corresponding institution in Korea dated only from c. +1460, but it seems to have played the same role in astronomy and horology as the College of All Sciences did in Thang China, for we constantly hear of its sending out field missions to theRoyal Observatory.

We are fortunate not without all light concerning its origins, for the Chôngbo Munhôn Pigo (Complete Serviceable Study of the History of Korean Civilisation) embodies a valuable, if somewhat incomplete, survey of the history of Korean scientific and horological instrument-making. After the reign of King Sejong astronomy declined for a timec and when in the +17th century it revived again the interest

* Lit. 'Complete Serviceable Study of the Documentary Evidence of Cultural Achievements (in Korean Civilisation), with Additions and Supplements'. First prepared as the Tongguk Munhôn Pigo in +1770 and thoroughly revised twenty years later. Ch. 2, pp. 224 ff., ch. 3, pp. 11 ff., studied and translated in collaboration with Dr Lu Gwei-Dien.

a BÁI, ch. 4, p. 306, n. 9. 'The study was almost certainly the one to which Yü Húi and KIm Nuy were called upon to attend to, in the hope that the complete set of instruments might be carried to the king as a show-piece.'

b 'We know nothing of what was done in the field of horology.' In +1647 King Sejong called upon Yu Hüab and Kim Nuy to make 'meatlike-toilets'-instruments (sin ts'i) for surveying, and the next astronomical instrument, a small equatorial torquetum, was not made until +1440 by Yi Kökköe. In +1454 several of the instruments were repaired at the order of King Chungjong by Yi Sun, and in +1548 some new ones were made for King Myôngjong. Many of these, including those which had come down from Sejong's observatory, were finally destroyed in the Japanese invasion of +1592, though at least one of the sundial-clepsydras which were set up in the pavilion of the royal observatory survived the attack. A general account of astronomy and horology under the Yi dynasty (which favoured these sciences from its inception) has been given by Rufus (2), pp. 34 ff., but all its particulars need careful revision.

c The armillary clock set up by Song Iyong was in general design much the same, but instead of using water-tanks he used the gear-wheels of Western clockwork which mutually engaged, being made of predetermined sizes....
selves present at yet another turning-point, for just as Ch'ong Chho and his colleagues in +1438 had substituted the water-wheel system for Chang Yông-sil's anaphoric striking clepsydra, so Song ṿyŏng in +1664 went over from the water-wheel system to clockwork of modern type.

Later developments can also to some extent be followed, for we learn that in +1687, under a new king, Sukjong, Yi Minköl was ordered to repair his clock, and this was successfully done. Then in +1732, in King Yonggo's reign, although an important Western clock had entered the Seoul Observatory in +1723 as the gift of a Chinese embassy, An Chunge-koe was instructed to repair the armillary clocks which had been built and maintained in the times of Hyŏnyŏng and Sukchong. Yonggo himself now wrote an interesting essay on the Hall of Right Computation (for Government) entitled Khuin Ch'eng Ko Chi, where these time-keeping mechanisms were preserved.\(^{a}\)

After this we hear no more of the armillary clocks, presumably because clocks of ordinary type without astronomical components became more and more common and convenient. Nevertheless it seems highly probable that the wonderful instrument which we have described above is either the original of Song ṿyŏng or a later reconstruction of it using most of the original parts, or else possibly a model based on the original design but made by some other instrument-maker during the 18th century. But we must now return to China.

In the 17th and 18th centuries, both before and after the Jesuit dominance in Chinese clock-making had given way to the lay commerce in 'sing-songs',\(^{e}\) the horological traditions of China had a much greater effect upon European design than has generally been realised. Features emanating from the ancient tradition of I-Hsing and Su Sung were incorporated in European products destined for the 'Asiatick trade', and in Europe itself complex dials and elaborate jack-work became popular in a context of 'Chinoiserie'.

It will be remembered that the re-publication of Su Sung's book occurred in China, and in Europe the same books were also published: \(^{a}\) The design was as follows: inside a large casing there was set up the water-delivery tube and the bell arrangements and the stopping mechanism. South of the casing there was set up the armillary sphere, with the instrument of the Six Cardinal Points and its Component of the Three Arrangements of Time, just as in the old designs. Of rings there were various sorts, with some features left out and some newly added. The sun and moon each had their rings (for travelling models). There was no sighting-tube, but in the centre there was placed an earth model of paper with mountains and seas drawn upon it, to represent the seemingly level earth. The water-delivery tube was connected with the mechanism which rotated the sphere in the north-south polar axis. It was the power of the main axle which rotated the rings also as designated.\(^{4}\) And the text goes on to describe the jack figures which sounded and displayed the double-hours and quarters. Then it adds: 'The water was contained in a tank at the top of the casing, and poured down into the delivery-tube, so that as if someone had reconstructed the old clock of the Chiming Clepsydra Pavilion.'

This idea of driving astronomical demonstration models by clockwork was of course not new in Europe. There had been Philipp Immer's 'Planeten Prunkuhr' of +1536, with its globe, and Joost Burgi's rock-crystal clock of +1610, with its armillary sphere (cf. Lloyd, 6). The idea of driving astronomical demonstration models by clockwork was of course not new in Europe. There had been Philipp Immer's 'Planeten Prunkuhr' of +1536, with its globe, and Joost Burgi's rock-crystal clock of +1610, with its armillary sphere (cf. Lloyd, 6). The idea of driving astronomical demonstration models by clockwork was of course not new in Europe. There had been Philipp Immer's 'Planeten Prunkuhr' of +1536, with its globe, and Joost Burgi's rock-crystal clock of +1610, with its armillary sphere (cf. Lloyd, 6).

It is interesting to note, too, that the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725, the English were not the only people who offered such works of art to Eastern Asia. Takabayashi reproduces\(^{4}\) a Japanese sketch of a clock sent from Russia by ship to Nagasaki as a present for the imperial court in +1804. Upon the base which contained the clock-dial or dials there stood an elephant bearing on its back an armillary sphere, presumably mechnised, with a pavilion the spire of which bore—for some inscrutable reason—a wind-wheel.\(^{8}\) But long before, in +1725,
And now we have Sun Ju-Li and Sun Ta Niang, with their watches only an inch across (tsun tsu ming chang). The workmanship is splendid, but after all what is there really surprising in it?

The passage of Hsieh Chi-Hsuan quoted above (p. 452) seems to have been more widely known from the 17th to the 19th centuries than the book of Su Sung, though this was carefully copied about +1660 and printed again in 1817 and 1844. The ‘revolving and snapping springs’ of +1270 were even mentioned in poems. Thus Juan Wen-Ta, in his ode on ‘The Chiming Watches of the Red-Haired People’ (Hung Mao Shih Chhen Fiao) wrote: ‘Some say that these are the same sort of hsun than which one can read about in Sung books.’ Hsieh’s passage was also noted by Wang Jen-Chun, searching about 1895 for evidences of old Chinese inventions to counter the all-inclusive and intimidating claims of occidental science at its most confident. His book, the Ko Chih Ku Wei (Scientific Traces in Olden Times), often mentioned by us, was far from being a scholarly production, yet it managed to quote (sometimes even correctly) many valuable texts. Talking of clepsydras, he gives the quotation from Hsieh, and then goes on:

The Western striking clock (Hsi-Yang tsu ming chang) is derived from the clepsydra. The Chhou Jen Chuan (Biographies of Chinese Mathematicians and Scientists) says that the hsun than was in fact the same thing as the tsu ming chang, and that we had them already before the Sung.

This would thus have been the opinion of the great scholar Juan Yuan, in the last decade of the 18th century. And in another connection Wang Jen-Chun quotes a scholar and official who about 1885 wrote in an account of his embassy to Russia:

The automatically striking clock was invented by a (Chinese) monk, but the method was lost in China. Western people studied it and developed refined (time-keeping) machines. As for the steam-engine, it really originates from the (monk) I-Hsing of the Thang, who had a way of making bronze wheels turn automatically by the aid of rushing water. . .

Perhaps Wang Jen-Chun was giving references in his usual random way, for an extremely interesting passage on clockwork by Juan Yuan is to be found, not in the Chhou Jen Chuan, but in his collection of miscellaneous pieces of prose and verse, the Yen Ching Shih Chi, printed in 1823. Read in the light of all that has gone before, it shows remarkable awareness. Juan Yuan wrote:

The Russian embassy of Sava Vladislavitch had carried among its presents something similar. It hardly falls within the scope of this account to relate the astonishing story of how the Jesuits (and other missionaries) staffed the horological workshops of the imperial Chinese court for just under two centuries. But one subject remains upon which a well-balanced monograph; in the meantime there is an interesting review by Hsueh Ku Wei (Scientific Traces in Olden Times), often mentioned by us, was far from being a scholarly production, yet it managed to quote (sometimes even correctly) many valuable texts. Talking of clepsydras, he gives the quotation from Hsieh, and then goes on:

The Western striking clock (Hsi-Yang tsu ming chang) is derived from the clepsydra. The Chhou Jen Chuan (Biographies of Chinese Mathematicians and Scientists) says that the hsun than was in fact the same thing as the tsu ming chang, and that we had them already before the Sung.

This would thus have been the opinion of the great scholar Juan Yuan, in the last decade of the 18th century. And in another connection Wang Jen-Chun quotes a scholar and official who about 1885 wrote in an account of his embassy to Russia:

The automatically striking clock was invented by a (Chinese) monk, but the method was lost in China. Western people studied it and developed refined (time-keeping) machines. As for the steam-engine, it really originates from the (monk) I-Hsing of the Thang, who had a way of making bronze wheels turn automatically by the aid of rushing water. . .

Perhaps Wang Jen-Chun was giving references in his usual random way, for an extremely interesting passage on clockwork by Juan Yuan is to be found, not in the Chhou Jen Chuan, but in his collection of miscellaneous pieces of prose and verse, the Yen Ching Shih Chi, printed in 1823. Read in the light of all that has gone before, it shows remarkable awareness. Juan Yuan wrote:
The clocks (tsze ming chung)\(^1\) (of today) come from the West, but the principle of them is derived from the water-clock (kho-lou)\(^2\). The Hsiao Hsien Kan Chu quotes Hsien Chi-Hsian as saying that there were four sorts of time-keepers (kuei lo), the clepsydra, the burning incense, the sundial, and the lan-than\(^3\) (rotating and snapping springs).\(^a\) Now what the Yuan people called kun-than was just the same as the clock, and already before the Sung there were such devices, but the techniques got lost. The chief merit of the Western apparatus is the science of statics (and mechanics) (chuang hsiieh)\(^4\), i.e. the knowledge and utilisation of the properties of heaviness and lightness. But in fact all ingenious machinery derives from this, and relies on statics (and mechanics) for its functioning. Depending on the principles (kc) of this science, clocks are composed of wheels and screws, and from this comes their usefulness. The water-clocks of old had reservoirs of water which gradually diminished as it dripped down, all the while rotating a wheel—was this not because of the weight of the water? Clocks (nowadays) have a coiled piece of iron (chian)\(^5\) (i.e. a spring)\(^b\) pinned inside a bronze drum (chih thung lu chih chung li chih)\(^c\), requiring force for its compression, from which state it tends to expand, the energy gradually diminishing—is this not because of the weight used?

Clocks have two drums (ku), one for indicating the time, the other for sounding the bell.\(^d\) The time-indicating axe (tsung)\(^e\) is connected (with the drum) outside by a cord wound round to drive (to)\(^f\) the second or 'pagoda' wheel (the lan)\(^g\). Pagoda-wheels (fusese)\(^h\) are shaped like horizontal pagodas (so tha)\(^i\), and the cord is wound round them. The pagoda-wheel drives the third or central gear-wheel (chung hiai lun)\(^k\). The pointers (chou)\(^l\) of the time-indicator (i.e. the hands) are on the same axe with this gear-wheel. The (third or) central gear-wheel drives the fourth vertical wheel, and that in turn drives the fifth or toothed (crow-wheel) (chihh lan)\(^m\). If this had no (escapement pallets) to control it, if it was nothing to retard the frequency of the sound of the teeth, then the energy of all the wheels could not overcome the force of the iron spring in its drum. Thus obviously there comes a time when the spring has fully expanded. So there is a hanging hammer (hsian chat)\(^n\), i.e. a pendulum swinging back and forth to control the rate. And the teeth of the toothed (crow-wheel) just correspond (chiang ying)\(\text{10}\)\(^o\)(with the escapement pallets) so that there is a retardation transmitted all through from the fourth to the third and so to the second wheels while the spring is gradually released.

The striking-mechanism axe (tsung)\(^p\) is also connected (with a drum) by a cord to drive a second or pagoda wheel (fusese), and this drives a third or striking-train wheel. The outer axe of this is connected with the striking tooth (a catch), while inside there is set up a lever (i\(^{10}\)) to move the bell hammer. The third or striking-train wheel drives a fourth or bird's-head (nio hua lu)\(^q\) wheel, and this drives a fifth small wheel,\(^r\) and this in turn a sixth or fan wheel (hsien hua)\(^s\) and this drives a sixth small wheel (hsien hua)\(^t\) and this in turn a sixth or fan wheel (hsien hua), and this drives a sixth small wheel (hsien hua)\(^t\) and this in turn a sixth or fan wheel (hsien hua), and this drives a sixth small wheel (hsien hua)\(^t\) and this in turn a sixth or fan wheel (hsien hua), and this drives a sixth small wheel (hsien hua), and this in turn a sixth or fan wheel (hsien hua).\(^t\)

\(^a\) Cf. p. 472 above.

\(^b\) That is not the usual rot term for a clock spring, fa-thia.\(^{18}\) In the early 19th century clock-makers used the rather picturesque phrase hang chung,\(^{20}\) steel intestines (cf. Shih Shu-Chhing, 1).\(^{21}\)

\(^c\) Note the recurrence of the word li in this technical explanation; cf. p. 473 above.

\(^d\) The 'going train'.

\(^e\) The 'striking train'.

\(^f\) The fusee is a conical drum with guide grooves for the cord, which compensates for the diminishing force of the uncoiling spring by increasing the torque as the larger diameters come into play. The device was first illustrated and described by Petrus Alemanus in +1477, and sketched by Leonardo. See Lloyd (5), p. 656, (8). Cf. pp. 295, 443 above.

\(^g\) Note the use here of a philosophical term which we have discussed in Vol. 2, pp. 304 ff.

\(^h\) The writer seems to have omitted mention of some of the small gear-wheels in the going train.

\(^i\) Cf. Lloyd (5), pp. 651, 656.

\(^j\) Written by Yuen Chihblung and completed soon after +1420. The full translation of the original passage will be found in Needham, Wang & Price (1), p. 72. Cf. p. 470 above.

\(^k\) Cf. Lloyd (5), pp. 651, 656.

\(^l\) Ch. 8, p. 549, tr. aur.

\(^m\) But everything depends upon weight overcoming lightness—statics. This is directly derived from the old water-clocks, and was not originated by the Westerners.

Here for the first time we meet with springs and fusees in Chinese dress, even though Juan Yuan seems to have been describing a very simple +16th-century type of clock.\(^{27}\) Much more interesting is the unerring penetration with which he discerned the role of practical physics in the senior inventions of the Thang and Sung. To have developed theoretical physics was the great contribution of Renaissance Europe, but Juan Yuan was quite right in believing that the fundamental invention of the mechanical clock had been made without it.

A few years later, another scholar-official, Liang Chang-Chii,\(^{28}\) who had been looking into some Sung literature, came to just the same conclusions. So in his miscellaneous notes, Lang Chi Hsi Chuan\(^{1}\) (Further Impressions collected during Official Travels), he wrote:\(^{29}\)

The P'eng Chhuang Hsiao Tu\(^{10}\) says that in the Thue-P'ing Hsiao-Kuo reign-period (+976 to +983) there was a Szechuanese Chang Su-Hshin\(^{2}\) who made and presented (to the emperor) an armillary (clock) not at all like those of former times. It had a casing of several storeys totalling more than 10 ft. high, and seven wooden upstanding jacks which could regulate (the time) by striking bells and beating upon drums, beside which there were twelve figures of spirits which came out in rotation bearing placards of the hours. All this was just like the clocks (tsze ming chung)\(^{3}\) of today.

Now in my part of the world, at Fuchow, we have a drum tower on which in former times there was installed a twelve (double-)hour automatic time placard system. According to tradition this was made in the Yuan period by one Chien Shih-Thang\(^4\) of Fu-ning. It lasted down to the Kiang-Hai reign-period (+1662 to +1729), when the apparatus was taken away by Chou Li-Yuan (Chou Fang-Po). Thus it was Chinese people who made these things, and such skilful technique must surely have been transmitted to the foreigners. Now men in Fukien and Kuangtung and Suchow and other places can all make clocks just as good as theirs. Indeed the (Provincial) Governor, (Chhi) Yen-Hsa,\(^{5}\) himself (recently) constructed out of pure bronze a celestial globe demonstrating the whole universe, using clockwork

\(^{3}\) If there was no fan wheel to modify the force and retard the rotation the bell would be sounded too quickly. The striking-train drum is connected by a mechanism with the time-indicating wheels. When the time comes the catch works and the iron spring is allowed to expand. If the expansion is too fast, it is much the strokes are numerous. When the striking is finished the catch holds back the force remaining, and it waits for the next (correct) time.

\(^{4}\) Alternatively they have two lead weights instead of the iron springs, and then they do not have the two drums, but this also is profiting intelligently from statics (and mechanics). The two drums and all the wheels are mounted within two bronze plates connected together by screws. The motion of all this is transmitted to the power of rotating wheels. If one studies the pagoda-wheels and the iron springs, one sees that their effect involves also a screw arrangement. But everything depends upon weight overcoming lightness—statics. This is directly derived from the old water-clocks, and was not originated by the Westerners.
within the horizon to rotate it. It can not only strike the hours and quarters but also shows the passage of the stars and constellations without a hair's-breadth of error. So although Westerners can make such things they could do nothing better than this.

It is good to be introduced here to another man who built, like Kuo Shou-Ching, a water-wheel linkwork escapement clock in the +14th century, but the chief point again is the clearness with which Liang Chang-Chi recognized in the work of Chang and Chhen the ancestry of modern clockwork.

As for the work of Chhi Yen-Huai, we are well informed because of the recent study of Shih Shu-Chhing (1). Chhi was indeed a successful provincial official, and in the twenties of the last century an amateur clockmaker did build good instruments, one at least of which, a celestial globe (Fig. 670), is still preserved. A longer description of it was given by Chhien Yung some decades later. Like Tai Chen, Chhi interested himself in the improvement of water-raising machinery, especially the Archimedean screw, on the construction of which he wrote a mnemonic rhyming manual, Lung Wei Chhe Ko. We may salute in him a modern successor in the direct line from Chang Heng, I-Hsing and Su Sung, and quite worthy of them.

Thus did the traditional scholars of China attempt to establish, ineffectively perhaps but bravely, the part played by their civilisation in the long epic of human knowledge of Nature and control over natural things, here in the field of time-measurement. Only the discipline of universal history of science could elucidate the truth, and substitute a clear recital for brilliant guesses and unsupported assertions.

The Japanese also thought that mechanical clocks had been invented in China. In the *Nippon Eitai-gura* (Japanese Family Storehouse; or, the Millionaire's Gospel Modernised), an entertaining book on commercial life written about +1685, the author, Ihara Saikaku, referred to the matter as follows:

> The Chinese are a self-composed people, and will never be hurried, even to make a living. . . . The clock was invented in China. Year after year a man thought about it, with mechanisms ticking by his side day and night, and when he left the task unfinished, his son took over, in a leisurely way, and after him, the grandson. At long last, after three lifetimes, the invention was completed and became a boon to all mankind. But this is hardly the way to make a successful living. . . .

Whether I-Hsing or Chang Ssu-Hsiin would have recognized themselves in this description may well be doubtful, but the passage shows at least that at that time Europe was not yet recognized as the fountain of all technical originality. This point is more curious than might at first sight appear, for until now all the oldest Japanese clocks reported have been of an archaic verge-and-foliot type, and it is known that European clock-making was introduced to Japan by the Dutch at the beginning of the 17th

* For parallel European work of about the same period, and very similar design, see von Bertele (4), fig. 24, illustrating a pair of globes made by Desnos at Paris.
* In his *Lu Yuan Ts'ung Flua*, ch. 12.

Fig. 670. Astronomical clock in the form of a celestial globe, with concealed works, constructed by Chhi Yen-Huai in +1830 (Shih Shu-Chhing, 1). Height 7 ft. 4 in. Probable scale 2-21 ft. to a degree. Now in the Anhui Provincial Museum.
Indeed it was in Japan that the design of orreries and planetaria underwent most curious developments. The first Japanese to construct a celestial globe rotated by clockwork was no doubt Nakane Genkei (+1661 to +1733), one of the founders of modern astronomy in that country. By the time of his death, as we saw at an earlier stage, a copy of the original ‘orrery’ had been ordered by the East India Company, though it did not reach China until the last decade of the century. Meanwhile similar instruments must have become known in Japan, for from 1810 onwards certain strange cosmological models, rotated by clockwork, began to be reproduced there. Although at first sight these resemble orreries or planetaria in their discoidal character, they were profoundly different for they were based on the most archaic of all the Chinese cosmologies, the Kai Thien kuan, combined with the Indian conception of a central mountain (Mt Meru) connecting the earth with the heavens.

These models were associated with the activities of a remarkable monk, Entsu (+1754 to 1834), whom we have already met as the author of the Bukkoku Reikisho (Astronomy of Buddha’s Country), a work in which he attempted to advance the interests of Buddhism by showing the superiority of ancient doctrines over the modern scientific view of the world. Entsu was well versed in the history of Chinese astronomy from Lohia Hung to Kuo Shou-Ching, but for him its most primitive forms were present verity rather than historical preamble. In 1813 he published in several versions his Shuennien Ginen narashini Jo Wage (Inscription and Preface for the Mt Sumeru Instrument, with Translation), in which he described his cosmological working model. The preface is often reproduced in hakemono scrolls still extant which depict the apparatus (Fig. 671). The heavens are a round dome, here represented as flattened (perhaps sometimes in glass), the earth is square and flat. It centres upon Mt Meru or Sumeru (Khun-lun Shan), which broadens upwards to support the heavens, and surrounding the four inner continents of which Jambudvipa is one there are a number of concentric ring-continents separated by annular oceans. Here clearly is the last representative of what we called in the geographical Section the East Asian tradition of religious cosmography, paralleling in many respects the wheel-maps and T-O maps of early medieval Europe. There is ground for thinking that the ultimate origin of all this was Babylonian, but the East Asian tradition (primarily Buddhist and Taoist) certainly...
owed much to the old Indian cosmologies dating back to the time of Gautama Buddha. To find it still vigorous in uranoramas of the early 19th century is little short of extraordinary.

Above the flat earth already mentioned one can see in Fig. 671 a single equatorial circle and seemingly two ecliptics, one doubtless for rotating a model sun, the other for a model moon. Constellations characteristic of the four palaces of the heavens are depicted on eight mushroom-like ‘umbrellas’ at the four quarters; these could hardly be movable. On the left of the instrument a clockwork mechanism with verge-and-foliot escapement and weight-drive may be seen. Not all the scrolls show this, so in some of the models an internal spring motion may have been used. Probably the instrument in Fig. 671 had two drives, the little one on the left serving to move round the sun and moon models, while another, stronger, one inside the drum below, rotated its various storeys. These are marked on the right from top to bottom ‘earth-wheel’, ‘metal-wheel’, ‘water-wheel’ and ‘wind-wheel’, but whether these had a planetary or an element significance (or both), and how their rotation affected the cosmological model above, remains obscure.

The text of the preface is full of archaic features. Entsu draws justification not only from the Kai Thien classic, the Chou Pei Suan Ching, but also from the I Ching (Book of Changes). He claims that all his arrangements are in conformity with the teachings of the Abhidharma Sāstras, and includes a number of fanciful figures for celestial and terrestial distances, such as the obliquity of the ecliptic, in yōjana.

The lengths of days and nights (he says) are not equal. This depends upon the fact that the seven environing mountain ranges are of different and varying heights; it is as if one should stand on a step and looking northwards see the ground rising gradually. (In the uranorama) one sees too the four continents all spread out, with square and round, triangular and crescent-shaped, all demonstrating the form of the Great Immolation (mo yeh, i.e. Máyá, the universe). Here we cannot exhaust all that can be said, but it will be found in the Indian (Buddhist) calendar writings. This is fully in accordance with what the Chou Pei says about numbers and the calendar, and also with the numbers of the Yin and Yang mentioned in the I Ching. Sometimes they merely hint, elsewhere they clearly confirm one another. How could one not reverence the divine virtue of the sages?

This is like nothing so much as the belief in the literal inspiration of the first chapters of Genesis.

Entsu seems to have been quite influential in early nineteenth-century Japan. His work was part of a nationalist reaction against the flood of new knowledge (Rangaku) emanating from contacts with the Dutch. Other writers too fought back under the banner of Mt Meru, for instance an anonymous calendrical expert (12) who produced a Shnakai Yubusho, and a Buddhist cosmologist, Takai Bankan, whose Shunisen Zohai (Illustrated Explanation of Mt Sumeru), issued in 1809, has imaginative pictures of the sacred mountain.

Thus by a strange reversal of roles, that mechanical clockwork which had been brought to East Asia to serve the ends of missionary propaganda found itself enlisted in the service of Buddhist cosmological orthodoxy. But the time for religious interference in scientific matters was fast passing away. It is related that after Entsu’s book Bukkoku Rekişô-hen appeared, he was criticised most severely by the leading astronomer Inó Tadataka in the following year. Perhaps if we knew more of these discussions we should find in them an early parallel for the famous exchange of T. H. Huxley with Bishop Wilberforce. Yet the bizarre perpetuation of the archaic worldview was still going on in 1848, when further copies of similar scrolls were made. Between 1850 and 1852 the flat-earth models of Entsu’s type were combined with complicated clocks in a number of ingenious pieces made by Tanaka Hiaashige. But the end was now near for in 1854 came the return of Commodore Perry and the opening of Japan with all that that implied for the unification of world science.

Two pleasant items of incidental intelligence may serve to close this story. In 1809 a Shanghai man, Hsu Chiao-Chün by name, wrote a treatise on clock-making entitled Tsu Ming Chung Piao Thu Fa (Illustrated Account of the Manufacture of Self-Sounding Bells). He said in his preface that he came of a family which had been making ‘European’ clocks for five generations. Perhaps he was a descendant of

1. Cf. Cheannar & Needham (1); Kuwaki (1). The story has not yet been fully told in a Western language. Entsu was competing with such influences as the Rikyaku Hiteiru (Elements of Physics) by Kamiya Ruyó (1815) and the Kikai Kenran (Astronomy and Meteorological Physics) of Aoki Rinō (1824). China is not without parallels for the anti-Rangaku movement (cf. Vol. 3, pp. 454 ff.) but on the whole they were much more progressive scientifically and more concerned with recovering and studying the past in the light of a proper historical perspective.

2. E.g. some large polychrome wood-block prints under study by Mr Bedini.

3. See Takabayashi (1), figs. 33, 34A, 8.

4. This was included later in the third section of his Kan Hou Ming Chih (Important Information on the Universe), already mentioned, Vol. 3, p. 456. There is a parallel Japanese literature. The Karahiti Zai (Illustrated Treatise on Horological (lit. Mechanical) Ingenuity), written by Hosokawa Hanabi Yorimasa in 1796, has been reproduced in facsimile, with modernised transliteration, by Yan yu Kiyô (1). The modern names for the escapement are of interest. Chinese clock-makers call it the ‘loose arrow’ (chun tuing chii') or the ‘barrier-piece’ (chun tuing). Dr Liu Hsien-Chou is to be thanked for this information.

5. Some extant clocks of Hsi Chiao-Chün’s time are described by Huo Wen-Lin & Li Wen-Kuang (1). A good deal of discussion has gone on regarding the clocks mentioned in the famous 18th-century

6. This is related that after Entsu’s book (12) has pointed out, the conception of a central mountain-mass (Mt Meru, the existence of the Tibetan-Himalayan massif. What made the idea archaic as early as the Han was its use as a means of explaining the movements of the heavenly bodies or the alternation of day and night (cf. Fig. 218 in Vol. 2, pp. 8). This is like nothing so much as the belief in the literal inspiration of the first chapters of Genesis.

7. May 17<06, has been reproduced in facsimile, with modernised transliteration, by Yan yu Kiyô (1). The modern names for the escapement are of interest. Chinese clock-makers call it the ‘loose arrow’ (chun tuing chii') or the ‘barrier-piece’ (chun tuing). Dr Liu Hsien-Chou is to be thanked for this information.

8. Some extant clocks of Hsi Chiao-Chün’s time are described by Huo Wen-Lin & Li Wen-Kuang (1). A good deal of discussion has gone on regarding the clocks mentioned in the famous 18th-century

9. This is related that after Entsu’s book (12) has pointed out, the conception of a central mountain-mass (Mt Meru, the existence of the Tibetan-Himalayan massif. What made the idea archaic as early as the Han was its use as a means of explaining the movements of the heavenly bodies or the alternation of day and night (cf. Fig. 218 in Vol. 2, pp. 8). This is like nothing so much as the belief in the literal inspiration of the first chapters of Genesis.

10. This is related that after Entsu’s book (12) has pointed out, the conception of a central mountain-mass (Mt Meru, the existence of the Tibetan-Himalayan massif. What made the idea archaic as early as the Han was its use as a means of explaining the movements of the heavenly bodies or the alternation of day and night (cf. Fig. 218 in Vol. 2, pp. 8). This is like nothing so much as the belief in the literal inspiration of the first chapters of Genesis.
Ricci's celebrated friend Hsu Kuang-Chhi. And down to the end of the 19th century at least, the clock-makers of that city venerated Matteo Ricci as their tutelary deity or patron saint under the name of Li Ma-Tou Phu-Sa. How amused Su Sung, and especially the Buddhist I-Hsing, would have been!

(6) CLOCKWORK AND INTER-CULTURAL RELATIONS

All that is now needed to draw the material of this story into a coherent whole is a brief summary of the roles of the different culture-areas in the development of mechanical clockwork. Let us examine the provisional scheme which has been embodied in Table 59.

What were the factors leading to the first escapement clock in China? The chief tradition leading to I-Hsing (+725) was of course the succession of 'pre-clocks' which had started with Chang Heng about +125. Reason has been given for believing that these applied power to the slow turning movement of computational armillary spheres and celestial globes by means of a water-wheel using clepsydra drip, which intermittently exerted the force of a lug to act on the teeth of a wheel on a polar-axis shaft. Chang Heng in his turn had composed this arrangement by uniting the armillary rings of his predecessors into the equatorial armillary sphere, and combining it with the principles of the water-mills and hydraulic trip-hammers which had become so widespread in Chinese culture in the previous century. But I-Hsing was indebted to some other sources also, such as the artisans from Ma Chun (c. +300) onwards who had made horizontal jack-wheels and other mechanical toys worked by water-wheels, and also the Taoist clepsydra experts (e.g. Li Lan, c. +450) who had made steelyard balances for weighing the water used in time-keeping. In particular it was Keng Hsun and Yuwen Khai who had arranged to weigh a vessel intermediate in the chain; hence perhaps the idea of weighing a series of them attached to a revolving wheel. As for gearing, we have seen evidence that much experimentation with it was carried on through the centuries by Chinese mechanics.

What were the factors leading to the first escapement clock in Europe (c. +1300)? The weight-drive descended no doubt from the floats of the Hellenistic anaphoric clocks and mechanical puppet theatres, and was certainly known in its free form in the +13th century, as the Moorish drum water-clock of the Alfonsine corpus demonstrates. The use of gearing for simulating time-measurement descended from remote
antiquity, for even if we know little of the nature of the planetarium ascribed to Archimedes (c. -250), the Anti-Kythera object, with its elaborate gear-wheels, remains to show the extraordinary attainment which Hellenistic (1st century) technique could reach. Then in the Arab realm there was the application of calendrical gearing to the computational astrolabe. We know about this from a text of Abū al-Ra'īš al-Birūnī, dating from about +1000, and there are extant specimens of astrolabes fitted up in this way, notably one at Oxford made by Muhammad ibn Abū Bakr of Isphahan in +1221. The clock-dial again may be considered a derivative of the astrolabe's face and therefore ultimately of the revolving dial of the anapochic clock.

For jack-work devices there were plenty of precedents in the Byzantine striking water-clocks and their Arabic successors. Only the ‘soul’ of the mechanical clock, i.e. the escapement itself, had to be provided by the key inventors, whoever they were, of +1500. The form which this actually took, namely the verge-and-folios, may reasonably be derived from the radial bob fly-wheel, familiar since the early days of Graeco-Roman screw-wheels, though now converted by the pellets from discontinuous rotary to regular oscillating motion. But just how original was the basic idea? The preceding six centuries of Chinese escapements suggest that at least a diffusion stimulus travelled from east to west.

To gain a little light on this transmission, if such it was, we must concentrate attention on the years between about +1000 and +1300 and see whether any help can be found from the Islamic and Indian culture-areas. It is noteworthy that arrangements logically equivalent to those of Chang Heng and his successors are to be found in later Arab writings. For example, one of the mechanisms described by Lâmilî in al-Razzâz al-Jazârî in his treatise on striking clepsydras in +1260, as interpreted by Wiedemann & Hauser, consists of a tipping bucket attached to a hinged ratchet which pushes round a gear-wheel by one tooth each time that the bucket fills with water and comes to the emptying point Fig. (672). This gear-wheel is connected by a cord with what seems to be the plate of an anapochic clock. And the arrangement possessed a

* See e.g. Cicero, De Re Publica, xiv, 21; Ovid, Fasti, vii, 277. Most of the relevant passages have been assembled in translated form by Price (B). The best study on this is that of Wiedemann & Hauser (3), but see also Drachmann (3), pp. 36 ff. The only reference to a water-power drive occurs in Pappus (Opera, viii, 1): this dates from the century following Chang Heng.

* Rediâdîs (1); with other references and description in Price (1). This is now regarded as a calendrical analogue computing machine. Internal evidence dates it at —82, and it was probably lost at sea about —65. A detailed monograph on it by Prof. D. J. de S. Price is in preparation; in the meantime see Price (B, 9).

* Wiedemann (13).

* Gunther (3), no. 5. Apart from the Anti-Kythera machine, this is almost the earliest example of precision gearing as distinguished from power-transmitting gearing.

* Drachmann (6); Neugebauer (7); Price (3).

* Such as the one at Gaza described by Procopius about +510 (Dea. 2). Or, in Sassanid Persia, the time-keeping throne of Khosrow II (+518 to +628), on which see Christensen (1), p. 461. Presumably all those derived from the parerga of the striking water-clock described by Vitruvius (IX viii, 3) about —30 and due perhaps to Ctesibius before —200; cf. Drachmann (2), pp. 19 ff. (6), pp. 192 ff.

* In pondering on the ancestry of the tipping bucket we should not forget what has been said above (p. 356) about the spoon tilt-hammer.
gearing continuously turned by a water-wheel is in certain machines for delivering a constant supply of air to an organ.\(^a\) In these a vertical shaft, rotated by right-angle gearing from a vertical water-wheel, carries a semicircular cam which raises two valves alternately as it rotates, thus admitting water to two closed spaces in turn so that one can be expelling air while the other is taking it in.\(^b\) This arrangement is referred to by al-Jazari to the Banh Mūsā brothers (12th century)\(^c\) and to a Byzantine, Apollonius the carpenter, about whom little more is known. But it is not a time-keeper.

There is nothing in the evidence so far available, therefore, which suggests any Arabic influence on the Chinese developments.\(^d\) From the beginning of the 12th century onwards the Chinese clocks were undergoing a steady evolution in such a continuous line that external influence seems very improbable. On the other hand, the Arabic material does indicate the passage westwards of certain Chinese elements.

\(^a\) See Wiedemann & Hauser (1).

\(^b\) The complexity of this method is in striking contrast with the elegant simplicity of the Chinese double-acting piston-bellows (see p. 155).

\(^c\) Suter (1), no. 43.

\(^d\) Even the largest of the clocks described by al-Jazari, and the Banh Mūsā brothers (12th century) built in + 1158 by the father of the physician Rāthān ibn Rustam al-Khurtūshat al-Sa‘īdī (Suter (1), no. 345), who wrote a description of it in + 1203 (see Wiedemann & Hauser, 1), though equipped with jack-work and lamp-lighting devices much more complicated than anything previously known in the West, all worked on the anaphoric float principle, with tripping mechanisms acting at intervals. So, too, did the remarkable "Observatory of the Time and the Hour", a most elaborate water-clock erected in + 1225 at Yad in Persia for Ruḳūn al-Dīn ibn Nūṣār ibn al-Ḫūsaini by Khālīl ibn Abī Bakr. An excellent description of this has been translated by Sayyīl (2), pp. 236 ff., from the history of Yad by Abūn Ḥārūn ibn Hūsain, a 14th-century writer. Cf. Sykes (3), p. 431. The remains of striking water-clocks of the 12th century still exist at Fes in Morocco, and have been studied by Price (13).

Here a momentary digression imposes itself. One hardly realises how many of these medieval devices live on in the most ingenious pieces of modern scientific apparatus. Thus the continuous-recording gas calorimeter of C. V. Boys, perfected about thirty-five years ago (see Fig. 675),\(^a\) but still in use today, not only evokes the memory of the water-powered clock of Su Sung, but also embodies components familiar to al-Jazari and the Alfonsine mechanicians. This apparatus, designed to be independent of everything except the coal-gas supply, has a clock powered by a water-wheel incorporated in a closed-circuit water system. Regulated by an anchor-and-pendulum escapement, this wheel has three functions: (a) controlling the flow of gas through a barostatic meter by powering a differential train which transmits automatically a continuous thermo-barometric adjustment, (b) assuring the cycle of delivery to the calorimeter of successive measured amounts of cold water, (c) driving two recording-paper drums and a clock. The measuring of the water is done by a tipping bucket—just as in the old Arabic designs—so arranged that the jet passes to the water-wheel when the bucket is not receiving. Each half-minute a rod worked by a cam on the water-wheel returns the bucket to the receiving position. Besides this, another Arabic component is to be seen in the segmental compartment drum of the gas meter; and besides the closed-circuit water-wheel, a chain-drive connecting it with the thermo-barometric integrator also recalls the Chinese designs of the +11th century. Paradoxically, the disc-ball-and-cylinder integrator, with its beautifully simple geometrical relationships, though the most Greek of all parts of the whole construction, is yet far beyond what the Greeks themselves ever achieved. On the other hand the differential gear by means of which it modifies the speed of the water-wheel shaft may well have had its origin in the Chinese south-pointing carriage (cf. pp. 296 ff. above). Sir Charles Boys was a man of outstanding mechanical ingenuity\(^b\) and the whole apparatus may have been pure re-invention, yet one can never know what hints or stimuli reached him from the records of the past.

Alternating water-buckets are still to be seen working at the present day in production machinery. Thus they are found in wire-making factories, where an automatic mechanism shunts rapidly-moving white-hot steel rods through different guide-pipes. As long as it is moving past the joint, the steel rod itself acts as a splice, but as soon as it has passed, the moving guide-pipe section mounted on a bell-crank swings over by the weight of a bucket of water which has been slowly filling, and routes the next rod in a different direction, at the same time automatically switching the water-supply to the second, now empty, bucket. In the interval before the arrival of a third rod the process is reversed.\(^c\)

In his systematic censure of vulgar errors (+ 1666), Sir Thomas Browne took issue with the current representations of St Jerome with a mechanical clock in his study,
for he knew well that this apparatus was of relatively recent origin. At the same time its modernity struck him as very odd, and he wondered whether still further ingenuity might not produce a time-piece which would go of itself. After Dials and Water-glasses of later years there succeeded new inventions, and horologies composed by trochilick or the artifice of wheels; whereas some are kept in motion by weight, others perform without it.

Now as one age instructs another, and time that brings all things to ruin, perfects also every thing; so are these indeed of more general and ready use than any that went before them.

It fell not upon this way. Surely as in many things, so in this particular, the present age hath far artifice of wheels; whereof some are kept in motion by weight, others perform without it. Its modernity struck him as very odd, and he wondered whether still further ingenuity might out-last the exemplary mobility, and out-measure time itself.

Thus in the mind of Sir Thomas there was a connection between powered clockwork and the idea of perpetual motion. How could this have arisen?

A curious feature about the +12th- and +13th-century Arabic work was the belief

Pseudodoxia Epidemica, bk. v, ch. 18 (Sayle ed., vol. 2, p. 251).

Fig. 675. An example of the continuing utilisation of medieval mechanical and horological devices in modern apparatus, the continuous-recording gas calorimeter of Sir Charles Boys, still in use (photo. Ministry of Fuel and Power, by the courtesy of Major Claud G. Hyde and Mr K. A. Singer). The instrument records, in B.T.U. per cu. ft., the calorific value of coal-gas measured under standard conditions of temperature and pressure at water-vapour saturation.

The heat of combustion of continuously burning gas is transferred in a heat-interchanger to continuously flowing water and measured by two expansible thermometers. The movement thus initiated is recorded on a paper band.

Power and timing for most of the components is effected by a water-wheel somewhat like that in Su Sung’s clock (+1090), fed from a constant-level tank, but fitted with a pendulum-and-anchor escapement. This water-wheel rotates a meter-shaft by means of a chain-drive like that of Chang Su-hsin (+1078). A segmental compartment drum, reminiscent of those of the Alfonsine mechanicians (+1275), is fitted concentrically with this shaft and constitutes the meter, gas entering to turn it through a static strip-valve which adjusts the flow in an automatic manner so as to keep the speed of drum and shaft identical, thus compensating for slight changes in gas pressure. The speed of the drum is also controlled by epicyclic gearing fitted on the shaft between the water-wheel and the meter. This differential train, a descendant of the mechanism of the south-pointing carriage of Yen Su (+1097) and others, is operated by the rise or fall of an air-bell in an annular mercury seal when pressure and temperature conditions deviate from standard, the motion being transmitted through a ball-disc-and-cylinder integrator and noted on a recorder. In standard conditions the ball of polished phosphor-bronze, held in a fork, is stationary in the centre of the disc, but if it is moved to one side or the other by the thermo-barometer it turns at a rate proportional to its excursion, thus acting as a bevel gear, rotating the cylinder and varying the speed of the drum through the epicyclic gearing. Meanwhile, a tipping bucket, essentially like those described by al-Jazari (+1206), fed from the same tank as the water-wheel, does out fixed amounts of cold water to the heat interchanger at half-minute intervals and is returned automatically to the receiving position by a rod-and-cam device from the water-wheel. A closed circulation of water throughout is effected by a small hot-air engine and pump using the coal-gas supply, which is thus the sole external feed. Hence the apparatus is independent of any failure of water pressure and dispenses with electric current.

Whether Sir Charles Boys was conscious of the antiquity of some of the mechanical devices which he used remains uncertain, but their presence in a modern inventor’s stock of ideas is interesting. Older pendulum-regulated water-wheel clocks are known, e.g. that at Dinnet in Aberdeenshire.

Left to right: (a) gas-meter drum within the glass-topped vessel; (b) above, thermo-hygroscopic integrator and recorder, below, air-bell; (c) water-wheel, with delivery pipe above and sump beneath, the rod for re-setting the bucket; (d) above, tipping bucket, centre, heat-interchanger, below, shaft of water-wheel (clock shaft) leading to dial-face, escapement and drive of calorimetric recorder (not seen).
in the possibility of perpetual-motion machines. Soon afterwards, as Sarton has pointed out, this dream began (for the first time) to engross the imagination of European scholar- artisans also.\(^a\) Schmeller (\(^b\)) has studied a group of Arabic manuscripts\(^c\) dating from about +1200, and containing parts of the text of al-Jazari's *Kitâb*, which illustrate a number of devices for perpetual motion, sometimes in the form of norias (but neither receiving nor delivering), sometimes in the form of drums containing water-tight chambers of various kinds.\(^d\) Still more remarkable, exactly similar descriptions are found in the *Sûrya Siddhânta* and Bîhâkara's *Siddhânta Sûromâni*,\(^e\) written about +1150. If the text in the former (ch. 13) were genuine, it would date from the +5th century, but it has long been regarded as an interpolation of about Bîhâkara's time.\(^f\) His own perpetual-motion machines were mainly noria-like wheels with mercury in the closed scoops ('quicksilver-holes').\(^g\) The *Sûrya Siddhânta* text first describes a demonstrational armillary sphere and says that it may be sunk in a casing to represent the horizon.\(^h\) It then continues:\(^i\)

16. ... By the application of water ascertainment is made of the revolution of time.

17. One may construct a sphere-instrument combined with quicksilver—this is a mystery; if plainly described, it would be generally intelligible in the world.

18. Therefore let the supreme sphere be constructed according to the instruction of the teacher. In each successive age, this construction, having become lost, is, by the sun(-god)'s favour, again revealed to some one or other, at his pleasure. . . . So also, one should construct instruments for the ascertainment of time.

20. When quite alone, one should add quicksilver to the astonishing instrument. By the gnomon, staff, arc, wheel, and shadow-measuring devices of various kinds, one can construct instruments for the ascertainment of time.\(^j\)

21. According to the instruction of the teacher, a knowledge of time will be gained by the diligent.

22. By water-instruments, by vessels, by the peacock, man, monkey, and by stringed receptacles, one may accurately determine time.

23. Quicksilver-holes, water, and cords, ropes, and oil and water, mercury, and sand are used in these—these applications, too, are difficult.

There is evident evidence of much more here than the simple anaphoric clock device for turning a celestial globe apparently described about +500 in the *Aryabhatiya*.\(^k\) One should cause a sphere of light wood, equally rounded and of equal weight on all sides, to move in regular time by means of quicksilver, oil and water.\(^l\) The late +15th-century commentary of Paramesvara explains that the float is a gourd filled with

\(^a\) J. (1), vol. 2, p. 784.

\(^b\) See the excellent history of the subject by Dircks (2).

\(^c\) E.g. Leiden Cod. 499, nos. 1214, 1415; Gotha, Pertich, cat. no. 1349; Oxford Cod. 954.

\(^d\) Reproduced in Needham, Wang & Price (1), fig. 61, 60.

\(^f\) See Bapu Deva ed., pp. 282, 298. The only reliably old parts of this *Siddhânta* are those included in the Patna *Siddhântika*.

\(^g\) Or in a peripheral channel. One machine had scoops like a water-wheel as well, presumably to get it under way.

\(^h\) Note the significance of this in view of what we know of the earlier Chinese practice (p. 449 above, and Vol. 3, p. 396).

\(^i\) Burgess ed., pp. 305 ff.

\(^j\) Jacks, no doubt, like al-Jâmi's.

\(^k\) Golupda, 22. We do not know what the apparatus really was; it may equally well have been a demonstrational armillary sphere. This reference is due to Dr David Pingree. Cf. pp. 456, 481.
mercury and descends with the water-level in the clepsydra. Emptying every 24 hours, one complete revolution of the globe is effected. The oil is for lubricating the bearings. It is not surprising that the anaphoric clock principle was transmitted to India, but that it had been in a simpler age. The real seminal transmission was that of the belief in the feasibility of perpetual-motion machines, and this must have reached the Arabs from India during the +12th century, travelling westwards together with the 'Hindu' numerals and place value in one and the same period. *

By the +14th century the perpetual-motion mercury wheels of the Indians and Arabs had begun to appear in Latin dress. It may very well not be fanciful to seek the ultimate origin or predisposition of the Indian conviction in the profoundly Hindu world-view of endless cyclical change, kālpas and mahākālpaas succeeding one another in self-sufficient and unwearying round. For Hindus as well as Taoists, the universe itself was a perpetual-motion machine.

India thus provides an indubitable association between armillary spheres, time-measuring water-wheels, and devices for perpetual motion. Even Chang Su-Hau's mercury drive seems to be present. One gets a strong impression from some of the Sanskrit texts that the writer was trying to describe water-wheel clocks of Chinese type in veiled language, or else that he knew only vaguely how they worked. Indeed one begins to entertain the belief that the stimulus for the flood of ideas on perpetual-motions may have derived from Indian monks or Arab merchants standing before a clock-tower such as that of Su Sung and marvelling at its regular action. The *perpetuum mobile* makes its appearance in Europe in the notebooks of Villard de Honnecourt (+1237), but much more significantly in the great work of Petrus Peregrinus (+1269), *Epitola... de Magnete*. More significantly because the association just mentioned is here enlarged by the addition of the lodestone and its properties. Since, as we have already seen (Vol. 4, pt. 1, p. 246), the first knowledge of the magnetic compass in Europe may be dated close to +1190, and since there is no remaining doubt that it travelled thither from the Chinese culture-area, the most obvious con-

* As Lynn White (7), p. 121, has acutely pointed out. *Cf. Vol. 3, pp. 10 ff., 15 ff., 146. The first complete account of them was in the *Liber Abaci* of Leonardo Pisano (Fibonacci) in +1202.

* As we know from an anonymous treatise of about +1240 on natural philosophy (Thorpidile), vol. 3, p. 578.

* More especially as it will be remembered that the water-circulation was a closed one. No stream of water was seen to enter, no mill-race led away. Chinese onlookers without mechanical knowledge might well have spoken to the visitors of magic art. Lynn White (7), p. 130, foresaw upon this conjecture, hardly realising, perhaps, the extent of the contact between China and India during the Thang and Sung periods (Cf. vol. 1, pp. 108 ff., 104 ff.).

* Cf. Sylvanus Thompson (4); Dircks (3), vol. 2, pp. 1 ff.

* 1, 10 and II, 3, in particular. The short but important tractate of Pierre de Marcicourt or Peter the Stranger, addressed to his friend Sigur de Foulcucourt, was first printed just before +1260 but attributed wrongly to Ramon Lull. The definitive edition which has the value of a MS. was the second, issued +1284-85 by Achilles Gasser. It is entitled *De Magnete* or *De Rota Perpetua Motus*. Catus Coll, MS. 174/95 contains a transcript of the Latin introduction of this, with an English translation by an unknown hand of the work itself. A late +14th-century MS. was published in facsimile by Anon. (46), and the critical Latin edition is that of Hellmann (5). English translations are available by Thompson (5); Mertens (1) and Chapman & Harradon (1).

A glance again at p. 229 above will show the appearance of yet another Chinese invention in Europe at this time—the Cardan suspension. But it was part of this idea-complex and its connection with the magnetic compass only came about much later.
William of Auvergne, then Bishop of Paris, had in his *De Universo Creaturari* um used the phenomena of magnetism to account for the perpetual motion of the celestial spheres. Perhaps this stimulated Petrus Peregrinus. Then Peter was followed by many who clung to the notion that a lodestone, once properly mounted, would revolve unceasingly and automatically. In 1514 Meygret maintained that since it would be turning under the direct influence of the heavens, the usual objections to perpetual motion could not hold. Indeed if one thinks of the idea as an attempt to capture the diurnal rotation of the heavens as a source of terrestrial energy, it seems eminently reasonable, though based on the false assumptions of its time. Not until the 19th century would magnetic fields participate in energy conversions useful to humanity, and not until the age of the first gyro-compasses and artificial satellites would man be able to profit directly from the gravitational forces of the solar system.

In +1562 Taisnier described and figured an apparatus which he hoped would give a ‘magnetically’ perpetual motion, and during the following centuries innumerable projects of a similar kind were brought forward. They signified little; what was important was the influence of Petrus Peregrinus upon William Gilbert. At the end of the +16th century, Gilbert (as Zilsel cf. has pointed out) was much inclined to believe that Peregrinus had been essentially right, because his own experiments with the spherical lodestone or ‘terrella’ (model earth) had led him to conceive of the earth itself as one vast magnet, in diurnal rotation precisely because of this property. Although the truth of the idea could not be demonstrated, it proved a helpful solvent of some of the classical objections to the Copernican cosmology, which Gilbert indeed himself defended. Even more important, the example of the field of magnetic attraction invisibly extended in space led directly, through Gilbert and Kepler, to the Newtonian concept of universal gravitation. Thus the adopted Indian belief in the possibility of perpetual motion, allied with the transmitted Chinese knowledge of magnetic polarity, deeply influenced modern scientific thought at one of its most crucial early stages (cf. Fig. 677).

Truly they influenced technology too. Lynn White (7) has drawn attention in memorable pages to other features in the philosophical and social history of mechanical clocks. It can hardly be coincidence that their rise in the +14th century Europe paralleled that of the new science of dynamics with its rejection of Aristotle’s theory of motion (the continuing push) and its assumption of motive virtue (the transported impetus). Though the term *machina mundi* seems to go back in Christendom to Dionysius the Areopagite, it was no +18th-century deist, but one of the pioneers of the new medieval physics, Nicholas d’Oresme (d. +1382) who first used the metaphor.

Fig. 677. European medieval man peers out through the firmament to see the rotational machinery of the solid celestial spheres, a German woodcut of the +16th century (Zinner, 9). The gap between the rims of the sky and the earth is an ancient motif of folklore cosmology (cf. Vol. 3, p. 215). Here we are reminded of the way in which three strands of ancient Asian knowledge and belief helped to destroy the prism of the solid crystalline celestial spheres in which Europeans had lived from Ptolemy’s time (+4th century) to the Renaissance. Chinese knowledge of magnetic polarity and directivity, transmitted westwards by the end of the +12th century (the time of Alexander Neukom, cf. Vol. 4, pt. 1, pp. 245 ff.) and described in part by Petrus Peregrinus (+1260), led to the experiments of William Gilbert (+1590). Indian belief in the possibility of perpetual motion, which had reached Europe through Islam by about +1200, now flowered in the conception that the earth itself was a spherical magnet in continuous rotation. The Copernican hypothesis was thus supported from an unexpected quarter, and Gilbert explicitly upheld it. Not only the earth but also the sun, moon and planets, should be considered ‘magnetic bodies’, from which ‘the virtue magnetical is poured out on every side around in an orbit’. Hence Kepler’s efforts to explain the motions of the planets magnetically; and, by the analogy of attraction, Newton’s concept of the universal law of gravity. By Newton’s time a third strand had exerted great influence in Europe, namely the idea traditional in Chinese astronomy and cosmology that the planets and stars were emanations of unknown nature floating erranty or moving with various speeds in infinite empty space (cf. Vol. 3, pp. 438 ff.).
of the universe as a vast clock set in motion with all harmony by God. Thus complex celestial uniformity as well as particular temporal intervention would now show forth the Creator's wisdom and power, so that in abbeys and cathedrals the miracle-play had to make room for the astronomical clock. As Lynn White says, there was in these impressive pieces neither pious deception (as in Hellenistic temples), nor over-saving mystery (as in Byzantine palaces), but frank admiration of mechanical potentiality and skill (as, he might have added, in Chinese academies and courts). When the city-halls of burghers began to be adorned with such instruments the real divergence of the Western from all other cultures manifested itself significantly indeed—but that is another story.

By the middle of the +13th century [in the West, wrote Lynn White], a considerable group of active minds, stimulated not only by the technological successes of recent generations but also by the will-o'-the-wisp of perpetual motion, were beginning to generalise the concept of mechanical power. They were coming to think of the cosmos as a vast reservoir of energies to be tapped and used according to human intentions. They were power-conscious to the point of fantasy. But without such fantasy, such soaring imagination, the power technology of the Western world would not have been developed.

Now it is clear also that without the earlier discoveries and speculations of Chinese and Indian naturalists there might well have been neither the fantasy nor the power. Out of this background stepped not only Roger Bacon and Peter the Stranger but Francis Bacon too. What the world has not yet recognised is that in fact they all talked like Taoists—in the echoing words of the Han and Thang:

Man's might can conquer the changes of Nature, make thunder in winter and ice in summer, make the dead walk and the dry wood blossom, confine a spirit in a bean...open doors in paintings and make images speak... and again: 'The sage commands Nature and is not commanded by Nature.'

Although much can be said about the technological thought of the +12th and +13th centuries in Europe, the somewhat humiliating fact remains that the actual nature of the 'horologes' then used, mostly in abbeys and cathedrals, constitutes one of the darkest patches of our ignorance. But Howgrave-Graham (1) has distinguished a cluster of records from +1284 onwards which suggest the rise of a new invention at this time, or the unwonted popularity or development of some existing device. The monumental clocks concerned were almost surely not driven by falling weights. Of the clock in the cathedral at Wells in western England, for example, the Welsh poet Dafydd ap Gwilym (+1343 to +1400) wrote in curious terms—it had 'orifices' in it, as well as wheels, weights, ropes, hammers, and also 'heads' and 'tongues'; words strangely reminiscent of Su Sung's 'coupling tongue'. As late as +1333 there was...

a See Thorndike (1), vol. 3, p. 169.
b Cf. our account of the social and economic background of the history of science and technology in East and West in Vol. 7. Meanwhile see Vol. 3, pp. 154 ff.
c (7), p. 133.
e Cf. also p. xlii above.
f Vol. 2, p. 60 above, from the Kuan Tzu book, ch. 17, p. 84.
g 祖安人i, lián, shù wù shí, wù shí wù shí.

PLATE CCLXVI

Fig. 678. A monastic water-driven wheel-clock of +13th-century Europe, an illumination in a biblical MS. (Bodleian Library, 1776, fol. 18v). The incident portrayed is the moving back of the sun 10° by the clock for King Hezekiah during his illness at the word of the prophet Isaiah (2 Kings xx. 5-12 and Isaiah xxxviii. 8). Moved by the 8th-century king's goodness and sorrow, the Lord added fifteen degrees, by which degrees it was gone down. 'The mechanism of the clock limned by the monk about bells. The picture thus suggests that water-wheel-lidwork engrampoment clocks of the Chinese type were used in Europe before the advent of the weight-driven wheel-clock (Drewer, 1). Certainly this horologium is not at all like a sundial, in spite of the biblical text which the monk was illustrating.

Renaissance artisans amused themselves in making sundials which would give Hezekiah's sign. The American Philosophical Society in Philadelphia possesses an instrument of this sort made by Christopher Schisler of Augsburg in +1378. When the flattened bowl of the steaping is filled with water, refraction causes the sun's shadow to move just 10° backwards.
27. MECHANICAL ENGINEERING

In any case, whether the Chinese escapement came to Europe in person, or only as a rumour, I-Hsü's great contribution was to introduce a truly chronometric principle into the mechanical as opposed to the clepsydric part of the clock. At first this was not great, for it is clear that in the Chinese clocks the major part of the time-keeping was effected by the constancy of the flow of the water. The mechanism could only intervene in so far as changing the weight on the weighbridge would permit the scoops to fall before they were quite full. This is why we must recognise in it the missing link between the purely hydrodynamic clepsydra and the purely mechanical clock. For when the inventions of early +14th-century Europe had been made, the verge-and-foliot took over the greater part of the time-keeping duty. This was still not completely embodied in the escapement since any considerable change in the weight hanging from the drum would affect the fastness or slowness of the clock. Not until the introduction of the pendulum in the 17th century was an approach to a truly isochronous mechanism made. That this had taken two millennia is not surprising when one considers the leisurely growth of human technology as a whole before the Renaissance. But the Chinese contribution was vital. Its recognition enables us henceforward to estimate at their true value statements such as the following—so often found, "The Chinese", writes Liukä (1), "never made any discoveries comparable with those of Europeans in the technique of clock-making. The clocks (collected in such great numbers in the Forbidden City) have of course nothing to do with time-measurement in Old China." And, says Planchon (1), with superb (though unconscious) irony, "the Chinese have never produced any mechanical workshop properly so called—in this field they have only been bad imitators."

The profound influence of clockwork on the world-outlook of developing modern science was noted at the beginning of this subsection. But emphasis has also rightly been placed on the importance of the trade of clock- and watch-maker for the growth of scientific instrument-making in Renaissance Europe. These craftsmen became for science what the millwright was for industry—a fruitful source of ingenuity and workmanship. The millwrights had been there all through the Middle Ages, and the clockmakers from the beginning of the +14th century. Their presence was certainly one of the important roots of Renaissance science, pure and applied, for a supply of artisans was ready to generate makers of machines and instruments as soon as these things were demanded and devised. By now it is abundantly clear that China also to maintain that they were all new and independent discoveries. There is evidence of a somewhat similar wave of adoptions towards the end of the +12th century, when within a few decades of the year +1190 Europeans came to know and use the magnetic compass, the stern-post rudder, and the wind-mill. It is curious and rather striking that these two periods are also closely characterised by an influx of eastern knowledge in the fields of astronomy and cosmology. For the Toledan Tables and their corresponding texts were more quickly appreciated, exerting their influence shortly after +1130. The conclusion is almost inescapable that clockwork and all that it implies fits perfectly into this picture as an importation of the second wave.

Cf. von Bertele (1).

a E.g. by Bernal in his Beard Lectures, (1), p. 235.

b Not likely, perhaps, to be readily accorded by all Western scholars. It will be urged that the European oscillating escapement was the only true, the only important, escapement. So already R. S. Woodbury, in his review of Price (8).

c Brown (2).

d A row of bells in a curiously similar position occurs in another representation of a clock, carved in a relief of Tubal-cain on the façade of the cathedral at Orvieto about +1330, where it is combined with a set of right-angle gear-wheels and what might conceivably be a weight-drive; see J. White (1).

e E.g. by Bernal in his Beard Lectures, (1), p. 235.

f Butler ed., p. 17.

g Bassermann-Jordan (r), p. 17.

h Oxford Bodl. Cod. 2706.

i Brown (2).

j A row of bells in a curiously similar position occurs in another representation of a clock, carved in a relief of Tubal-cain on the façade of the cathedral at Orvieto about +1330, where it is combined with a set of right-angle gear-wheels and what might conceivably be a weight-drive; see J. White (1).

k Compare with this one of the Kyser MSS. illustrations (+1400) reproduced by G. Brown (2), pt. 2, fig. 14.

l We are not aware of the suggestion of Lynme White (2), p. 120, that the Bodeian picture of Hezekiah's clock represents an Alfonsine component-drum system, but how it worked remains (in the past haze) anybody's guess.

m Butler ed., p. 106.

m These two periods approximately coincide, one may remember, with the two foci of reception by the West of Greek and Arabic astronomical knowledge, the translation of the Toledan Tables in +1087 and that of the Alhacenian Tables in +1274. The corpus of auxiliary texts to these restored the sphere and globe to medieval Europe.

n Meditating about the nature and form of this transmission or stimulus, it is desirable to have in mind that it was more or less certain and which occurred at times not far different. If we may choose the date +1300 to +1330 as a focal one for the appearance of the first working mechanical clocks in Europe, we may remember that +1235 was equally focal for gunpowder, the original home of which had been in 10th-century China. Evidence for this statement will be found in Sect. 3o. Towards +1300 we find the first blast-furnaces producing cast iron in Europe—but in China this technique had been developed from the —4th century onwards and by the Sung period had reached a high level of surveys). Towards +1375, and also in the Rhineland, comes the first European block-printing, an art which had been current in China since the —4th century (cf. Carter, 1). Still closer to clockwork in time are the great segmental arch bridges of Europe, the first being about +1340, though in China structures of this kind had first appeared in the +7th century (see the discussion in Sect. 284). The +16th century thus presents itself as a time of adoption by Europeans of a number of important techniques which had already been known and used for a long time in the Chinese civilisation area. One may indeed believe that Europeans did not know exactly where they came from, but it is asking too much
had such artisans, in skill and ingenuity at least as eminent. If therefore China had no Renaissance and no development of modern science and technology, the presence of artisans was evidently not in itself enough. And though clock-making in China never to have become a mass industry before the time of the Jesuits (as it did in +17th- and +16th-century Europe), the building of mill-work and water-raising machinery of all kinds was spread throughout the length and breadth of the empire. The manifold activity of skilled millwrights was therefore not enough either. Yet ‘it was the work of the millwright’, says Bernal, ‘that gave rise to the first genuinely European invention, that of the clock …’. Although in the light of the knowledge here set forth, the second part of the sentence can no longer be sustained, the remarkable insight shown in the first pays a debt which we all owe to the engineers of the Middle Ages.

(a) VERTICAL AND HORIZONTAL MOUNTINGS; THE REVOLVING BOOK-CASE IN EAST AND WEST

In the foregoing subsections we have become very conscious of the distinction necessary in the history of technology between wheels mounted vertically and wheels mounted horizontally. The noria and the Vitruvian power-wheel, with their relations the ship-mill and the paddle-wheel, have a distribution different in time and space shown in the first part of the sentence can no longer be sustained, the remarkable insight shown in the first pays a debt which we all owe to the engineers of the Middle Ages.

The noria and the Vitruvian power-wheel, with their relations the ship-mill and the paddle-wheel, have a distribution different in time and space shown in the first part of the sentence can no longer be sustained, the remarkable insight shown in the first pays a debt which we all owe to the engineers of the Middle Ages.

In the material which we must now examine, we shall see that horizontal wheels are again characteristic of China and indeed of all Central Asia and Iran, both as regards certain wheels turned by hand in libraries, and as regards wheels rotated by a new source of power, the wind; while conversely the Vitruvian system continued to exert its influence in the West.

The revolving book-case is not perhaps a very inspiring subject from the modern technological point of view, for it led to nothing further, though in its heyday, as one of the numerous aspects of great Buddhist temples, it deeply affected many Chinese Confucian scholars not easily led astray by their emotions. Its interest for us lies in its remarkable insight shown in the first pays a debt which we all owe to the engineers of the Middle Ages.

The significance of the trade for the development of industry in general may be seen from the fact that Marx (1), pp. 334 ff., gave watch-making as the classical example of heterogeneous manufacture; in the making of the Chhi Chhi Thu Shuo (cf. Vol. III, p. 361 above), and one cannot but wonder whether they had not been in some way ancestral to the European design. From the +6th century onwards it had been customary to erect large (sometimes very large) book-cases in Buddhist temples so that the whole of the Tripitaka or scriptures could be contained in them, housed in appropriate drawers. During the course of centuries whatever practical use they may once have had faded into the background, and their chief significance became ritual, persons wishing to acquire merit being able to turn the whole structure round and thus perform an act symbolic of the Buddhists and Bodhisattvas ‘turning the Wheel of the Law’.

According to Nanjio, who was one of the first to give attention to these lun tsang or ‘revolving repositories’, their traditional inventor was Fu Hsi in +1544, and statues of him and his two sons generally appear on them. The ascription is not quite certain, however, since contemporary biographies of him do not describe the invention, and
Fig. 679. Revolving bookcase figured in the Chi Chih Thu Shuo of +1627, ch. 3, p. 52a. Although the books in it have vertical rulings for Chinese type, those on the shelves are bound in European style.

Fig. 680. The source of the illustration used by Johann Schreck & Wang Ch'êng, the revolving bookcase depicted in Ramelli's engineering treatise of +1588. A simple arrangement of gearing keeps the successive book-rests at the same angle as they are rotated. From this it can be seen that the Chinese draftsman of Fig. 679 drew the gear-wheel system erroneously.
The first one which does is as late as +1056. Nevertheless, it may be taken fairly safely that the practice dates from about the +6th century, whether or not it really derives from Fu Hsi, who was a famous scholar of the time, and known for his syncretistic tendencies. Literary references to the revolving repositories begin from +823, this being the date of a stele now in the Pei Lin at Sian, which bears an inscription concerning such a machine erected in a temple some five li outside that city. There are others from the ninth and tenth centuries, but the evidence becomes really abundant in the eleventh, perhaps because of the printing of the Buddhist Canon shortly before (+971 to +983). Yeh Meng-Tê wrote about +1100:

When I was young I saw several four-sided revolving repositories. Recently in all centres large and small, and even in remote mountain fastnesses and tiny villages, in six or seven out of ten temples, one can hear the sound of the wheels of the revolving cases turning.

In the Sung nine examples were particularly famous, and then after a break during the Yuan, we have fourteen descriptions of the building of such structures under the Ming, the latest in +1650—significantly some time after the designs in the Ch'hi Chî Tho Shiu, but completely disregarding them.

For in fact the Buddhist revolving repositories were all as horizontal, technically, as the horizontal water-wheels. One still existing has been carefully described by Liang Ssu-Chheng (1), from whom we take Figs. 682 and 683, showing the way the octagonal revolving book-case is mounted in the temple, as well as its external appearance. This example is the Lung-Hsing Temple at Chêngting in Hopei, and probably dates only from the Sung, with later repairs, though the temple itself goes back to +586. From the Sung, too, we have the equally interesting diagrams and descriptions in the great treatise on architecture, the Ying Tsao Fa Shih of Li Chieh (+1103). Here the 'Turning Treasury of the Sutras' (chuan lun ching tsang) is discussed in two places and a figure is also given (Fig. 684). Its height was to be 60 ft. and its diameter 16 ft., and this is just about the size of some of the existing specimens, but others were certainly much larger, approximating to the 70 ft. of the prayer-cylinders at the Yung Ho Kung in Peking. Some took the strength of ten men to revolve.

For the purposes of the Buddhists, Ramelli's gear-wheels would of course not have been necessary, yet it does not follow that gearing was not used for other purposes.

b All are minutely discussed in Goodrich (7). Here we need only mention the example at Wu-thai Shan seen by the Japanese monk Ennin in +840 (cf. Reischauer (2), p. 247, (3), p. 196).
c Ch. 11, pp. 16 ff.; ch. 23, pp. 14 ff.
d There are, of course, numerous others, and numerous eye-witness accounts by foreign travellers, collected by Goodrich (7). Boeckh's (9) has given a first-hand description of the fine example at the Ts'ao-Yao Su's temple on Wu-thai Shan. Its axle-length is 45 ft. and the octagonal case rises nearly 34 ft. above the ground floor of the hall which houses it. The rotation is accomplished by four men working on radial arms in a cellar. The 18 storeys give 144 boxes for statues or books.

6 CH. KUANG CHI (Record of Nanking Affairs), ch. 4, p. 6b; tr. Goodrich (7).
7 There are, of course, numerous others, and numerous eye-witness accounts by foreign travellers, collected by Goodrich (7). Boeckh's (9) has given a first-hand description of the fine example at the Ts'ao-Yao Su's temple on Wu-thai Shan. Its axle-length is 45 ft. and the octagonal case rises nearly 34 ft. above the ground floor of the hall which houses it. The rotation is accomplished by four men working on radial arms in a cellar. The 18 storeys give 144 boxes for statues or books.
8 Goodrich (7), p. 150.
9 Cumming (1), p. 130.
10 This is the most famous Lamaist temple in China.
Fig. 682. Scale drawings of the Repository Hall of the Lung-Hsing Temple at Chengting in Hopei (Liang Ssu-Chheng, 1). Above, left, upper-storey plan, right, ground-floor plan; below, section in elevation.

Fig. 683. One of the revolving repositories intended to contain the Buddhist patrology, the Ta Tsang or Tripitaka. Detail of the octagonal carved and decorated bookcase in the Lung-Hsing Temple at Chengting in Hopei (Liang Ssu-Chheng, 2). Though the temple dates from +586, the time of the originator of such bookcases, the existing repository is probably not earlier than the 12th century.
Fig. 684. Design for a revolving repository of the Buddhist scriptures (chuan lun ching tsung), from the Ying Tsao Fa Shih of +1103, by Li Chih (ch. 32, p. 214).
e.g. for securing mechanical advantage in turning. There may be an obscure reference to this in Yang Shen’s 16th century *Tan Chien Tsung Lu,* where ‘male and female’ wheels revolving in opposite directions are referred to; and the repository of the Khai-Fu Temple near Chhanga had in +1119 five wheels which all turned together. Another interesting point is that occasionally some kind of brake appears to have been used, as in the case of the revolving cabinet at the Nan-Chhan Temple at Suchow, which was put up in +836. This has been ascribed to the purpose of the repository being scholarly rather than pious, but one would like to know what kind of brake was used, since curved brake-bands first appear only in the time of Leonardo in Europe. Repositories for the scriptures were not by any means the only pieces of equipment which revolved horizontally in medieval China, and in considering origins there are certain minor devices which we cannot entirely neglect. One thinks of revolving seats and other pieces of furniture, and also of the first cases used for movable-type printing. Swivelling chairs appear very early; in the Later Chao dynasty about +345 under that notable Hun, Shih Hu, a real patron of engineers and inventors. An interesting passage in Lu Hui’s *Yeh Ch’ung Chi* shows us this mechanised nomad in the hunting-field.

Shih Hu when young loved going out to the chase, but as later on he grew too heavy to sit on horseback, he had a hunting-car (*lich nien*) made, similar in shape to the present-day manned imperial carriages, but actually borne (like a litter) by twenty men. It had a seat so mounted that it would swing round mechanically, and at the top a curved roof which (correspondingly) turned in any direction. Thus when he took aim at birds or beasts it always faced them, moving as he turned his body. He was an excellent shot and never missed.

European parallels are not absent, but mostly much later. Prince Rupert in +1680 devised a cart with a revolving seat for hunting, certainly without any idea that he had had a Hunnish precursor. A tradition of uncertain authority attributes to the Roman emperor Commodus (r. +180 to +192) a chariot with a swivel-chair ‘so that one could turn one’s back to the sun or take advantage of passing breezes’. Apart from this, the familiar office-chair is a Renaissance introduction, starting in the 15th-century Venice and a hundred years later popular in Germany under the name ‘Luther chair’. Carpaccio’s picture of St Jerome (+1505) shows one, and an 18th-century example belonging to Thomas Jefferson is preserved at Philadelphia. None of these could have had anything to do with the Chinese revolving book-cases, but the hunting-cars of Shih Hu’s time and later might well be relevant.

There are hints also that certain ‘bedside book-cases’ (*co chia* or *lan chia*?/trotted; these are mentioned, for example, in the *Shih Wu Chi Yuan* of the Sung, where their invention is ascribed to the early +3rd century. What certainly did rotate, however, was the *huo tsu pan yin lu,* or wheel-shaped case for systematic storage of a fount of movable type, introduced by its first inventor, Pi Sheng, about +1045. We reproduce here (Fig. 685) the famous illustration in the *Nung Shu* of +1313, but a proper account of this first of all compositors’ work must naturally be postponed until Section 32. As in the case of the chairs, the horizontal mounting imposed itself.

The original reason for the invention of the revolving book-cases may well have been connected, as Goodrich suggests, with the great burden of translation work assumed by the Chinese Buddhists during the early centuries of our era. Wheel-
cylinder-libraries never arose in India* or Central Asia, nor among Chinese Confucians or Taoists. No one, says Goodrich, can have read the story of those years without being impressed by the self-sacrificing, often self-effacing, activity of hundreds of scholars and copyists in the labour of translation of the sūtras; and a central store of books which could conveniently be rotated would have left the sides of the halls free for the desks of the workers. Probably from the beginning, however, the rotation was a piece of religious symbolism as much as a convenience. It has obvious connections with the ceremony of circumperambulation, and with the prayer-wheels of Lamaist Buddhism.9 But discussion of them would encroach upon the question of the discovery and use of the third great eotechnic source of power, the wind, and this is the very subject next on the agenda.

To recapitulate, however, the burden of these brief notes on the revolving book-case, it is clear that its origin in China took place perhaps a thousand years before Ramelli's design was taken there, and the question must be reiterated, could these European Renaissance ideas have received any stimulus from reports of travellers to the East of Asia?

At least one Arabic account exists. In + 1420 Shāh Rukh, the son of Timūr, sent an embassy to the Ming emperor, and the narrative written by Oiyūţh al-Dīn-i Naqšībī describes at Gānchow in Kansu a 'kiosque' the nature of which we can now well recognise.6

In another temple there is an octagonal kiosque, having from the top to the bottom fifteen stories. Each story contains apartments decorated with lacquer in the Cathayan manner, with ante-rooms and verandahs... Below the kiosque you see figures of demons which bear it on their shoulders... It is entirely made of polished wood, and this again gilded so admirably that it seems to be of solid gold. There is a vault below it. An iron shaft fixed in the centre of the kiosque traverses it from bottom to top, and the lower end of this works in an iron plate, whilst the upper end bears on strong supports in the roof of the edifice which contains this pavilion. Thus a person in the vault can with a trifling exertion cause this great kiosque to revolve. All the carpenters, smiths, and painters in the world would learn something in their trades by coming here!

This might perhaps have been the means of transmitting the suggestion to the West, but until someone can bring evidence of revolving book-cases in occidental libraries, or plans for them, with dates, our question must remain unanswered.4 There was a long space of time during which such a suggestion could have made its way westwards.

The fact that Ramelli's was a vertical type, and that all the Chinese ones, from Fu Hsi onwards, were horizontal, would simply have been characteristic of the two engineering traditions.

(II) POWER-SOURCES AND THEIR EMPLOYMENT (III).

WIND FORCE; THE WINDMILL IN EAST AND WEST

The Chronicle of Jocelyn de Brakelond, which deals with the affairs of the Abbey of Bury St Edmunds in East Anglia and constitutes one of the most famous of monastic annals, tells how Dean Herbert built an illegal windmill in +1191 which competed with the mills of the Abbey and was pulled down upon the orders of the Abbot Samson.1 It was long believed8 that this gave us the earliest certain instance of a windmill anywhere in Western Europe, but Lynn White (3) has collected five firm records slightly earlier.6 It is at any rate certain that from this time onwards windmills spread rapidly, coming into use throughout occidental countries in the +13th century. No illustration, however, survives from before about +1270, the date of the so-called 'Windmill Psalter', probably written at Canterbury.4 After the time of the well-known engraved brass at King's Lynn, Norfolk (+1349), representations become numerous.6 The Western vertically-mounted windmill was from the beginning a kind of reversed or ex-aerial propeller, and though no doubt essentially an empirical development, derived topologically from the Archimedean screw and not from the Vitruvian water-mill. It was thus deeply occidental, but it involved one new mechanical problem, the orientation of the main driving-shaft (the 'windshaft') so as to present the sails (or 'wheel') in a position at right angles to the direction of the wind.2 Two distinct types appeared, smaller mill-housings revolving round a central post or pivot permanently fixed on (or in) the ground ('post-mills'), and larger mills consisting of a tower of brick or masonry roofed by a movable cap carrying the sails and the shaft ('tower-mills'). All the earlier mills were of the post type, supported by four diagonal slanting legs (the 'quarterbars'); one of them, for example, is pictured by the anonymous Husseine engineer (+1430).8

The rather sudden appearance of these windmills in Europe still presents a considerable mystery. We can find only one forerunner in Western antiquity—the so-called 'anemunior' (ἀνεμομετρός) described in the Pneumática of Hero of Alexandria...
to which he had been subjected. More certain, perhaps, is the mention of windmills in the works of the Banū Mūsā brothers (+ 850 to + 870), while a century later several reliable authors are speaking of the remarkable windmills of Seistan (e.g. Abū 'Ishaq al-İṣṭakhrī and Abū al-Qāsim ibn Ḫusayl).

Seistan is an arid sandy region, renowned for the continuous blowing of high winds; it is situated in the area where Persia marches with Afghanistan and Baluchistan, and where the Helmand River runs down to its inland lakes. A very detailed description of these windmills occurs in the Nukhbat al-Dahr (Cosmography) of Abū 'Abdallāh al-Anṣārī al-Ṣūfī al-Dimashqī about + 1300. From this it is clear that the Iranian windmills were horizontal in type, and enclosed in shield-walls so that the wind entered only on one side, in turbine-fashion, moreover the querns themselves were in an upper storey.

Fig. 686. Diagrams of windmills from the cosmographical treatise of al-Dimashqī, c. + 1300 (MSS. at Leiden and Berlin, from Horwitz, 11). The horizontal rotors with their vanes below, the milestones in an upper storey.

Diagrammatic perspective view
Plan

27. MECHANICAL ENGINEERING
able to do this by adopting the fore-and-aft rig of Chinese junks for the windmill sails below (cf. Fig. 686). A little earlier, the encyclopaedist Abī Yāḥyā al-Qazwīnī had also enlarged upon the windmills of Seistan. They still grind on today, and many modern travellers have visited them (cf. Fig. 687). While retaining their shield-walls, however, and sometimes adding further curtain-walls, their wheels have become greatly broadened so as to form tall upstanding rotors, and the millstones have been placed beneath. The first European to see windmills in China was Jan Nieuhoff, who met with them at Paoying in Chiangsu when journeying north along the Grand Canal in +1566 with one of the Dutch Embassies to Peking. The illustration which he gave (Fig. 688) may be compared with a modern photograph (Fig. 689). These windmills are still extensively used all along the eastern coast of China north of the Yangtze, and particularly in the region of Thangku and Taku near Tientsin, mainly as prime movers for operating square-pallet chain-pumps by right-angle gearing in the numerous salterns where salt is made from sea-water. We owe to Chhen Li (1) a recent study of them including minute technical detail. Their construction is of considerable interest, for the vanes or surfaces taking the wind-pressure do not radiate from the central axle, but are in fact true junk-slat-sails mounted on eight masts forming the periphery of a skeleton drum. Chhen Li gives a local riddle which helps us to understand the construction:

Who is the great general with the eight faces, strong in the teeth of the wild winds? He has eight masts that follow the wind and turn, Wearing a hat at the top, and standing on a needle below, His two ends can revolve at your wish And make the waters come or go wherever you like.

Looking at Chhen's diagrams (inset) we see that the 'hat' is the upper bearing of the central axle, and the 'needle' is the pin or gudgeon on which it revolves below. But the ingenuity of the whole contrivance is seen in the fact that it dispenses entirely with the shield-walls used in Persia. It was able to do this by adopting the fore-and-aft rig of Chinese junks for the windmill sails, as may be understood by the diagram on the next page. In position A, the sail is held taut against the wind by its 'sheer' rope (pheng lăn-shêng), but when it reaches position C, the sail blows right outwards.

The windmill of Chhen Li found that effective wind-pressure was exerted for considerably more than 180° of the cycle, since in position D the sail does a certain amount of work when it is 'sailing into the wind.' The whole system constitutes an invention of great interest and practical importance since thousands of these simple machines are at work at the present day.

Unfortunately, there are very few literary references in Chinese to this or any other type of windmill, though perhaps some might be found in the local topographies of the provinces where they occur, this search has not yet been made. Several decades before Nieuhoff's visit, Sung Ying-Huang recorded in his Thien Kung Khai Wu that these windmills were commonly used at Yang-ch'ìn and elsewhere, which would take us back to the beginning of the +17th century. But the only really important reference so far found relates to the borders of Sinkiang; it occurs in the Shu Chai

558 27. MECHANICAL ENGINEERING

('luffs'), coming back into the eye of the wind in position E, freely hanging and opposing no wind-resistance. By position G, the sheet has tightened again, preparing the sail to receive the full force of the wind. Chhen Li found that effective wind-pressure was exerted for considerably more than 180° of the cycle, since in position D the sail does a certain amount of work when it is 'sailing into the wind.' The whole system constitutes an invention of great interest and practical importance since thousands of these simple machines are at work at the present day.

Unfortunately, there are very few literary references in Chinese to this or any other type of windmill, though perhaps some might be found in the local topographies of the provinces where they occur, this search has not yet been made. Several decades before Nieuhoff's visit, Sung Ying-Huang recorded in his Thien Kung Khai Wu that these windmills were commonly used at Yang-ch'ın and elsewhere, which would take us back to the beginning of the +17th century. But the only really important reference so far found relates to the borders of Sinkiang; it occurs in the Shu Chai.

From al-Dimashqī MSS. at Leiden and Berlin, copied by Horwitz (11).

See Mieli (1), p. 130.

E.g. Tate (1), vol. 3, p. 331; Kennison (1), pl. 6; le Strange (3), pp. 337, 509, 411; Maillart (1), p. 120 and opp. p. 86; Bagno1d (1), pp. 144 ff.; Sykes (2), p. 397.

From al-Dimashqī MSS. at Leiden and Berlin, copied by Horwitz (11).

559 27. MECHANICAL ENGINEERING

('luffs'), coming back into the eye of the wind in position E, freely hanging and opposing no wind-resistance. By position G, the sheet has tightened again, preparing the sail to receive the full force of the wind. Chhen Li found that effective wind-pressure was exerted for considerably more than 180° of the cycle, since in position D the sail does a certain amount of work when it is 'sailing into the wind.' The whole system constitutes an invention of great interest and practical importance since thousands of these simple machines are at work at the present day.

Unfortunately, there are very few literary references in Chinese to this or any other type of windmill, though perhaps some might be found in the local topographies of the provinces where they occur, this search has not yet been made. Several decades before Nieuhoff's visit, Sung Ying-Huang recorded in his Thien Kung Khai Wu that these windmills were commonly used at Yang-ch'ın and elsewhere, which would take us back to the beginning of the +17th century. But the only really important reference so far found relates to the borders of Sinkiang; it occurs in the Shu Chai.

From al-Dimashqī MSS. at Leiden and Berlin, copied by Horwitz (11).

See Mieli (1), p. 130.

E.g. Tate (1), vol. 3, p. 331; Kennison (1), pl. 6; le Strange (3), pp. 337, 509, 411; Maillart (1), p. 120 and opp. p. 86; Bagno1d (1), pp. 144 ff.; Sykes (2), p. 397.

From al-Dimashqī MSS. at Leiden and Berlin, copied by Horwitz (11).

559 27. MECHANICAL ENGINEERING

('luffs'), coming back into the eye of the wind in position E, freely hanging and opposing no wind-resistance. By position G, the sheet has tightened again, preparing the sail to receive the full force of the wind. Chhen Li found that effective wind-pressure was exerted for considerably more than 180° of the cycle, since in position D the sail does a certain amount of work when it is 'sailing into the wind.' The whole system constitutes an invention of great interest and practical importance since thousands of these simple machines are at work at the present day.

Unfortunately, there are very few literary references in Chinese to this or any other type of windmill, though perhaps some might be found in the local topographies of the provinces where they occur, this search has not yet been made. Several decades before Nieuhoff's visit, Sung Ying-Huang recorded in his Thien Kung Khai Wu that these windmills were commonly used at Yang-ch'ın and elsewhere, which would take us back to the beginning of the +17th century. But the only really important reference so far found relates to the borders of Sinkiang; it occurs in the Shu Chai.
In the collection of the private works of the ‘Placid Retired Scholar’ (Chan Jan Chü Shih’), there are ten poems on Ho-chung Fu. One of these describes the scenery of that place... and says that ‘the stored wheat is milled by the rushing wind (chhung feng mo chiu mai’) and the rice is pounded fresh by hanging pestles (hsiian tui chhu hsin keng). The westerners there use windmills (feng mo) just as the people of the south use water-mills (shui mo). And when they pound they have the pestles hanging vertically.’

When we realise that the ‘Placid Retired Scholar’ was none other than Yehlii Chhu-Tshai, the great Chin and Yuan statesman and patron of astronomers and engineers, and that this passage must therefore refer to the year +1219, when he visited Turkestan, and furthermore that Ho-chung Fu was the place which we call Samarqand, there can remain no doubt that the northern Chinese must have been acquainted with the Persian windmill during the +13th century. The Western Liao State (Qara-Khitii, +1124 to +1211) was thus almost certainly the focus of this transmission.

A point of subsidiary interest is that Yehlii Chhu-Tshai distinctly mentioned the difference in mounting between Western and Chinese trip-hammers (the former like stamp-mills and the latter like forge tilt-hammers) which we have already had occasion to note.

The windmills of the Persian culture-area were described more fully some two hundred years later by other Chinese visitors. In the Chhih Pei Ou Tuan (Chance Conversations North of Chhih-chou) Wang Shih-Chên says:

In the western countries called Herat (Ha-Lieh) and Samarqand (Sa-Ma-Erh-Han) there are many windmills. Walls (of bricks) are built into the form of a house, having at the top openings facing the four directions, outside which screens can further be set up so as to catch the wind. Inside the chamber (below) a wooden axle is fitted, with sails (lit. wind-riding boards) attached to it above and the millstones (driven by) it underneath. Whatever the quarter from which the wind blows, the axle always goes on turning, and the more it blows the more work is done. This was what Yehlii Wen-Chêng was referring to in his poem, where he says...

And he goes on to quote the two lines we have just cited. He then adds, however, the (people of those parts) also have a (kind of punkah winnowing)-fan. Under an awning (at the side of the mill) they hang high up a cloth which has a lot of hair along its lower edge, and facing it they have a cord which pulls (and waves) it automatically (following the rotation of the mill), thus when there is wind they do not need to pull it by hand. See Chhen Chhêng’s Hai Yü Lu (Record of the Western Countries).
Here no doubt a simple lug and lever was employed to activate the subsidiary mechanism. What is more interesting is the reference, and indeed the original passage is easy to find in the *Hsi Yii Fan Kuo Chih* (Records of the Strange Countries of the West), a short tractate written by Chhen Chheng. Together with a coadjutor, Li Ta, Chhen had paid a visit to Samarqand and Herat, among other places, in +1414, on a diplomatic mission to ‘show the flag’ analogous to those more famous ones which took Chêng Ho down to the South Seas. They penetrated more than 12,000 li west of Chia-yü-kuan and wrote a joint diary still preserved, the *Hsi Yii Hsing Chheng Chi*. Thus we know of a second occasion when windmill designs could have been carried east.

The most probable supposition, therefore, seems to be that the horizontal windmill was introduced to China either by Central Asian, Chhi-tan or Arab–Persian merchants overland, or by Arab-Indian sailors or merchants through the ports, some time during the Sung or Yuan periods. This transmission may well have been only the message that wind-power could be used with a horizontal rotor, whereupon Chinese nautical technicians proceeded to construct for their friends in the salt industry the ‘fore-and-aft’ windmill as we now have it. This explains at any rate why the distribution remained coastal; inland, at any rate away from the great rivers, there were no skilled sail-makers.

By the +16th century the Persian horizontal windmills had become well known in Europe, and designs based on them figured largely in the engineering book of Verantius (+1615, but probably written c. +1595). Ironically enough, two of these quickly found their way back East in the Jesuit book *Chhi Chhi Thu Shuo* of +1627 (Fig. 690), though the Chinese had probably long been using a much more practical type. Another form penetrated to the New World, and found employment there for driving sugar-mills in the West Indies, e.g. on St Kitts, where Labat saw it in +1696 (Fig. 692). This must surely have been a westward transmission from Iberian culture, originally derived from Muslim Spain. The principle of luffing sails instead of shield-a

a Pp. 79, 84. It also says that the water-mills were ‘much the same as those in China’. Does this not imply horizontal water-wheels?

c Cf. Vol. 1, pp. 143, 169 and Fig. 14.

*d Hence the interest of the statement made by al-IdrisI in +1154 that there were windmills for grain-grinding on islands near Melaka (tr. Ferrand (I), vol. I, pp. 172, 194; cf. Gerini (I), p. 535). Perhaps Arabs had set them up there. Horwitz (11) gives details of small windmills for various uses now found in Sumatra, the Celebes, etc., which might derive from these.

*e That the entry of the windmill took place no earlier is perhaps suggested by the fact that it never acquired a specific character, nor even a specific phrase, but has always been known simply as feng chhe,S in confusion with the rotary winnowing-fan (cf. p. 118 above), which is certainly much older.

*f It may of course be remembered also that some parts of China are remarkably windless, notably Szechuan.

*g Besson also produced a design in +1578, cf. Wiles (4). The first appearance in Europe, so far as we know, had been in the MS. of Mariano Jacopo Taccola c. +1445 (cf. Uccelli (I), p. 29, figs. 28; Lynn White, 1, 7). They never competed successfully against the longer-established vertical windmills, though there was a good deal of argument about their respective merits. In +1669 d'Arenes (1) was a great contemner of ‘horizontal sailes’. Marin (I) describes an extant example in the Ligurean alps.

h Nos. 37 and 38 in Table 58 above. Cf. Beck (I), p. 517, figs. 788 and 789.

*i Windmills at Taragona under Muslim rule ‘established by the sons of former times’ are referred to in the *Kitb al-Banat* of Ibn 'Abd al-Mun'im al-Himyari, written in +1264. See Levi-Provenyal (I), p. 153.*

Fig. 691. Horizontal windmill of the Persian type with shield-walls, put forward as a new design in the "Chi Chih Tho Shuo of +1627 (ch. 3, p. 498), because present in the engineering treatise of Verantius (+1613). At the top: 'The Eleventh Diagram' (of the Milling section).

Fig. 692. West Indian horizontal windmill working a sugar-mill (cf. Fig. 459), a drawing in Labat, +1666. Identical in design with the windmills of Seistan, this must surely have been a transmission from Muslim Spain.
walls also spread far and fast in the 16th century for G. H. Rivius included such a design in the book on architectural engineering which he published at Nürnberg in 1547. The idea was also taken up in due course by Verantius, who hinged his sails in various ways, or made them permanently open on one side and streamlined on the other; and again the industrious Johann Schreck presented these to his Chinese readers as original novelties from the creative West (Figs. 693 and 694). Such a reintroduction in less elegant form was one of those superfluities on which we have already remarked, and in those parts of the country where the ‘maritime’ windmill was used, it continued to be built as before without the least attention being paid to Verantius’ designs. Finally, some account of the Chinese pattern more detailed than Nieuhoff’s may have reached Europe in the 18th century, for Bennett & Elton allude...
to a number of new inventions then patented there for making the returning sails of horizontal windmills present their edges only to the wind. But in Europe this type of windmill was never to any extent adopted.

Jesuit influence may have left its mark in China in another way, however. In certain of the eastern Chinese provinces wind-power is harnessed for water-raising by means of a curiously constructed windmill the axis of which is set neither vertically nor horizontally but obliquely (Fig. 695). These are particularly common between Shanghai and Hangchow. Now from the +16th century onwards in Holland very similar small windmills have been in use, their axles being continuous with the inclined shafts of Archimedean screws; as may be seen in the photographs given by van Houten (1). Most probably, therefore, the oblique windmill was introduced to China in the +17th century as part of a compact piece of equipment which included the Archimedean screw. When the latter then failed to supersede the traditional types of water-raising machines the oblique windmills continued in certain districts, being harnessed by appropriate gearing to square-pallet chain-pumps.

Two related questions may now be asked, though they cannot be answered: first the origin of the European vertical windmills of the +12th century, and secondly that of the Persian horizontal ones of the +7th. With regard to the former, Vowles (1) developed an elaborate argument to show that there could have been a transmission of the idea from Persia northwards and westwards by means of Scandinavian and Russian traders along the Baltic-Orient routes. Against this there is no positive evidence, but in such circumstances one would have expected to find windmills in Russia and Scandinavia earlier than in western Europe, and that has not been demonstrated. In fact Muslim Spain is a more likely intermediary region.

But whatever the route which the idea may have taken, the Western windmill was from the beginning so different from the Persian that a high degree of inventive novelty must have entered into it. The message from the east may simply have been that over there people found wind-wheels possible and useful; whereupon the artisans of northern Europe contrived them according to their lights. A persistent tradition, indeed, has maintained that the idea of windmills was brought back by the first crusaders (+1090 to +1170). A further question then presents itself—what exactly were those lights? What were the specific technical influences which led the first Western millwrights to their solution of the vertical mounting? It is too simple to say that the European windmill derived from the vertical Vitruvian water-wheel, for from the outset its axis was placed (quite unlike that of the latter) parallel to the lines

a Personal communication from Dr N. W. Picc, F.R.S., 1952. Cf. Chang Han-Ying (1) for Anhui.
b A somewhat similar machine is described and illustrated in de Bélidor (3), vol. 2, pl. 2.
c It will be remembered from Sect. 17d, and above, pp. 224, 248, that Tai Chen wrote a short monograph on this device (Le Tr 1ui Ché Ch1) in the latter part of the +18th century. It appears prominently also in the Thai Hai Shai Fa incorporated in the Nang Ching Chbian Shu.
d Cf. Bennet & Elton (1), vol. 2, p. 239; Lopez (1), p. 613. Arbousse says that the German crusaders built in +1150 'the first windmill that had been made in Syria', but that does not mean that the idea had not come from other Islamic lands. In western Europe as late as +1468 a windmill was called a 'moulin turquois à vent' (Delisle, 2). Here is a parallel with the 'torquetum' discussed in Vol. 3, pp. 379, 378 (cf. Seyll (3), p. 352).
of flow.\(^8\) In fact, the Western windmills, necessarily facing into the wind, were always ‘air-screws’ in reverse.\(^9\) But their effective ancestor can hardly have been the continuous or Archimedean screw; for their sails were for many centuries perfectly flat surfaces, though placed of course at a certain angle (traditionally \(15^\circ\)) to the plane of the circle in which they rotated, borne at the forward end of the windshaft.\(^4\) They thus constituted, like the vanes on Chinese zoetropes or helicopter tops,\(^5\) planes tangent to a continuously curved screw. Now the only European machine which could with reasonable probability have given the inspiration required in the middle of the +12th century was (paradoxically) the horizontal water-mill. We know at least from many descriptions of traditional examples of these during the past two centuries that in many cases (e.g. in Norway, Shetland and the Faroes) their vanes were inserted slightly obliquely so as to catch the full force of the water as it fell upon them.\(^6\) Elsewhere (from Turkey and Serbia to Ireland) spoon- or ladle-like shapes were used, again approximating to tangent planes of a continuous screw.\(^6\) All that is lacking is proof that these inclined-vane forms go back into the +12th century. Could this already be established we should be well justified in believing what must still remain a surmise, that the Western windmill was the solution of men who knew both the vertical and the horizontal water-mill,\(^5\) and who were convinced that somehow or other the Saracens

\(^8\) The only exception to this occurs in the curious so-called ‘Jumbo’ mills of late 19th-century America, which were like water-mills with their lower halves concealed within casings (Fig. 697). The system was said to be cheap and effective, but it never spread.

\(^9\) It was early empirically found that the best arrangement was to have the windshaft up-canted somewhat (\(10^\circ\) to \(15^\circ\)), thus balancing its weight against that of the sails and assisting them to clear housings below.

\(^4\) The sails of windmills were not fixed to any wheel or hub in the ordinary sense. Their main members (‘whips’ if radial, ‘stocks’ if diametral) were first morticed right through the squared end of the windshaft, and then after cast iron came in, socketed in box-shaped ‘pawl ends’ or ‘canister heads’ at the end of the windshaft, or fixed to cast iron ‘crosses’ thereon; cf. Wailes (1), p. 22.

\(^5\) Cf. Vol. 4, pt. 1, p. 121, and p. 285 below. It is very unlikely that European artisans of the +12th century knew of these devices.

\(^6\) If this is the correct theory of the origin of the Western windmill, the whole-wheel drive had a remarkable resurrection in the 19th century when several English tower-mills were equipped with ‘annular sails’ (cf. Wailes (1), p. 33, fig. 69, (5), p. 99, pl. xiv, and the appendix by F. C. Johansen on p. 385). This arrangement still lives on vigorously in the common wind-pumps of the present
had already successfully mastered the power of the wind. Finally, Alexandrian tradition can never be excluded; though Heron's ‘anemurion’ was but a toy wind-wheel, the mill of Dean Herbert repeated its vertical pattern. The medieval European solution was a distinct advance on any other form because it ensured that the whole area of the rotor surface received the pressure of the wind all the time; no part was shielded by walls, and the cycle of rotation contained no inactive luffing segment.

Last comes the question of the origin of the Persian windmills from the +7th century onwards. Vowles emphasised, of course, the Arabic translations of the Alexandrian mechanicians, and one could also imagine, with Forbes, a direct influence of the horizontal water-mill, whether from its Pontic or its Chinese home. But in that windy corner of Iran, adjacent as it is to the Tibetan massif, we are perhaps justified in suspecting quite a different origin, namely the tradition which gave rise to wind-driven prayer-wheels in Mongol-Tibetan culture. This possibility has been raised by Horwitz (11) and connects with the revolving book-cases of which we have already treated. That prayer-cylinders were commonly rotated in Tibet by horizontal water-wheels has also been mentioned, but the use of wind-power has been reported by many travellers. Although too often very imprecise in their accounts, the information which they give reveals several different forms. First, what Pallas saw in the late 18th century among the Khoshot, Kalmuk and Kirghiz tribes between the Aral, the Volga and Lake Sarpa above Astrakhan, was of great interest, for on and around the tombs of their Khans (Fig. 698) were generally five small prayer windmills looking for all the world like modern anemometers. Closely similar apparatus was studied by Rockhill (3) about 1890 at Shang-chia, a Mongol settlement on the Tsaidam Plateau (cf. Fig. 699). Besides these streamlined cup-vane types, Horwitz (11) and Laufer (19) have described Tibetan prayer-drums with curved wind-vanes (Fig. 700) preserved in Western museums. While both these forms rotated horizontally, using wind-force from the side and embodying a principle of streamlining, a third form, more closely related to the screw, took advantage of an uprising air-current. The Abbé Huc on his journey of 1844 noticed many prayer-drums fixed on the tops of Mongol yurts and rotated by the rising stream of hot air. Later travellers confirmed his observations often enough. This at once reminds us of the cinematographic toys or zoetropes which at an earlier stage we could trace back to the Thang, even, it may be, to the day. Another point of interest is that in Russia post-windmills exist in which the millstones are placed above the main driving-shaft. In effect, water-mills on stilts with windmill sails substituted for the water-wheels (Walters (4), p. 614 (3), p. 98). This is taken as a kind of intermediate form between the water-mill and the developed windmill. Cf. p. 564.

e (1), vol. 1, p. 318 and pl. 6; vol. 2, pp. 354, 355 and pl. 16. Here we may find an echo of Troup's theory of the origin of the water-wheel; cf. pp. 406 ff. above. An actual example, from the Chahar Mongol region, is to be seen in the East Asian ethnological collections in the National Museum at Copenhagen.

f The lineal descendants of these we may see every day in the Savonius S-rotor which provides those twirling ventilators familiar on the roofs of motor-avias and refrigerated railway wagons.

g (1), vol. 1, p. 102. h E.g. Gilmour (1), p. 165; Rockhill (4), p. 36.
Chhin and Han; and foreshadows the even more curious invention of the helicopter top, presently to be described.

Perhaps, then, the windmills of Seistan were primarily of Tibetan or Mongol inspiration? Here the difficulty is that prayer-cylinders designed for the automatic repetition of the famous mantra are unlikely to have antedated the reign of K‘ri-srong-ide-brtsan (+755 to +797) during which Buddhism conquered Tibet. The statement often made that Fa-Hsien found prayer-wheels in Central Asia on his pilgrimage in +400 rests purely on a mistranslation, and none of the other Buddhist travellers mentions them. Of course this does not prove that the Central Asian peoples were not using wind-driven gadgets of religious significance in pre-Buddhist times. Certainly the use of pennants to flutter in the wind and attract the attention of the gods is something very old, probably much older than the prayer-wheel, and common perhaps to all the shamanic systems of north and central Asia. And on the other side of the chronological balance-sheet, we must recall that though the oldest reference to Persian windmills seems to be datable at +644, they figure more prominently in Arabic writings of the +9th and +10th centuries. By then the greeting to the jewel in the lotus might have had time to work its benevolent technological effects for suffering humanity. To sum the matter up, a Mongol–Tibetan Shamanist and Buddhist ancestry must be regarded as at least as probable as the more conventional Graeco-Arabic one.

Thus the Chinese windmill is a characteristic contribution of its own, derived, we may certainly say, from the typically Asian horizontal windmills of Iran, but embodying devices borrowed from nautical technique so ingeniously as to make it almost a new invention. The European vertical windmill, on the other hand, equally original, though probably also due to a stimulus from Iran, seems more likely to have derived from the Archimedean screw and the vertical as well as the horizontal water-wheel.

b Cf. p. 583 below.
c The religion had made hardly any impression on Tibet before +630, during the reign of the great promoter of culture Srong-btsan-gam-po (+617 to +650). Not until the +11th century was Lamaism fully established, and the prayer-wheels might be as late as that.
d Many have fallen into this trap, e.g. Cunningham (1), p. 373; Horwitz (11), p. 99; and Forbes (19), p. 615 (who even says they were wind-driven prayer-wheels) as recently as 1956. In ch. 5 of his Fo Kuo Chi, completed in +416, Fa-Hsien is speaking of a small country called Chieh-chha, somewhere in the Himalayas (possibly Ladak or Kashgar) and ends by saying ‘As for the excellent rules and customs which the monks of these places have, there is not room to tell of them all (cha-men fa yang chuan chaun sheng, pu kho chi ch’i)’. The first translator, Remusat (1), in 1876, went astray at this point, and took the words to mean: ‘The monks, conformably to the law, make use of wheels.’ Those who followed him, Beal (1) in 1869 and Legge (a) in 1886, gave the right sense, as was subsequently pointed out by Rockhill (3), p. 534; Simpson (1), p. 34; Goodrich (7), p. 154; and others. All modern translators, such as Li Yung-Hsi (1), agree. Cunningham appealed to certain Indo-Scythian coins as confirmation of his belief in the great antiquity of the prayer-wheel, but one may agree with the remark of Rockhill, that as the mace-like objects held in the hand might be almost anything, prayer-wheels were not impossible. Thus the mistake of a single hour is not corrected in a hundred autumns. Unfortunately, too, the puzzle of the origin of prayer-wheels remains with us.

f In this Lynn White (s) concurs. Elaborating later (7), pp. 86, 116, he suggests that the horizontal windmill in Europe was a direct transmission by the Central Asian slaves of +14th- and +15th-century Italy (cf. Vol. 1, p. 190).

1 你來記 2 法顧 3 皓女 4 今門法用轉轉轉轉不可具記
of the Persian horizontal windmill must remain for the present undetermined, but they seem likely to have had just as much to do with the Mongol-Tibetan wind-driven prayer-mechanisms as with the horizontal water-wheel or the toys of ancient Alexandria.

(m) THE PREHISTORY OF AERONAUTICAL ENGINEERING

In the foregoing section we have been concerned with wheels or rotors which, according to our terminology, might be called 'ex-aerial', that is to say, wheels or windmill sails so designed as to utilise the force of the winds for doing work. In earlier sections we also saw that 'ad-aerial' wheels or fans were known to ancient and medieval China, whether for use in winnowing, or for cooling palace halls in summer weather. Although these employments did not involve the motion of any vehicle, which is one of the greatest uses of ad-aerial rotors today, we shall shortly see, not only that some precursors of the aeroplane propeller existed in China, but that one of them played a cardinal part in the development of modern aerodynamic thinking. More, the rise of this new science in the 19th century depended fundamentally upon the study of an apparatus which had not been known in Europe before the 16th, and which was partly Chinese in origin, namely the kite. The kite's stretched fabric is of course not a shaped aerofoil like the aeroplane wing, but the most essential difference between them is the fact that the lift of the kite is provided by the fortuitous air-stream of the wind, while that of the aeroplane's wing is made mechanically by its propellers. Pilots of today who call aeroplanes 'kites' perhaps hardly realise how fitting historically is this slang term.

'Lieh Tzu could ride upon the wind. Cool and skilfully sailing, he would go on for fifteen days before returning ...' These words (from the Section on Taoism) we shall not have forgotten. They give us, indeed, just the proper starting-point for the present study of the history of aviation. In the years before the First World War, some of the pioneers of flying, especially S. F. Cody, habitually used the term 'power-kite' for their experimental aeroplanes. In 1907 he fitted a 12-h.p. engine to one of his modified man-lifting kites (cf. p. 590 below), and flew it without a pilot. The Farman aeroplanes of 1910 were often called 'box-kite' aircraft, although by that time the cellular type of construction was being rapidly abandoned. It had been very prominent, however, in the Voisin-Farman biplanes of 1909, and the Voisin-Andree-Flameng float glider of 1907; in both these the main wings were divided into kite-like cells by vertical partitions, and there was a similar tail-unit aft. Cf. Gibbs-Smith (1), pp. 4, 80, and Figs. VIII and IX (d).

Fig. 791. The myth and magic of flight, one of the innumerable Buddhist apsaras (angels) depicted in the fresco paintings of the Chih-lin-foo tung cave-temples at Tung-huang. A representation of the Tang period (c. 8th century) from cave no. 44, copied by Shih Wei-Hsiang. Weightless, she strikes the phi-pha lute (cf. Vol. 4, pt. I, p. 130) to celebrate the Buddha's enlightenment. When thus he attained to the definition of the Four Holy Truths and the Noble Eightfold Way, 'So glad the world was—though it wist not why—That over desolate wastes went swooning songs Of mirth, the voice of bodiless Prets and Bhuts Foreseeing Buddha; and Devas in the air Cried, 'It is finished, finished!'... (Light of Asia, p. 110).
For though the Taoists elevated the conception of 'making excursion on the winds' and 'riding on the immensity of the universe' to philosophical heights, the idea itself had grown out of that primitive Asian shamanism which was one of the roots of their school. As has been abundantly shown, both for the most characteristic forms in Central and Northern Asia, and for less typical varieties further afield, the shamanic rites of possession and ecstasy almost invariably involve an imagined journey through the skies or the heavens, an ascension, a magic flight. Hence the frequency of this theme among the poets of the Warring States and the Han. The obsession of flight is constantly found in Chinese Taoism; the hsien, or perfected adepts and immortals, were represented in Han times as having feathers or dressed in feathers; emperors and alchemists alike ascended to the heavens when they died, as we see from innumerable Taoist biographies, and down to modern times a literary term for Taoist priests was yâ kho—feathered guests'. The entry of Buddhism to China only intensified the traditions of flying beings, for the gandharvas and apsaras of Indian mythology, transformed outwardly by the Graeco-Bactrian focus through which they passed, winged their way to the east as the fei thien, where they gave rise, in the Wei frescoes of Tunhuang, to some of the most exquisite and beautiful representations in all Chinese art. One sees them in nearly every cave at Chhien-fo-tung; an example is given in Fig. 701. Meanwhile at the other end of the Old World, a parallel line of development had produced the angels of Hebrew and Christian tradition, and presumably also the broomstick-riding witches of medieval legend. We may take it that

* Reference may here be made to previous treatments of the Chinese contributions to the development of aeronautical science. The note of Giles (p) was superseded by the remarkable contribution of Laufer (a), whose main failing was a tendency to take the legendary material too seriously. Parallel accounts for the occident are those of Feldhaus (14) and Hennig (2). The history of aviation itself constitutes now a large literature, some helpful items in which will be cited later on, including the works of Brown (1); Hodgson (2) and Davy (1). Perhaps the most brilliant study available is that of Duhem (1, 2), but it ends at the time of Montgolfier. It is thus fortunately now complemented by the book of Gibb-Smith (1), for whose researches we were happy to make available a copy of the present section in draft form; his excellent work carries on the epic mainly from Montgolfier's time. Henceforward the reader may find it advantageous to have at hand some fairly up-to-date introduction to aeronautical science, such as that of Surpremier (1) or Sutton (1). Abundant illustrations in Dolfus & Bouché (1).

b The most recent summary of the material is the interesting book of Eliade (3). For the Buriat Mongols, Tungus, Yakuts, Ostjaks, etc., see pp. 175, 211 ff.

c Metraux, on the South American Indians (1).

* Instances will be given in a moment. Sometimes on a bronze mirror we see a pair of scholars riding through nothingness in an aerial car drawn by birds or dragons—as for example that figured by Bulling (9), pl. 66, and dated by her in the close neighbourhood of +70.

f Laufer (a), p. 27; de Harlez (4); L. Giles (6); Kaltenmark (2), pp. 15, 23, 125, 127.

i The reader is referred to the excellent monograph of Nagahiro Toshio (1) on the subject.

j Cf. Laufer (a), p. 9. The devils of Christendom, it seems, had membranous bat wings only from the mid +13th century onwards; earlier occidental representations give them the bird wings of fallen angels. Baltrusaitis (1), pp. 125 ff, has brought forward evidence suggesting that this development was due to Chinese influence. There are certainly close iconographic similarities between the flying devils of later Europe and the demons of earlier Taoist and Buddhist China.

1 翼 2 羽客 3 飛天
the whole complex goes back to imaginations of winged and flying genii in ancient Mesopotamia and Egypt. Its only connection with the present discussion is that it put ideas into people’s heads; ideas (for example) of aerial cars and their makers.

(1) LEGENDARY MATERIAL

Legends of self-propelled aerial cars, as opposed to flying vehicles drawn by winged animals and to unassisted personal flight in the style of Daedalus and Icarus, go back quite a long way in China, where they were associated with a mythical foreign person or people called Chi-Kung. In the text of the Shan Hai Ching (Classic of the Mountains and Rivers), which may represent Early Han ideas, these people appear as three-eyed hermaphrodites, but there is no mention of their aircraft. This appears suddenly in the works of two 3rd century contemporaries, Chang Hua and Huangfu Mi. The former, in his Po Wu Chih (Record of the Investigation of Things), says:

The Chi-Kung people were good at making mechanical devices (shih kang) for killing birds. They could also make aerial carriages (fei chhe) which, with a fair wind, travelled great distances. In the time of the emperor Thang, a westerly wind carried such a car as far as Yichow, whereupon Thang had the car taken to pieces, not wishing his own people to see it. Ten years later there came an easterly wind (of sufficient strength), and then the car was reassembled and the visitors were sent back to their own country, which lies 40,000 li beyond the Jade Gate.

Exactly the same story occurs in the Ti Wang Shih Chi (Stories of the Ancient Monarchs) of Huangfu Mi, who took Chi Kung to be a person, however, rather than a people. It is then echoed time after time, e.g. in the 5th century by Shen Yo in his commentary on the Bamboo Books and in the 6th by Chin Lou Tzu and the Shu Chi, naturally with variations. Long before the Sung it had become a literary commonplace. Some interest attaches to the iconographic tradition associated with the Chi-Kung story. The oldest picture we have of the flying car is in the rare encyclopedia I Yü Thu Chih (Illustrated Record of Strange Countries), compiled some time after +1392 and printed in +1489. It shows a rectangular chariot with two occupants and one curious wheel (Fig. 702) which appears to be toothed. If Giles (9) and Laufer (4) were right in interpreting this wheel (from the general drawing of the picture) as meant to be placed at right angles to the direction in which the car is flying through rolling clouds, then it adumbrates a propeller. If we knew only this picture such an identification would not perhaps be very convincing, but a variant occurs in some other sources.

From the direction of the flags it would perhaps seem more likely that the wheel was imagined as one of a pair of aerial cart- or paddle-wheels.
editions of the Shan Hai Ching which shows a clearly recognizable attempt by the artist to depict screw-bladed rotors (Fig. 703). We shall produce evidence a few pages further on that the possibilities of the helicopter top or 'Chinese top' for powered flight were appreciated as early as the 4th century, and it may be, therefore, that some of the medieval artists who depicted the car of Chi-Kung were able to imagine the applicability of such rotors to horizontal motion. It may, for instance, be significant that Thao Hung-Ching in the late 5th century refers to a 'wheeled flying car' (jei lun chxb) in which the Prince of the Eastern Sea (one of the Taoist hierarchy) made a round of visits.

Flying cars drawn by birds, griffons, or dragons were a separate tradition. It started in the Han and was strongly taken up by the Buddhists, several examples being present in the Tunhuang frescoes (Wei and Thang), cf. Fig. 704 a. The theme is also Indian and may well be connected with the concept of 'vehicles of the Gods' in that mythology, Garuda and the like, as well as with the chariots of the solar and planetary spirits which appear in occidental mythology also, e.g. Phaethon. Again, its origins are probably in Babylonia, as the Ena myth suggests.

What began as mythology was naturally transmuted into poetry as time went by. In the Section on

`a Notably the Shan Hai Ching Kuang Chu of 4669 edited by Wu Jui-Chien. It has been reproduced by Buxton (1); Dulmen (2) and others.

`b Other editions simply have an ordinary chariot with a dragon in an ox-yoke.

`c In Chen Kao (TT 1004).

`d Besides Bulling (8) just mentioned, Charanines (9) reproduced a relief dated + 85 (car with birds) and Harads & Komai (10) give a picture of a cloud chariot (gim chha) said to be by the Chin painter Ku Hui-Chih.

`e Especially coves nos. 296-311, with an important picture in no. 305.

`f Laufer (4), pp. 44 ff.

`g In Laufer (4), pp. 58 ff. It is a curious coincidence that just about the same time that Chang Hua and Huangfu Mi were writing about the aerial cars of the Chi-Kung people in China, the corpus of legends about Alexander the Great which bears the name of Pseudo-Callisthenes was coming to completion in Alexandria and Byzantium. One of the many interesting technical features in this 'Alexander-Romanze', as it is called, is the story that the great king embarked upon an aerial ascent in a car drawn by two or more large birds or griffons. After the 5th century the story became very popular in Western Europe and is often found on tapestries and misericords, as e.g. in the choir at Lincoln. For further information see Cary (1), pp. 9 ff., 38, 59, 134 ff. and 396 ff.; Millet (5); M. D. Anderson (1).`
astronomy we had occasion to refer to the accounts by numerous writers, ancient and modern, of imaginary flights through the sky to the moon or the sun. Lucian of Samosata (c. +160) is paralleled by Chang Heng (+135), in his Su Pe Fa, and indeed by Chhii Yuan earlier in the great Li Sse (c. -295), though they are romantic while he is allegorical.

(2) Thaumaturgical Artisans

From the writers and artists we must now pass to the thaumaturgical artisans. In the end, someone actually does something. The invention of a wooden kite (mu yuan) is ascribed in various ancient texts to Mo Ti (the founder of the Mohist school; d. -380), and to his contemporary Kungshu Phan, the famous engineer of the State of Lu. Whether it was in the shape of a bird is not clear. The character yuan continued to mean the bird which we call a kite (Milvus lineatus and related species), and when applied to the flying device was usually qualified by the adjectival word chih, paper. The Han Fei T’u book, written about -255, says:

Mo Tzu made a wooden kite (mu yuan) which took three years to complete. It could indeed fly, but after one day’s trial it was wrecked. His disciples said ‘What skill the Master has to be able to make a wooden kite fly!’ But he answered ‘It is not as clever as making a wooden ox-yoke peg’. They only use a short piece of wood, eight-tenths of a foot in length, costing less than a day’s labour, yet it can pull 30 tan, travelling far, taking great strain, and lasting many years. Yet I have worked three years to make this kite which has been ruined after one day’s use.’ Hui Tzu heard of it and said: ‘Mo Tzu is indeed ingenious, but perhaps he knows more about making yoke-pegs than about making wooden kites.’

This last remark may be taken as a hit at Mo Ti’s utilitarianism. A closely similar passage occurs in the Mo Tzu book itself, where Kungshu Phan is said to have constructed a bird from bamboo and wood, which stayed aloft for three days without coming down. Mo Tzu then engages him in a similar conversation about utilitarianism. In later times everybody knew these stories, which are repeated in Pao Phu Tzu, where Ko Hung, talking (c. +300) of people who made artificial things as good as real ones, speaks of Kungshu Phan’s kites swaying and somersaulting (mu yuan chih phien fan); in the +6th-century Shu I Chi (with elaborations); in the +12th-century Hsii Po Wu Chih; and in the Ming Hung Shu (Book of the Wild Geese).

a Vol. 1, p. 425.
b CSHEK (Hou Han sect.), ch. 52, p. 18, also Wen Hsian, ch. 15, p. 18 (tr. von Ziech (6), vol. 1, p. 217).
c B. K. Lim (1), pp. 28 ff., better Hawkes (1), pp. 28 ff.
d Vol. 9, cf. pp. 159 ff. above.
e Cf. p. 43 above.
f R314.
g Ch. 11 (ch. 34), p. 20, tr. acqu. Liao Wen-Kuei (1), vol. 2, p. 34.
h A weight equivalent to nearly 2 tons. Cf. the parallel passage, p. 313 above.
k Nei Phien, ch. 8, p. 266.
l Ch. 10, p. 76.

27. MECHANICAL ENGINEERING

PLATE CCLXXVII

Fig. 704b. Kite-flying at Haiquan (Allen & Wright).
of these had no doubt that the devices of Mo Ti and Kungshu Phan were kites, such as were flown by Sung children; and the fourth repeats what was probably a tradition (though other statements of it have not come to hand) that Kungshu Phan flew wooden man-lifting kites over the city of Sung during a siege, either for observation or as vantage-points for archers. If this should be considered unlikely for the 4th century, we shall nevertheless see in a moment that the military use of kites goes back a long way in Chinese history.

It is interesting to find that Wang Chung sought to discredit the traditions about Mo Ti and Kungshu Phan. about +83 the great sceptic wrote, in his Lun Heng. 5

The books of the literati talk about the great skill of Kungshu Phan and Mo Ti, saying that they carved from wood kites which flew for three days without coming down. That they made wooden kites which would fly is quite possible but the report that these did not alight for three days must be exaggerated. If such a thing had the shape of a bird, how could it fly for three days without resting? If it could soar, why only for three days? It might indeed have been equipped with some mechanism by which it was set in motion and continued to fly, so that it did not descend; in this case the story should say that it flew continuously, not only for three days. There is another report, too, that Kungshu Phan lost his own mother because of his skill. He constructed for her a wooden chariot and horses with a wooden driver, and when it was ready and she had taken her place inside, it sped away and never returned; thus she was lost to him. Since the mechanism of the wooden kite was (presumably) equally well constructed, it also should have continued to fly without stopping. But if the mechanism would function but a short while, and therefore the kite could not keep flying for more than three days; so also the wooden carriage should have come to a stop on the road within three days' journey, instead of carrying the mother completely away. The two stories (in fact contradict each other and) must be wide of the truth.

Wang Chung, therefore, though in captious mood, did not disbelieve in the possibility of artificial flight itself.

Another attempt at this seems to have been due to a younger contemporary of Wang Chung, namely Chang Henget, the great astronomer and engineer (+78 to +139). The main information we have about it comes from a book called Wen Shih Chuan (Records of the Scholars) by Chang Yin. 6 The passage, quoted twice in the Thai-Phing Yi Lan, 7 says that a wooden bird (mu nio) was made, with wings and pinions (yi ho), having in its belly a mechanism which enabled it to fly several li (fu chang yu shih chi, neng fei shu li). We are inclined to think that while the devices of Mo Ti and Kungshu Phan were kites, probably shaped roughly like birds, the invention of Chang Henget could have involved the air-screw of the helicopter top, though the only motive power available to him for such a purpose would have been springs. We certainly need not take too seriously the statement about the distance flown. In Chang

Heng's own writings there are references to the machine. In his essay on the use of leisure in retirement (Ying Hsien), 8 he says (+126):

Certain base scholars used to report evil of me to the emperor, but I decided not to worry about such affairs, or to learn their 'unique arts' (of civil service intrigue). Yet linked wheels may be made to turn of themselves, so that even an object of carved wood may be made to fly all alone in the air (mu tiao ya neng fei fa). With drooping feathers I have returned to my own home; why should I not adjust my mechanisms and put them in working order (so that I may fly still higher than before)?

Here then he seems to mention his own mechanical interests, using them as an analogy for his own situation out of office. 9

The chief Western parallel to all this is the 'flying dove' of Archytas of Tarentum, more or less of a Pythagorean, 10 whose floruit was in the neighbourhood of -380, making him a contemporary of Mo Ti and Kungshu Phan. Unfortunately, there is little reference to his model aircraft earlier than Aulus Gellius (fl. +130 to +180), the contemporary of Chang Heng and Chang Yin, who quotes from Favorinus of Arelates, 11 an older man (fl. +150), the report that it flew by means of some expanding vapour contained within it. 12 According to other accounts 13 a weight and pulley were involved, and while the object could fly it could not rise again after falling. This might suggest that a launching mechanism was used, after which the model went forward in gliding flight assisted by whatever power-source is implied by the reference to compressed air or steam. The invention seems much more in the Alexandrian manner, that of the time of Archytas, and it is distinctly curious, in view of the medieval expertise of China regarding gunpowder rockets, 14 that the jet-propulsion principle seems to be hinted at in the Greek and not in the Chinese sources. All the great Alexandrian mechanicians, however, were concerned with pneumatic devices—Ctesibius with pumps, 15 Heron with hydrostatic systems, organs, steam-jets and wind-power, 16 and

8. CSKH (Hou Han sect.), ch. 54, p. 85; Hou Han Shu, ch. 89, p. 37, with commentary; tr. auct.
9. On his see B. M. 5, p. 34; Heron's birds of wood also occur in the same essay, p. 34. It will be remembered that mention was made earlier of a lost writing of Chang Heng's, the Fei Niao Thu, 12 which can be dated at +114. In the Section on Geography (Vol. 2, pp. 518, 576) we considered the possibility that this work had something to do with map-making, though as the last character is uncertain, the real subject may have been calendrical science. A third possibility is that we should interpret the title 'Diagrams of the Mechanism of the Flying Bird'. As for the problem of what this was, the ornithopter type (flapping-wing aircraft) should not be forgotten. Leonardo's favourite obsession, it lasted as late as Lilienthal in the eighties of the last century, and many model forms of it have successfully flown (Gibbs-Smith (1), pp. 19, 21). But perhaps it will never be much use until the complexity of the wing-mechanisms approaches that of the wings of birds themselves (ibid. pp. 107 ff).
11. On his see B. M. 5, p. 34. It will be remembered that mention was made earlier of a lost writing of Chang Heng's, the Fei Niao Thu, 12 which can be dated at +114. In the Section on Geography (Vol. 2, pp. 518, 576) we considered the possibility that this work had something to do with map-making, though as the last character is uncertain, the real subject may have been calendrical science. A third possibility is that we should interpret the title 'Diagrams of the Mechanism of the Flying Bird'. As for the problem of what this was, the ornithopter type (flapping-wing aircraft) should not be forgotten. Leonardo's favourite obsession, it lasted as late as Lilienthal in the eighties of the last century, and many model forms of it have successfully flown (Gibbs-Smith (1), pp. 19, 21). But perhaps it will never be much use until the complexity of the wing-mechanisms approaches that of the wings of birds themselves (ibid. pp. 107 ff).
12. Neuctes Atticus, X, 13, in ff. 'Nam et plerique nobilium Graecorum et Favorinus philosophus memoriam veterum exsequiatisimus affirmatissime scripsuntur simulacrum columbae e ligno ab Archytas ratione quaedam disciplinae mechanicae factum volasse; etsi scelicit librettissimae suspensum et aura spiritus inclusa atque occultas consciturn.'
14. And even winged rockets, as we shall duly see in Sect. 30 below.
15. Cf., for example, (1), vol. 1, p. 184; Drachmann (2, 9).
16. Drachmann (2, 9).
Ctesibius and Philon with catapults (ballistae) involving the use of compressed air.

Conceivably, therefore, the account in Aulus Gellius may refer to a light model with glider wings launched from an inclined platform by a weight, and containing a space with a narrow backward-pointing outlet, through which a jet of steam could issue, as in Heron’s aeolipile. Alternatively the model was perhaps hung from a pole on a ‘whirling arm’ and driven round on the end of it. Thus if there is anything in these speculations, Mo Ti, Kungshu Phan and Chang Heng may have experimented, before the + and century was out, with two of the great components of modern aeronautical science, the kite-wing and the air-screw, while Archytas or the Alexandrians may possibly have used the jet principle.

(3) THE KITE AND ITS ORIGINS

Let us now examine more closely the chief material basis for Chinese aeronautical stories, the kite of wood, bamboo, and paper. Its use in Asia would seem to be exceedingly old, since anthropologists have found it in a wide distribution radiating south and east of China through Indo-China, Indonesia, Melanesia and Polynesia (Chadwick, i). In some parts of this area kite-flying was practised as a religious function connected with gods and mythical heroes. Often tabooed to women, the kite frequently carried, as in China, attachments such as strings or pipes to make musical or humming noises in the air. An important practical application was found for it in a method of fishing, to remove the hook and bait far from the sinister shadows of the boat and the fisherman. In China a game was played with kites.

As to the origin of the kite, Waley (15) suggested that perhaps it derived from an ancient Chinese method of shooting off an arrow with a line attached to it, so that both arrow and prey could be recovered by hauling it in— perhaps in the character for the primitive catapult (aerotonon). This Indonesian-Melanesian device has been monographed by Balfour (2); Anell (I) and Plischke (3). Its use in Asia would seem to be exceedingly old, since anthropologists have found it in a wide distribution radiating south and east of China through Indo-China, Indonesia, Melanesia and Polynesia (Chadwick, i). This suggests that it is a long established art form. The piecemeal development of the kite wing and the air-screw, and the resistance to women as depicted in agrarian society, may be at least partly due to the influence of these earlier devices.

In the pneumatic catapult (aerotonon) the cord was attached to levers themselves fixed at right angles to pistons fitting tightly into bronze cylinders. The act of stretching the cord compressed the air in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

This probably means that kites were used for signalling, and despatches sent out by carrier pigeons. Then in + 781 a loyal general of the Thang, Chang Phei, besieged in Lin-ming, signalled with kites to inform his fellow commanders of his predicament. In + 749 the Thang general Han Hsin said: ‘Only a few days ago the Chin (commanders) were using red paper lanterns (for emergency) to the army leaders at a distance. The officers of Hou Ching told him that there was magic afoot, or that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

The cord near the kite being covered with crushed glass or porcelain glued on, the players seek to make musical noises on the end. This is an autumn sport; Laufer (4), who saw this in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

The cord near the kite being covered with crushed glass or porcelain glued on, the players seek to make musical noises on the end. This is an autumn sport; Laufer (4), who saw this in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

We shall shortly find an unexpected, but more acceptable, function for this method in the history of technology, Sect. 258 below.

The cord near the kite being covered with crushed glass or porcelain glued on, the players seek to make musical noises on the end. This is an autumn sport; Laufer (4), who saw this in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

We shall shortly find an unexpected, but more acceptable, function for this method in the history of technology, Sect. 258 below.

The cord near the kite being covered with crushed glass or porcelain glued on, the players seek to make musical noises on the end. This is an autumn sport; Laufer (4), who saw this in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

The cord near the kite being covered with crushed glass or porcelain glued on, the players seek to make musical noises on the end. This is an autumn sport; Laufer (4), who saw this in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

We shall shortly find an unexpected, but more acceptable, function for this method in the history of technology, Sect. 258 below.

The cord near the kite being covered with crushed glass or porcelain glued on, the players seek to make musical noises on the end. This is an autumn sport; Laufer (4), who saw this in the cylinders, and this, upon the pulling of the trigger mechanism, assured the return of the cord to its original position and the despatch of the arrow or other projectile. There is no evidence, however, that the machine was anything but a military curiosity, or even that messages were being sent, and ordered archers to shoot at the kites. At first they all seemed to fall but then they changed into birds which flew away and disappeared.

We shall shortly find an unexpected, but more acceptable, function for this method in the history of technology, Sect. 258 below.
signalling) and now they are making use of paper kites. If the generals think they can defeat the enemy by such methods they will find it very difficult.4

Thus we have an early instance of a 'leaflet raid', for the messages were simply propaganda urging the captured Chin soldiers to rise and fight their way back to their own side.5 These may be enough to show the continual military uses which were found for kites in China, and this perhaps lends additional plausibility to the original association with Mo Ti, the interest of whose disciples in military technique has been emphasised more than once elsewhere in this book.6

That kite-flying as a pastime also goes back a long way is evident too. One sees pictures of it in the Tunhuang frescoes from the Wei period onward.7 Literary descriptions occur in +10th-century books such as the Tao Chi Li That (Talks at Fisherman’s Rock),8 and frequently in the Sung and Ming.9 Though the practice of fitting Aeolian harps on kites may have started in the Thang or before, it is closely associated with the name of a famous maker of kites in the +10th century, Li Yeh.10 Those of bamboo with one thin bamboo string are called feng chhin; ‘wind-psalters’; those with seven silk strings fixed across a gourd-shaped framework are called 9o0 chhin, ‘hawk-lutes’.11 Sunge references to this practice are numerous.12 In a cognate custom, whistles (ko ling or shao tau) of bamboo, gourd or horn, are fixed to the tail-feathers of pigeons.13 This is certain for the Sung period and not likely to have started later than the Thang.14

1. Chin Shih, ch. 113, p. 188, tr. succt.
2. The slightly modified quotation in the Thang Chien Kuang Mu, pt. 3, ch. 19, p. 500, is translated more than a century ago by St Julien for Reinhard & Favé (4), p. 288. Misunderstanding the nature of the writings carried by the kites, he supposed them to be magic charms, and added a patronising footnote about similar cases of Chinese credulity in the Opium Wars. But an independent and believed more than a century ago by Bodde (12), p. 22; Wang Shih-Hsiang (I).
3. One is again Chinese common sense was turned by sinologists into nonsense. Feldhaus, for his part, foresaw in this the historical relation between the kite, the aeroplane and the sailing-carriage. The Chinese origin of the latter has already been described; and the kite might almost be considered as a detached sail of the sailing-carriage. At various times efforts were indeed made, not without success, to tow land-vehicles by means of kites, the most famous being that of Pocock in 1827.16

5. Ibid. p. 195.
7. Moule (10), pp. 105, 111; cf. also the special article of Hsi Chia-Chen (I).
8. For example, Tu Hsing Tao Chi (±1796), ch. 1, p. 98, or a reference in a poem by Fan Chih-Tung-Ta, +1180 (Shih Hu Tahu, p. 130). The Wu Lin Chiu Shih by Chou Mi (about +1270) lists Aeolian harps for kites as being on sale in Southern Sung Hangchow, and mentions the names of two men, Chou 26 and Lin Phien-Thou, who were renowned for making them (ch. 6, pp. 156, 503). They are also discussed in the Ming book Hsin Hu Ch’un (Enquiries and Suggestions about Popular Customs) by Chien I.15 Cf. Wu Nan-Hsin (4), p. 168.
9. Moule (10), p. 165. These can fill the air above a Chinese city with delicious sounds, as I know from personal experience, well remembering that strange sky-music which one used to hear in the lanes of the Kweichow town of Anshan—as well as other places in China. Cf. further Laufer (4), p. 72, 280; Bodde (12), p. 82; Wang Shih-Hsiang (1).
10. Moule’s estimate of date was too cautious; he would have been delighted to see the pigeon-whistles on sale in his own Hangchow in the Southern Sung, for they are indeed listed (as po-ho ling) among the special commodities in Wu Lin Chiu Shih, ch. 6, p. 156.

A kite is supported upon the wind by a combination of three forces: its weight, the resistance of the air, and the compensating tension of the string. According to the strength of the wind the kite moves in a great circle of which the string is the radius, rising when the wind freshens and falling to a vertical position in which it can no longer remain suspended when the wind falls. The operator can then, by holding the string taut and running, keep the kite airborne during the calm period by providing sufficient flow under its plane surfaces, just as the artificial airstream lifts the true powered aeroplane. In the 18th century, some of the greatest European mathematicians devoted attention to the theory of kites (e.g. Newton, Desaguiler, d’Alembert, Euler). But already, during the centuries of existence of the kite in China,
We now approach the most important part of this discourse, the examination of the role which ancient and medieval Chinese aeronautical devices played as part of the basis for the vast modern development of aerodynamics and aviation. The kite was unknown in Europe until the end of the + 16th century, when it was brought back by the early travellers, is well appreciated. 'It makes its début', said Lauffer, 'as a Chinese contrivance, and not as a heritage of classical antiquity.' This does not mean that the kite was unknown in the Islamic world; it was probably not new there in the + 9th century when Abū 'Uthmān al-Jāhiz described the flying of kites 'made of Chinese carton and paper' by boys. But in Europe the first description of kites occurs in Giambattista della Porta's *Magna Naturalis* of + 1586. A few decades later they were employed in England for the letting off of fireworks in the air, as back by the early travellers, is well appreciated. (It makes its basis for the vast modern development of aerodynamics connected with the search for suitable glider and aeroplane wings. In this purpose that John Bate describes them in his *Mysteries of Nature and Art* (+ 1634). A few decades later they were employed in England for the letting off of fireworks in the air, as it is for this purpose that John Bate describes them in his *Mysteries of Nature and Art* (+ 1634). Athanasius Kircher, the Jesuit, whose relations with the China Jesuits were close, and who himself wrote on China, also refers to them in the *Ars Magna Lucis et Umbra* (+ 1646), and states that in his time kites were made in Rome of such dimensions that they were capable of lifting a man.

All this is highly relevant to the developments of the 19th century. The study of kites did indeed in due course confirm experimentally their capacity to carry human aeronauts aloft, but it was much more important in another way, because closely connected with the search for suitable glider and aeroplane wings. In 1804 Sir George Cayley constructed a successful model aircraft with plane (flat) kite wings and a tail rudder-elevator consisting of two plain kites intersecting at right angles. This was 'the first true aeroplane in history.' Plane surfaces attached to whirling arms were also used by him in the same year for his fundamental physical experiments on air-

a (4), p. 37. So also Plischke (2) in a later careful re-examination of the matter.

b In the Book of Animals (Kitāb al-Hayawān); Lauffer (4), p. 37; Hitti (3), p. 38a.

c Bk. 20, ch. 10 (English ed. + 1585, p. 409), *flying Swale*. In the + 16th-century descriptions it is not always easy to distinguish the true kite from the hot-air dragon-balloon which had been popular earlier (cf. p. 397 below), but Johann Schmidlap (+ 1566) and Johann Mathesius (+ 1562) were probably talking about the oiler and not the former. Della Porta was quickly followed by Jacob Wecker (+ 1592) and Daniel Schwenter (+ 1630). The latter talks of kites which could be fitted on the kite as well as fireworks, a distinctly Asian (if not specifically Chinese) trait.

d Bate gives a picture of kite-flying, reproduced in Duhem (2), fig. 65; Gibbs-Smith (1), pl. 10; but the first European illustration was that of Hellenius (+ 1616), in an engraving of Middleburg in Holland. As Plischke (2) points out, the fact that the kite appears first in Holland and England suggests that it was brought to Europe by Dutch or English merchants; if the transmission had been Portuguese we should expect it to have occurred half a century earlier. Neither della Porta nor Bate used the word 'kite', and Gibbs-Smith (1) points out that the kite first appears in Holland and England suggests that it was brought to Europe by Dutch or English merchants; if the transmission had been Portuguese we should expect it to have occurred half a century earlier. Neither della Porta nor Bate used the word 'kite', and Gibbs-Smith (1) points out that the kite should have been chosen out of all other possible bird names. But in fact the English name 'kite' is just a direct translation of the old Chinese term. The words used in other European languages, e.g. Drache, cerf-volant, etc., could also have been derived from the different animal forms so often given by the Chinese to their kites. Thus the term 'kite' points rather clearly to China as the source of the transmission.

e See Cayley (1), p. 26. For his biography (+ 1773 to 1857) see Hodgson (1, 3); Pritchard (1). He was not to be confused with the Cambridge mathematician, Arthur Cayley (1821-95).

f Gibbs-Smith (1), pp. 19, 162, 199, and pl. II (b); Needham (4a).

resistance, angle of incidence, and other aerodynamic phenomena. But the study of the wings of birds had long been proceeding in parallel, and Cayley himself had realised as early as + 1799 that 'to make a surface support a given weight by the application of power to the resistance of air' was the basic problem. Any aeroplane must have, he clearly saw, a main supporting wing, with a tail-unit to exercise control; this we know from a dated silver medallion engraved by him, and from contemporary drawings. His pioneer design, in which these features were incorporated, is regarded as 'the first illustration in history of an aeroplane of modern type'. Moreover, it embodied the discovery of the aerofoil. Although Cayley understood that a cambered wing gave better lift, he did not feel compelled to build it into his full-size machines, for in his model gliders he relied on the production of a curved surface by the airflow itself, acting as it did on his fabric wings which had spars only along the leading and trailing edges. But many of his drawings show the camber very clearly. Then, within fifty years, the conviction grew that one must imitate the cross-section of avian wings rather than the stretched paper of the kite, and double-surfaced wings with different upper and lower profiles were introduced. In this way streamlined sections were attained which combined the advantages of the convex upper surface with those of a nearly flat lower one, the former reducing air-pressure by accelerating the speed of flow and so creating an upward suction; the latter obviating concavity turbulence and compressing the air by decreasing its flow speed. In later years Cayley himself carried the aerodynamic principle further in successful models (+ 1819, + 1829 and + 1832) and full-scale passenger-carrying monoplane gliders (+ 1849 and + 1853), which however continued to show traces of the plane kite both in their wings and in their rudder-elevator tails. He had already for many years mastered lateral stability by means of the dihedral angle at which he set his wings, and longitudinal stability by means of the tail-plane which he fitted. The majority of those who experimented with model flying-machines in the second half of the century adopted curved aerofoil shapes of one kind or another for their wings.

But still the paper bird of China had not exerted its full influence upon aeroplane
design, for in 1893 the Australian Lawrence Hargrave invented the box-kite for greater stability and lift, normally two cells connected by booms to form a tandem frame, and it was this which inspired most of the biplane builders of the first decade of the present century. Thus although the plane (flat) kite was not by any means the only influence on glider design, there was justification enough for the use of the term 'power-kite' for some of the aeroplanes of this period, and for its legacy in common speech today. Meanwhile from Cayley's time onwards the study of suitable power-sources was steadily progressing, so that at last the tow-ropes and falling gradient could be replaced by energy generated within the aircraft itself. For this the invention of the air-screw or propeller was an absolute essential, and in a moment we must turn to consider what its origins were. Before proceeding to this, however, let us leap backward in time some fifteen centuries, and pause to notice a very remarkable passage, on aerodynamics one might almost say, written by the great Taoist adept and alchemist Ko Hung about +320. This is what we find in the Pao Pfa Tzu:

Someone asked the Master about the principles (tao) of mounting to dangerous heights and travelling into the vast inane. The Master said... 'Some have made flying cars (fei chih) with wood from the inner part of the jujube tree, using ox leather (straps) fastened to retarding blades so as to set the machine in motion (huan chien + yin chi chi). Others have had the idea of making five snakes, six dragons and three oxen, to meet the "hard wind" (hang (feng)) and ride on it, not stopping until they have risen to a height of forty li. That region is called Tai Chhing, (the purest of empty space). There the chhi is extremely hard, so much so that it can overcome (the strength of) human beings. As the Teacher says: "The kite (bird) flies higher and higher spirally, and then only needs to stretch its two wings, beating the air no more, in order to go forward by itself. This is because it starts gliding (lit. riding) on the 'hard wind' (hang chi chhi)." Take dragons, for example; when they first rise they go up using the clouds as steps, and after they have attained a height of forty li then they

* Cf. Gibbs-Smith (1), pp. 30, 73, 169, 318 and pl. v (c); Needham (42).
* Cf. fn. (c) on p. 488 above.
* Cf. Vivian & Marsh (1), p. 190. As late as 1910 expositions of flying theory, such as that of Ferris (1), generally started by considering kites. The book of Chanute (1) gives the fullest account of the influence of kites on glider design.
* Nam Chih, ch. 13, pp. 120 ff.; Tao Tsung ed., pl. 133 ff.; ch. TPFYL, ch. 15, p. 49 (abridged).
* Tr. auct.
* The first sentences of Ko Hung's reply concern the use of drugs which will make the body ethereally light, and he also says a few words about stilt.
* Some texts read huan, disposed in a ring, but the technical sense is not much altered thereby.
* This phrase might also be translated "rudding wind" or "violent wind", or alternatively "wind from heaven", the idea of speed, it is important to note, is contained implicitly in the expression 'hard wind'.
* The distance which Ko Hung happens to mention would be equivalent to about 65,000 ft. Today meteorological balloons commonly reach this height, and manned balloons have been as high as 100,000 ft. About 40,000 ft. is an operational level for stratosphere flying. Rockets, of course, have reached far out beyond Ko Hung's wildest dreams, but this section was first written before the sputnik and cosmic-vehicle age had dawned.
* A reference to Chuang Tzu.
Fig. 706. The 'bamboo dragonfly' (chu shing-thing) or Chinese helicopter top, studied by Launoy & Benezon in +1784 and by Cayley in +1792 (drawing by Cayley in 1805). A bow-drill spring rotates two feather air-screws (a, b) which carry the top high up into the air.

air-current, which we mentioned only a few pages above (p. 566). The use of a similar horizontal vane-wheel to work a roasting-split, often found in the great kitchens of Europe, was apparently not known in East Asia. All these were essentially rotors with vanes (yeh lun), moving in relation to currents of air parallel with their axes.

One of these was sketched by Leonardo about +1485; cf. Duhem (2), fig. 42a; Beck (1), fig. 693; Uccelli (1), fig. 37. As we noted on p. 124 above, this was an elegant automation since the hotter the fire the faster the roast would spin. In the +16th century it was frequently described (cf. Beck (1), fig. 753; Uccelli (1), figs. 38, 406). In +1699 Branca proposed (pl. 2) to use the ascending air-current from a forge to work a small rolling-mill by means of reduction gearing, but he employed a vertical paddle-wheel, not a zoetrope vane-wheel. Conversely, there was a horizontal wheel in his famous Aeolian stamp-mill (pl. 2), but again it was a paddle-wheel 'turbine' and not a vane-wheel. Still, wind-wheels were certainly in the air at this time. Branca's illustrations are often reproduced (e.g. Uccelli (1), figs. 41, 42; Schmitals & Klemm (2), fig. 46; Vowles & Vowles (3), p. 146). Lynn White (5, 7) well appreciates the connection of the spit vane-wheel with the marine screw and the aeroplane propeller. He is inclined to place it in a group of Sino-Tibetan inventions adopted by Europe in the +15th century, associating it with the horizontal windmill (p. 569 above), the ball-and-chain flywheel device (p. 91 above), and also with such cultural borrowings as the 'Dance of Death' motif (cf. Baltrusaitis, 1). If Gibb-Smith (7) is right in his identifications, the helicopter top must be added to the list. Lynn White further makes the interesting suggestion that this 'cluster of transmissions' may be connected with the slave-trade which brought thousands of Tartar domestic servants to Italy in medieval times, and which reached its height by the middle of the +13th century (cf. Vol. 1, p. 189; further references in Lynn White, 5). On p. 544 above and in Sect. 30d we define a 'Twelfth-century Cluster' and a 'Fourteenth-century Cluster' of transmissions. Both were more important than this fifteenth-century one, but the second and third may well be due, at least in part, to the remarkable social movement of which Lynn White reminds us.
the helicopter top ad-aerially because of the motion imparted to it by the cord, the zoetrope and the prayer-wheel ex-aerially because of the ascending current of hot air. But since the aeroplane propeller had to be vertically mounted, not only to bring about motor transportation (as the marine screw propels the ship), but to assure the airborne character of the flying-machine itself by driving the wings forward and so providing the necessary airstream lift, it was likely to spring from the European rather than the Chinese engineering tradition. For time after time in the present book we have shown that Chinese technicians preferred horizontal mountings and Westerners vertical ones.

The role of the vertical windmill in the generation of the aeroplane propeller has been particularly well appreciated by Gibbs-Smith. Some twenty years before the practical work of Launoy and Cayley, an obscure French mathematician, Alexis Paucton (1), revived (it seems quite independently) the idea of Leonardo for a helicopter screw, but he added to his proposed aeronef or ‘pterophore’ an air-screw for horizontal motion—both being of the continuous Archimedean or marine variety (1768). Significantly, he entitled his book a contribution to the ‘theory of windmills’. But it seems that Vallet was the first to try out a vertical ad-aerial air-screw in practice when in 1784 he attempted, fruitlessly, to move a river-boat by a hand-operated propeller. The same year however saw a successful ascent by Blanchard and Sheldon at Chelsea in a balloon equipped with a single hand-driven propeller, most significantly called a ‘moulinet’. The effect it produced was of course minimal, and Blanchard later suggested that steam power would some day be employed to drive it. Also in 1784 Meusnier proposed that an elongated balloon should be fitted with three propellers in series, thus anticipating the dirigible. But this took a long time to develop, and it was 1843 before the propellers of Monck Mason’s clockwork-powered model airship carried it the length of a London hall. Though full-size dirigibles became feasible by the end of the ensuing decade, another development in this same year was even more significant for the future, namely the design of W. S. Henson for an ‘aerial steam carriage’ which fitted propulsive air-screws to a fixed-wing aeroplane.

The transition from the spatial position of the helicopter rotor to that of the aeroplane propeller had however already been made (at the ex-aerial level) in China. Liu Thuang, in his early 17th-century Ti Ching Ching Wu Lieh (Descriptions of...
failure is easier to understand in a culture which remained just for joy on cambered wings exactly at the time when the aeroplane, with all its \((cf. \ \text{folded-paper type. This picture will be found in} \ \text{naissance found none in the painting of this kind by} \text{present century these were quite common at Nanking.} ^e \text{Such ex-aerial wheels rotating Chinese artists' conceptions of aerial voyages in the novels which they} \text{makers proceeded to fit Liu Thung's wind-wheels to children's kites. Early in the} \text{technology had already prepared the way for those vertically mounted rotary roarsers which would one day send the wings of aircraft tearing through the heavens. At an earlier stage} \text{we saw how advanced the medieval Chinese} \text{technicians were in their construction of rotary fans, notably the winnowing-fan used in agriculture, but also} \text{mounted rotary roarsers which would one day send the wings} \text{which the screw and worm were, as we have seen} ^p. 124 \text{above} \text{vertically mounted, were also used (in strange echo of Heron) to do work as lugs by depressing a lever and beating a drum (see inset). There is room for some} \text{and although they gave radial rather than axial} \text{of course vertically mounted, \text{were also used (in strange echo of Heron) to do work as lugs by depressing a lever and beating a drum (see inset). There is room for some} \text{vertically mounted just as propellers would one day be, and although they gave radial rather than axial flow, the rotary blowers of China preceded those of Europe by some fifteen centuries.} \text{Perhaps the most extraordinary prefiguration occurred when the Chinese toy-makers proceeded to fit Liu Thung's wind-wheels to children's kites. Early in the} \text{present century these were quite common at Nanking.} ^c \text{Such ex-aerial wheels rotating just for joy on cambered wings exactly at the time when the aeroplane, with all its} \text{as wings, and ordered them to fly down to the ground (from the top of the tower). This was called a 'liberation of living creatures'.} ^f \text{All the prisoners died, but the emperor contemplated the spectacle with enjoyment and much laughter.} ^e \text{This was by no means the first time in Chinese history that trials had been made of wing-beating or ornithopter flight. As far back as the beginning of the} \text{there had been a well-authenticated attempt to imitate avian motions, though the} \text{was to be pardoned. We have already come across another instance of the use of prisoners in experiments} \text{time after writing these lines, I was interested to find a remark by Wu Nan-Hsien (1), p. 169, that in China the kite began by being applied to war-like purposes and ended as a children's toy. With} \text{it has been said that man-lifting kites are shown in medieval Chinese paintings (Duhem (1),} \text{there was a well-authenticated attempt to imitate avian motions, though the} \text{and fishes were let go after being caught. But pre-} \text{It has been said that man-lifting kites are shown in medieval Chinese paintings (Duhem (1), p. 201), but this we have not been able to confirm.} ^c \text{Ch. 25, p. 108, tr. Balazs (8), p. 56, eng. auct.} ^f \text{This was one of three at the north-west of the capital (Yeh, near modern Lin-chang, north of the} \text{It was the tallest of them, about 100 ft. in height.} ^b \text{A Buddhist practice for acquiring merit; birds and fishes were let go after being caught. But pre-Buddhist also, and Lien Tai cannot be dated thereby (cf. Bodde, 19).} ^d \text{The commentary in \text{T'I Ch'iao, ch. 157 (p. 518a) says that any prisoner who descended successfully was to be pardoned. We have already come across another instance of the use of prisoners in experiments} \text{for testing alchemical elixirs about} \text{Some ex-aerial wheels rotating just for joy on cambered wings exactly at the time when the aeroplane, with all its} \text{terror of his contemporaries constructed such large instruments, there would have been really nothing to prevent it. For people expert in kite-flying the possibility was obvious.} ^e \text{And it happens that we do possess from a time not long after that of} \text{but the emperor contemplated the spectacle with enjoyment and much laughter.} ^e \text{This was by no means the first time in Chinese history that trials had been made of wing-beating or ornithopter flight. As far back as the beginning of the} \text{there had been a well-authenticated attempt to imitate avian motions, though the} \text{was to be pardoned. We have already come across another instance of the use of prisoners in experiments} \text{time after writing these lines, I was interested to find a remark by Wu Nan-Hsien (1), p. 169, that in China the kite began by being applied to war-like purposes and ended as a children's toy. With} \text{it has been said that man-lifting kites are shown in medieval Chinese paintings (Duhem (1),} \text{there was a well-authenticated attempt to imitate avian motions, though the} \text{was to be pardoned. We have already come across another instance of the use of prisoners in experiments} \text{time after writing these lines, I was interested to find a remark by Wu Nan-Hsien (1), p. 169, that in China the kite began by being applied to war-like purposes and ended as a children's toy. With} \text{it has been said that man-lifting kites are shown in medieval Chinese paintings (Duhem (1),}
One man said that he could fly a thousand li in a day, and spy out the (movements of the) Huns. (Wang) Mang tested him without delay. He took (as it were) the pinions of a great bird for his two wings (ta niao wo wei liang t'ie), his head and whole body were covered over with feathers, and all was interconnected by means of (certain) rings and knots (huan niu). He flew a distance of several hundred paces, and then fell to the ground. (Wang) Mang saw that the methods could not be used, but wishing to gain prestige from these (inventors) he ordered that they should be given military appointments and presented with chariots and horses, while waiting for the army to set forth.

This attempt, then, forms an early Chinese link in the long line connecting the Daedalus legend with Meerwein and even with Lilienthal. Ko Hung must certainly have known about it. One feels some difficulty in drawing any sharp distinction between the wing-beating 'tower-jumpers', as modern historians of aeronautics like to call them, and the eventually successful gliders, for some of the former (no doubt fortuitously) glided long enough before landing to survive. So although the first true glider flights were those of Cayley's passengers in 1852 and 1853, the idea has very ancient origins. After all, birds themselves glide on motionless planes as well as beating their wings in their ascent. We must therefore place Wang Mang's pioneer, as well as the back-room experts of Kao Yang, in that line of temerarious bird-men which runs through the Saxon monk Aethelmaer in the +11th century to the numerous experimenters of the +17th and +18th of which Meerwein was one of the most intelligent. The wild youth of the ornithopter endeavour ended with the Montgolfier period; whether it has a future, who can say?

But there was something more interesting in the wicked emperor's proceedings of +559 than the crude imitation of birds. The Ts'ao Chihs Thung Chi'en (Comprehensive Mirror of History for Aid in Government), drawing upon other contemporary official sources, says:

Kao Yang made Thopa Huang-Thou (Yuan Huang-Thou) and other prisoners take off from the Tower of the Golden Phoenix attached to paper (kites in the form of) owls (ko chihng chih chih t'ie fei). Yuan Huang-Thou was the only one who succeeded in flying as far as the Purple Way, and there he came to earth. But then he was handed over to the President of the Censorate, Pi I-T'ien, who had him starved to death.

Here the context was the destruction of the Thopa and Yuan families which had been the ruling houses of the Northern, Eastern and Western Wei dynasties. In this, the last, year of the tyrant's reign, there had been a massacre of no less than 721 surviving members of these families, and Yuan Huang-Thou was himself a prince of the Wei. For us of course the technical aspects are the main interest, and it is quite remarkable that in these experiments kites were used. Since the imperial road called the Purple Way was 5 li (about 25 km.) north-west of the city, the prince succeeded in 'riding on the hard wind' for a considerable distance. Moreover, the circumstances show that what was going on was not quite simply a cruel emperor's sport with prisoners, for the cables of the kites must have required man-handling on the ground with considerable skill, and with the intention of keeping the kites flying as long and as far as possible.

Thus we have one circumstantial account of man-lifting kites within a couple of centuries of Ko Hung's time, and others are probably still buried in the texts. By the time when Marco Polo was in China (+1285) man-lifting kites were in common use, according to his description, as a means of divination whereby sea-captains might know whether their intended voyages would be prosperous or not.

And so we will tell you [he says] how when any ship must go on a voyage, they prove whether her business will go well or ill. The men of the ship will have a hurdle, that is a grating, of withies, and at each corner and side of this framework will be tied a cord, so that there they will be tied to the other end to a long rope. Next they will find some fool or drunkard and they will bind him on the hurdle, since no one in his right mind or with his wits about him would expose himself to that peril. And this is done when a strong wind prevails. Then the framework being set up opposite the wind, the wind lifts it and carries it up into the sky, while the men hold on by the long rope. And while it is in the air the hurdle leans towards the way of the wind, they pull the rope to them a little so that it is set again upright, after which they let out some more rope and it rises higher. And if again it tips, once more they pull in the rope until the frame is upright and climbing. It will then find some fool or drunkard and they will bind him on the hurdle, since no one in his right mind or with his wits about him would expose himself to that peril. And this is done when a strong wind prevails. Then the framework being set up opposite the wind, the wind lifts it and carries it up into the sky, while the men hold on by the long rope. And while it is in the air the hurdle leans towards the way of the wind, they pull the rope to them a little so that it is set again upright, after which they let out some more rope and it rises higher. And if again it tips, once more they pull in the rope until the frame is upright and climbing, and then they yield rope again, so that in this manner it would rise so high that it could not be seen, if only the rope were long enough. The augury they interpret thus; if the hurdle going straight up makes for the sky, they say that the ship for which the test has been made will have a quick and prosperous voyage, whereupon all the merchants run together for the sake of sailing and going with her. But if the hurdle has not been able to go up, no merchant will be willing to enter the ship for which the test has been made, because they say that she could not finish her voyage and would be oppressed by many ills. And so that ship stays in port that year.

a There was probably some magic in this; cf. p. 369 and what has been said about the feathered immortals in Vol. 2, p. 141. We can be sure that Wang Mang's inventor was a Taoist.

b Hinges and pivots are also implied.

c C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, architect to the prince of Baden, built and tested a flying-machine in 1781; see Chih Tien, vol. 1, p. 90, note 59. See also C. F. Meerwein, arch
Surely this was one of the strangest sights to be seen in the fabled 13th-century ports of Zayton and Khanfu.

The wonders of modern aviation have thrown kites so much into the background that it is generally quite forgotten that they could ever supply sufficient lift to carry human beings into the air. Yet this development played its part in the history of aviation. A number of tentative trials of this kind took place from the time of Pocock about 1825 onwards (Simmonds; Biot; Cordner; Wise, etc.), but full success was not attained until the work of B. F. S. Baden-Powell in 1894. Here a turning-point was the invention of the Australian Hargrave in the nineties, who (as we have seen, p. 582) devised the box-kite of rectangular cells, and thereby produced one of the precursors of the biplane. By 1906 it was possible for a man to remain for an hour at a height of 2600 ft. suspended by a train of kites. The significance of this was great. Only a few years before, Alexander Graham Bell had written: 'a properly constructed flying-machine should be capable of being flown as a kite, and conversely, a properly constructed kite should be capable of use as a flying-machine when driven by its own propellers'.

Lastly, what is to be said of Ko Hung's 'hard wind'? From the examples he gives of the gliding and soaring of birds, it is obviously nothing else than the property of 'air-lift', the bearing or rising of the inclined aerofol subjected to the forces of an airstream, whether natural or artificial. It will not be forgotten that we have met with the 'hard wind' of the Taoists before (Vol. 3, pp. 222 ff. above), in the astronomical Section, where its role as a natural cause of planetary or stellar motion came in for remark. It was there suggested that someone had observed the high resistance of a strong current of air from the orifice of a metallurgical tuyere. But Ko Hung applies the concept very clearly to gliding flight, as indeed had Chuang Chou before him, when he wrote about the wings of the giant pheng bird being airborne upon the density (chi hou) of the wind beneath. Ko Hung ends by attributing to him the idea that flying things rise up 'using the clouds as steps', which may be more than a poetic metaphor, hinting as it does at the existence of those ascending air-currents which modern glider pilots have learnt so well to utilise. Something of these could probably have been observed in the behaviour of smoke, and particularly of the mists and clouds.

8 Nothing need be said here of that other great service which the Chinese kite performed for modern science in the hands of Benjamin Franklin when in +1742 he identified the electricity of the lightning flash with that of the Leyden jar. Three years earlier Alexander Wilson had used a battery of kites to carry thermometers to a height of 3000 ft. to determine the temperature of the clouds (Pledge (i), p. 317).

9 Descriptions in Hodgson (2); Vivian & Marsh (1), p. 56; Duhem (1), p. 201; Gibbs-Smith (1), pp. 12, 16, 46, 162.

10 Gibbs-Smith (1), pp. 34, 162. Great improvements were made by S. F. Cody from 1901 onwards (cf. p. 96).

12 Vivian & Marsh (1), p. 189. Figure 708 shows a kite-train bearing aloft a military observer at the Rheims meeting of 1909. On this cf. Gibbs-Smith (1), p. 247; Broke-Smith (1).

13 See Vol. 2, p. 51 above. After all, the sugars had been watching bird flight for a very long time (Vol. 2, p. 36 above). But they had been doing so in the West too.
on the lofty mountain heights which the Taoists delighted to frequent. And so we end our study of one of the most remarkable (indeed prophetic) ancient texts on the prehistory of aviation which any literature can show.

(5) The Birth of Aerodynamics

Let us now attempt to place all this in correct perspective with regard to the growth of aeronautical science and practice. Leaving aside for the moment the development of aerostatic machines (the balloon was really a product of 18th-century pneumatic chemistry), and of jet-propulsion (for we must treat of the Chinese invention of rockets elsewhere, in Section 30), we may concentrate attention upon wings or aerofoils, and air-screws. Man’s attention (at least in the West) was attracted first by the beating of the bird wing, its gliding properties being neglected; hence Leonardo’s main interest was, as we have seen, in flying-machines on the flapping or ornithopter principle. The decisive contribution of Alfonso Borelli, in his De Motu Animalium of 1681, was to show that human muscles were anatomically and physiologically incapable of providing motive power for unaided winged flight with the materials then available, and there the matter rested. But the idea of beating wings was very tenacious. The first conception of powered flight still envisaged them, and so did the first dissociation of the bearing function from the propulsive function. It was George Cayley at the beginning of the 19th century who broke completely with the old obsession, and became the precursor of Lilienthal and the Wrights rather than the successor of Aethelmaer and Leonardo. As we know from the Cayley papers, he was the first to analyse the aerodynamic properties of the atmosphere by physical means, the first to lay down the scientific principles of heavier-than-air flight, the first to experiment with a captive plane at various angles of incidence, the first to make model and full-size glider aeroplanes with rudders and elevators and to test them in free flight, the first to discuss streamlining and the ‘centre of pressure’ of a surface in an air-stream, the first to realise that curved wings give a better lift than flat ones, and to recognise the existence of a low-pressure region above them, the first to suggest multiple superimposed wings, and the first to state that the lift of a plane varies as the square of the relative air-speed multiplied by the density. All this was done in a single decade, between 1799 and 1810. How great a pioneer Cayley was may be appreciated

a Cf. the observation of Cotte in 1785 that certain cloud layers might move in directions quite different from that shown by the weathercock at ground level (Duhem (1), p. 188). See also Scorer (1) on lee waves in the atmosphere.

b Cf. pp. 573, 583 and Hart (1, 3, 4).

c John Wilkins, in his Mathematical Magick of 1648, suggested the use of a steam-engine, Bk. 2, chs. 6-8.

d Tito Livio Buratti, a Venetian engineer in the service of the King of Poland, built in 1647 at Warsaw a model aircraft which had four fixed glider wings as well as others which were made to beat; cf. Duhem (1), pp. 161 ff.

* We speak here of Leonardo da Vinci theoretically, for it is certain that his projects could have exercised no influence on the development of aviation before the latter part of the 19th century; see Gibbs-Smith (1), pp. 187 ff.

† The ‘whirling-arm’ he used for this was an 18th-century device with which Robins had studied ballistics (+1746) and Smeaton windmill sails (+1759).
even further when we remember his studies on the air-screw, arising from the Chinese top, already mentioned; his anticipation of the internal combustion engine; and his practical and rational proposals for applying power to balloons. Thus the dirigible, adumbrated by Meusnier and others in 1784, became a reality with Giffard in 1852, and in due course handed over its propellers to their more onerous duties in heavier-than-air flying-machines.

Cayley was not indeed the first to see the importance of the Chinese top, for Launoy and Bienvenu in 1784 had already successfully experimented with it, and Paucton even earlier, in +1768, had proposed both the helicopter rotor and the vertical airscrew propeller. Although he himself worked from first principles, his position in history is a singularly focal one, the junction-point of Western vertical and Chinese horizontal mountings, as they contributed to modern aeronautical engineering. The first model aircraft (in the modern sense) to fly on the helicopter principle, however, was that of W. H. Phillips in 1842; the same year in which Henson began to patent a design basically similar (as we have seen, p. 585) to that of a modern twin-engined monoplane.

The first 'modern' powered model aeroplane was built on this pattern in the same decade by Henson & Stringfellow, but it could hardly sustain itself and made only slow descending power-gldes. Thus it was 1857 before the first model was made which would take off under its own power, fly freely for some distance and land safely. This was the achievement of Félix de Temple de la Croix, employing first clockwork and later steam.

After his work many experiments with models were made, and with them it was possible to study such important phenomena as stalling. Airfoil design, with the realisation that the upper surface of the wing must be convex, was advanced in the work of Wenham (1866), Penaud (1876) and others, while the last decades of the century saw widespread empirical work with full-scale gliders.

Finally in 1903 came the first successful full-scale flying by the Wright brothers, using the internal combustion engine and an aeroplane in all fundamental respects identical to those of W. H. Phillips.

Gibbs-Smith (1), p. 13; the model of W. H. Phillips was steam-driven and the blades were rotated by jets from their tips—a remarkable anticipation of current practice.

Gibbs-Smith (2), pp. 13, 314 ff.; in 1854 de Temple's full-scale steam-powered aeroplane just succeeded in being airborne for a short distance after taking off down an inclined ramp.

As the angle of attack of a wing is increased, the lift coefficient rises from zero at the 'no-lift angle' to a maximum (about 16°) at which 'stalling' occurs and the aircraft ceases to fly, rolls violently, and enters a falling spin. The cause of this is the separation of the airstream from the upper surface of the wing, causing turbulence near the trailing edge, consequent drag, sudden reduction of lift, and backward motion of its line of action. The result is a tendency to pitch forwards and dive uncontrollably, and rolling occurs because the stall usually occurs on one wing first. Movable flaps which can be lowered at the trailing edges of the wings increase the lift at the slow speeds necessary for landing. By inserting slots in the wing (now usually a single slot along the wing's leading edge, with a slat of roughly aerofoil cross-section forward of it), Handley-Page found that the stalling angle could be raised to 26° or more. The reason is that the smooth stream of air leaving the trailing edge of the slot prevents the separation of the flow from the upper surface of the wing and the consequent reduction of lift. The great practical value of this device is that it allows of a greater lift coefficient and therefore much slower landing speeds.

Although the turbulence which occurs in stalling is incidental, there is reason to believe that the remarkable invention of the slotted wing may have been suggested by the forested rudders of Chinese ships, which will be described below in Sect. 298 (private communication from Prof. E. V. Telfer). Sir Frederick Handley-Page tells me, however, that he cannot now remember such a stimulus.

Otto Lilienthal, P. S. Pilcher, O. Chanute and others, whose deeds are recounted in Gibbs-Smith (1), pp. 38 ff.
Another scene from the Ching Hua Yuan, ch. 94, shows three flying cars, each with four screw-bladed rotors taking the place of the road-wheels, and engaging with gear-wheels which seem to be connected with some hidden power mechanism. Drawing by Hsiéh Yeh-Mei, 1832. The inscription says: 'The Prince of Wen-Yen, obeying orders, returns to his own country (by air); and the Erudite Girl, thinking of her parents, departs (by air) for the Mountain of the Immortals.' A veritable airport.

Such was the key combination. Though the idea of it was implicit in Cayley's work, it remained (to use a singularly appropriate expression) 'in the air' during the first decades of the 19th century, crystallizing only in Henson's famous design of 1842-3, and in the models of Henson & Stringfellow (1847) and Félix du Temple de la Croix (1857). It would be interesting indeed if Chinese imagination participated in this crucial period, and the facts are well worth examination. Duhem & Huard have both pointed out that a Chinese novel which appeared about this time was illustrated by pictures of imaginary flying-machines which combined propeller-blades with kite surfaces resembling those of a biplane. This novel was difficult to identify from their descriptions, but it is in fact the Ching Hua Yuan (Flowers in a Mirror), written by Li Ju-Chen (+1763 to 1830) between 1810 and 1820. Published eight years later, it was reprinted in 1832, when Hsiéh Yeh-Mei added 108 pictures, and it is in two of these that the aircraft are shown. The first (for ch. 66, see Fig. 709) shows a car amidst clouds, open save for an awning; it has four wheels as if for land travel, but between them on each side there is a screw-bladed rotor in a position analogous to that of the wheel on a paddle-wheel boat. The second (for ch. 94, see Fig. 710) is more interesting, for it shows three flying cars, each with four screw-bladed rotors taking the place of the ordinary land wheels, and, most curiously, between each of these propellers a large gear-wheel which seems to connect them with a power-source. This clearly shows that the artist had in mind mechanically driven ad-aerial (not ex-aerial) wheels. Duhem is probably claiming too much when he says that the rectangular bodies of the machines and the parallel awnings above them are like the lifting surfaces of a biplane. After all, even the box kite was not known in China or anywhere else at that time. But there may have been significance in something which probably was familiarly known there, namely, those children's kites fitted with toy wind-wheels which rotated as the kite flew; and whether or not his ideas derived from them, it seems that Hsiéh Yeh-Mei did really conceive of wheels acting in some way on the air and not merely rotated by it. So ended the classical contributions of Chinese culture to aeronautics.

Fig. 710. Another scene from the Ching Hua Yuan, ch. 94, shows three flying cars each with four screw-bladed rotors taking the place of the road-wheels, and engaging with gear-wheels which seem to be connected with some hidden power mechanism. Drawing by Hsiéh Yeh-Mei, 1832. The inscription says: 'The Prince of Wen-Yen, obeying orders, returns to his own country (by air); and the Erudite Girl, thinking of her parents, departs (by air) for the Mountain of the Immortals.' A veritable airport.
(6) The Parachute in East and West

What remains in this Section is of comparatively minor importance, yet not without interest. On account of its great simplicity one would suppose that the parachute idea, analogous to that of the sea-anchor, would be quite old in many civilisations. Feldhaus, however, finds no instance in Europe earlier than the description by Leonardo about +1500 in the Codex Atlanticus, a which was followed before long (perhaps quite independently) by the 'Homo volans' of Faustus Veranius (c. +1395, first published +1615, pl. 38). Historians doubt whether it was ever tried in practice before Blanchard and perhaps Montgolfier used it for animals about +1778, and the personal descents of Léonard and Garnerin made some years before.

In China, however, there are much older references. In the Shih Chi, completed by -90, Sauma Chhien related a story about the legendary emperor Shun. His father Ku Sou wanted to kill him, and finding him at the top of a granary tower, set fire to it, but Shun escaped safely by attaching a number of long conical straw hats together and jumping down. The +8th-century commentator Sauma Chen understood this clearly in the sense of the parachute principle, saying that the hats acted like the great wings of a bird to make his body light and bring him safely to the ground. A much later, but much more circumstantial, reference occurs in the Thang Shih (Lacquer Table History), b written by Yo Kho in +1214. The grandson of the great general Yo Fei is describing what he saw in Canton as a young man when his father was governor in +1192. After an interesting description of the manners and customs of the foreign community of Arab merchants established there, he speaks of their mosques and of a 'grey cloud-piercing minaret like a pointed silver pen'. Inside this there was a winding spiral staircase for the muezzin, with round look-out openings at every several tens of steps, from which the Arabs watched and prayed for their ships arriving in the spring. Yo Kho goes on:

On the very top there is a huge golden cock instead of the usual (Buddhist) wheels (on pagodas), but it is now short of one leg. The Cantonese people used to say that this defect dated from the time of the former governor Lei Tshung c when some robber came and stole it away, leaving no trace behind him. They said that one day in the market there was a poor man selling something made of pure gold. When someone picked it up and came and stole it away, leaving no trace behind him. They said that one day in the market.

If any reader should doubt the possibility of his feat, similar accounts collected by Kerlus (r) may prove convincing. The facts could easily be tested. The passage was noted by Kuwabara (1), pt. 2, p. 30.

(7) The Balloon in East and West

The balloon may be said to be related topologically to the parachute, for a sufficient constriction of the latter's orifice turns it into the former. But physically they are quite different, for in one case the descent of a curved fabric surface is delayed by the drag of the aerial medium, while in the other, its ascent is facilitated by the presence of a medium lighter than air confined beneath it. As we have already indicated, the

[Notes and references are omitted for the sake of brevity.]
balloon or aerostat, the 'cloud captured in a bag', was a product of the pneumatic chemistry of the European 18th century.\(^a\) Remarkably enough, the first two aerial voyages ever made by man were accomplished in a single year, +1783, by Pilâtre de Rozier and the Marquis d’Arlandes in a Montgolfier hot-air balloon, and then in the following month by J. A. C. Charles and his mechanic Robert in a hydrogen balloon. The simpler of these forms, using nothing but hot air, could have originated very much earlier than this, and in fact in model form it did.

Easter merry-makers in +17th-century Europe had an entertaining trick of making empty eggshells rise in the air literally 'under their own steam'. This is reported in many books, for example Jacques de Fonteny's poem L'Oeuf de Pasques of +1616, which describes it as a traditional custom.\(^c\) The procedure was simple enough, requiring only a little deftness; the contents of an egg being emptied through a small hole and the shell very carefully dried, the right amount of dew (pure water) was introduced and the hole closed with wax. Then in the hot sun the egg would move uneasily, grow light, and rise up into the air, floating a moment before falling.\(^d\) How ancient this trick was in Europe we do not know, but we were quite astonished to read of it in the book of Duhem because we had already come across a similar model of the lighter-than-air-flying-machine in a Chinese text, not of the +17th but of the –2nd. This is the Huai-Nan Wan Pi Shu\(^1\) (The Ten Thousand Infallible Arts of the Prince of Huai-Nan), that compendium of ancient Taoist techniques which we have occasion to refer to so often in this work.\(^2\) Liu An's book of secrets, if not exactly now as he himself knew it, must certainly be a Han compilation. The text says, in its usual concise way: 'Eggs can be made to fly in the air by the aid of burning tinder.' And an ancient commentary incorporated in the text explains: 'Take an egg and remove the contents from the shell, then ignite a little mugwort tinder (inside the hole) so as to cause a strong air-current.' The egg will of itself rise in the air and fly away.\(^3\) Thus the method of Liu An was more akin to that of the Montgolfier brothers than to that of the eggs raised by steam, since nothing but hot air was employed. The discovery of this text puts a rather different complexion on the relations of China and Europe in the prehistory of aerostatic flight.

When the present Section was first drafted we doubted whether China had had any part in this, but we are now inclined to think that the Han tradition was never lost. China was likely to be the home of hot-air balloons for several different reasons. Paper was available as nowhere else in the world, from the Han period onwards, and

\(^c\) See also the case now presented in the Cardan suspension seen above, p. 233. Gimbal lamps in their nests of pivoted rings made during the last two centuries on the frontiers of Tibet derive from the Italy of Jerome Cardan.\(^d\) See Hennig (1); Feldhaus (8, cols. 653 ff.; Forbes (4); Flischke (1). Large paper lanterns for signalling are often referred to in Chinese accounts of military operations, as at the siege of Khaifing by the Mongols in +1232 (Tuckett, pt. 3, ch. 19, p. 504; cf. p. 577 above), but we have not met with any statement that they floated in the air.

\(^d\) Feldhaus (1), loc. cit., and others.

\(^d\) Duhem (1), for example, pp. 404, 415, 419, is sceptical, but reproduces the illustrations, (2), pp. 36 ff., figs. 17, 18. Cf. the dragon standards of Romans and Parthians (Feldhaus (1), col. 159).

\(^e\) Bassermann-Jordan (1), pp. 64 ff.

\(^f\) See Berbholz (2); Feldhaus (1), loc. cit., and others.

\(^g\) Duhem (1), for example, pp. 404, 415, 420, is sceptical, but reproduces the illustrations, (2), pp. 36 ff., figs. 17, 18. Cf. the dragon standards of Romans and Parthians (Feldhaus (1), col. 159).
If some of these creatures had an orifice behind as well as at the front, they were perhaps precursors of the wind-sock. And here again there is an East Asian background, for Tissandier (6), describing some of the kites of Japan, mentions and depicts a huge hollow paper fish with a large open mouth and a smaller opening at the rear, which was used for decoration and as a sensitive wind-vane or weathercock. As he was writing in 1886, no reverse influence from occidental aviation technology could have been in play, and if the wind-sock was found in Japan it had almost certainly been in China earlier.

Perhaps these phenomena may have some relation to the ideas of Albert of Saxony (+ 1316 to + 1390), who imagined that things might float at the surface between the sphere of air and that of fire, just as they floated at the surface between water and air. Could he have known of the Mongol hot-air dragon-standards? In any event, his suggestion stimulated the Jesuit Caspar Schott in + 1638, who was the first to speak of the possibility of aerostatic flight. Schott also discussed the flying eggs of de Fonteny and others. Then in + 1709 came the activities of the Brazilian priest Fr Gusmao, who succeeded in burning the curtains of the King of Portugal's audience hall with a model Montgolfière. Barely eight decades had then to pass before men were truly in the air. Thus by tracing a tenuous thread, illuminated only very fitfully, we come back to a view often formerly held on less secure evidence, namely that China did play a considerable part in the prehistory of the balloon and the airship.

So far as we know, traditional China carried out no aerostatic experiments of Montgolfian scale and daring. But the great interest taken by Chinese scholars, however, in the news which came from France in the penultimate decade of the + 18th century, might bear witness to the existence of certain traditions. In one of his most curious letters, written from Peking on 15 November + 1784 (just a year after the first Paris ascents), the Jesuit J. J. Amiot (4) described the interest which the literati were showing, and said that they were disposed to reconsider in a Montgolfian light ancient stories long dismissed as fables. Amiot himself, no disparager of ancient China's sages, wondered whether perhaps Huang Ti or Shen Nung might not have known of some fluid lighter than air long since forgotten. 'This suggestion', he added, 'I send for what it may be worth.' But there was excitement not only in the capital. The southerner Wang Ta-Hai travelled abroad in the East Indies between + 1785 and + 1790, making notes which he collected in his Hai Tao I Chih Chai Lueh prefaced in the following year. In this he gave an account, necessarily at second hand, of the new balloon or 'sky-ship' (thien chhuan).

This boat is short and small, resembling a dome-shaped pavilion and capable of containing ten men. Attached to it there is a pair of bellows, or air-pump, of exquisite workmanship, in shape like a globe; several people work this with all their might, whereupon the ship flies up high into the heavens. There it is borne about by the winds, but if they wish to navigate it they spread sails and make use of quadrants to measure distances. When they reach their destination they take in their sails and let the ship descend. It has been reported that these ships have been burnt and injured by the sun's rays, while persons venturing in them have been scorched to death, so people hardly dare to go on using them.

This sounds like an echo of a hydrogen balloon, with a second conversation about Daedalus and Icarus occupying the same line. But it testifies to the living interest shown by Chinese scholars and travellers, conscious of their own past, in the opening phase of man's conquest of air and space.

(a) CONCLUSION

About the year 1711 an old gentleman taking a stroll in Peking had his attention drawn to an aeroplane flying overhead, but with perfect sang-froid remarked 'Ah, a man in a kite!' Chinese reactions to modern technology did not stop there, however, and quite a number of authors, though lacking that balanced judgment which an exhaustive acquaintance with sources both eastern and western alone could give, did not fail to maintain the emergence of technological China from oriental origins. Wang Chih-Chhun, for instance, wrote:

The useful arts and techniques originated from the earliest generations; thus geometry was invented by Jan Tao (Jan Chhiu, one of the disciples of Confucius), but later on the Chinese lost his books and Western people studied them, so that they became skilled in mathematics. So also the automatically striking clock was invented by (a Chinese) monk, but the method was lost in China. Western people studied it and developed refined (time-keeping) machines. As for the steam-engine, it originates from (the monik) I-Hsing of the Thang, who had a way of making bronze wheels turn automatically by the aid of rushing water—all that was added was the use of steam and the change of name. As for fire-arms, they originated in the fighting at Tshai-shih in the time of Yü Yün-Wén of the

* The epic, or tragi-comedy, of Fr Gusmao is a very involved story, and may be read in Duham (1), pp. 417 ff. or Gibbs-Smith (3), pp. 53 ff. (5).
* There is a peculiar story, generally dismissed out of hand, which may yet prove to have some basis in China. Giles (6) tells us that a certain Fr Besson is said to have written in + 1694 that a balloon ascended from Peking at the accession of the emperor 'Fo Kien' in + 1696. But no new reign began in that year, and no emperor bore that name. Pfister (1), in his encyclopaedia of the Jesuit mission in China, knows no such Father as Besson, but there was a Joseph Beson (+ 1667 to + 1691) who was a missionary in Syria, so the rumour may have been started by him. Curious 18th-century prints in Chinoiserie style of this aerostat, pictured as an elongated dirigible with nine gondolas, continue to appear in popular articles. Cf. Duham (1), pp. 83, 376, 403, 409, but even he brings no solution for this puzzle; nor Feldhaus (2), p. 54.
* This story is indebted to Mrs Ingel, formerly of Chihil University.
* For this story I am indebted to Miss Ingle, formerly of Chihils University.
* In his Hsiao Chhiu Fu Yuan Chi (Record of the Pacification of a Far Country); an account of his ambassadorship to Russia, ch. 19; quoted KCKW, ch. 5, pp. 284. tr. exert. Cf. p. 523.
* 天真 2 王之خص 2 来 3 宋石 2 成文文
* 朱自清
Ages that in enumerating inventions he fails to add that the majority of them were not made in Europe. Macartney's mission in 1793, translated most recently by Cranmer-Byng (1), p. 574, 584 above. The only important basic machine which the Chinese did not have was the continuous screw, and for this the great development of pedals and treadles (unfamiliar in Europe) was no small compensation. Some techniques, such as the water-wheel, evolved in parallel in the two civilisations. Perhaps the most extraordinary reflection which occurs to us is that while China (allowing something for probable losses of texts) has nothing to show which equals the systematic treatment of mechanics and pneumatics by the Alexandrians (Ctesibius, Philon, Heron), those men were living in a civilisation which was incapable of utilising horse power to draw weights of more than half a ton, and which persisted in the universal employment of the primitive vertical loom.

The late 18th century was very general at the time. The following year saw the appearance of Bondon's review (1) of the manufactures of China. Two years later the Mission Press at Shanghai issued a translation of excerpts on sericulture from the Nung Chêng Ch'iu Hua of +1639 (Anon. 39), illustrated with Chinese diagrams of the early 17th century (cf. pp. 2, 107, 384 above). Julien's study of the history and fabrication of Chinese porcelain (7) followed in 1856, and the general account of ancient and modern industries from Chinese sources by Julien & Champion (1) in 1869.

Some historians are coming to recognise this. When des Noëttes (3) drew up his table of medieval acquisitions, he stated clearly that many of them had come from the East of Asia. We can no longer accept, wrote Carl Stephenson, the easy formula of an Italian Renaissance in which all the great scientific and technological advances arose from the rediscovery of the Greek and Latin classics. Rather they depended upon the expertise of the medieval artisans and the stimuli which these men had received from the peoples of Asia. Medieval technology, wrote Lynn White, consisted not simply of the equipment inherited from the Roman-Hellenistic world modified by the ingenuity of Western Europeans; it embodied also vitally important elements derived from the northern barbarians, the Byzantine and Near East, and from the Far East. Haudricourt (1) is more precise—'The history of technology', he says, 'is still in its childhood, but nevertheless one can affirm that the astonishing industrial development of Europe was conditioned by a previously continuous inflow of Asian novelties, Indo-Arabic in antiquity, Chinese in the middle ages.' And Febvre (2) adds: 'Europe was an Asian cross-roads'.

The lateness of the date at which the Europeans still thought they had a good deal to learn from the Chinese may come as something of a surprise. Greenberg (1), approaching the matter from the point of view of economic history, has pointed out that 'until the epoch of machine production, when technical supremacy enabled the West to fashion the whole world into a single economy, it was the East which was the more advanced in most of the industrial arts'. He then throws light on the genesis of the Opium Wars by showing, from many hitherto unpublished documents, that while the West was eager to get tea, silk, textiles, porcelain, lacquer, and the like, there was nothing from Europe which the Chinese at that time (late +18th and early +19th centuries) wanted in exchange. The East India Company resorted to the drug traffic in order to avoid the drain of bullion from the West. So high was the prestige of Chinese 'know-how' in those days that in 1847 St Julien (4) wrote:

Il est permis de penser que pour satisfaire aux besoins des arts et servir les progrès de la civilisation, la génie des Européens trouvera par lui-même, pendant bien des siècles encore, après des essais et des efforts longtemps continus, une multitude d’inventions utiles ou bienfaisantes, que les Chinois avaient trouvées avant eux, mais qui gisent cachées dans leurs livres, et y resteront inconnues, tant qu’un gouvernement libéral et éclairé ne fera pas entreprendre, à ses frais ou sous ses auspices, soit le dépouillement, soit la traduction, des ouvrages où des procédés scientifiques et industriels, applicable à notre état social et à nos besoins, sont consignés et nettement décrits.'

And one cannot discount his words entirely as those of a sinologist in search of financial support, for half a century afterwards the silk industry of Lyons was still organising full-scale missions to study the traditional procedures of the Chinese sericultural provinces.

For the details of the transmissions, in so far as it is possible to formulate them at the present stage, the reader is referred to pp. 222 ff., 544, 584 above. The only important basic machine which the Chinese did not have was the continuous screw, and for this the great development of pedals and treadles (unfamiliar in Europe) was no small compensation. Some techniques, such as the water-wheel, evolved in parallel in the two civilisations. Perhaps the most extraordinary reflection which occurs to us is that while China (allowing something for probable losses of texts) has nothing to show which equals the systematic treatment of mechanics and pneumatics by the Alexandrians (Ctesibius, Philon, Heron), those men were living in a civilisation which was incapable of utilising horse power to draw weights of more than half a ton, and which persisted in the universal employment of the primitive vertical loom. Some have thought, indeed, that the more advanced character of oriental technology was dimly realised by the Greeks, and it has even been suggested that the fable of Atlantis valued ingenious articles, it said, 'nor do we have the slightest need of your country's manufactures.' There is general agreement with Greenberg's view; cf. Lattimore (7) and GalIagher (I). Though most of these later groups were primarily interested in the study of trade, des Noëttes (3) drew up his table of medieval acquisitions, he stated clearly that many of them had come from the East of Asia.
in Plato’s dialogue Critias, the island of Atlantis, whose people were such great architects and builders of irrigation-canaals and bridges, has reference to the civilisations of Asia. If so, it is probably rather to Mesopotamia than further East, since at the time when it was written (c. – 360, not long after the death of Mo Ti) Chinese superiority in technique had hardly gained the lead which it did some centuries later. Yet very large public works had been constructed in China in the – 6th and – 5th centuries.

Let the last words come from the realm of Islam, for the Arabs were very well qualified to be impartial judges of engineers both European and Chinese. From Ruy Gonzales Clavijo, Spanish ambassador to Timur Lang (Tamerlane, + 1395 to + 1404), we hear that at Samarcand ‘the craftsmen of Cathay are reputed to be the most skilful by far beyond those of any other nation; and the saying is that they alone have two eyes, that the Franks may indeed have one, while the Muslims are but a blind folk’. Truer perhaps, and better, was the remark of Abu ‘Uthmān ‘Amr ibn Bahr al-Jāhir (d. + 862)— ‘Wisdom hath alighted on three things; the brain of the Franks, the hands of the Chinese, and the tongue of the Arabs’.1

1 Lowert (1), vol. 3, pp. 429 ff, 519 ff.
2 Cf. Chi Chhao-Ting (1), p. 66.
3 Cit. Olshski (4), p. 97; Yule (2), vol. i, pp. 174, 264. We do not know who originated this saying, or where, but it was repeated over and over again. Abu Mansẓūr Thālibī, writing in about + 1030, reports it, and so does Shajar-al-Zaman Tāhir al-Mawrati just under a century later, in the following words: ‘The people of China are the most skilful of men in handicrafts—no other nation approaches them. The people of Rām (the Eastern Roman Empire) are proficient too, but they do not reach the level of the Chinese. The latter say that all men are blind in craftsmanship, except the men of Rām, who being one-eyed, know but half the business’ (cf. Minorsky (4), pp. 14, 65). A curious Sufic mystical parallel in the Mathnawī of Jālal-al-Dīn Rūmī (cf. + 1273) involves a contest in painting between Greeks and Chinese at the Sultan’s court (i, l. 3167 ff. Nicholson tr. vol. 2, p. 189). Then the allusion about the blindness comes again in the Fleurs des Histoires d’Orient written by Prince Haythun of Armenia in + 1307 (Bk. 1, ch. 1; Yule, ibid. p. 258), and before long it was copied from somewhere by Sir John Mandeville (c. + 1350), ch. 23 (Letté ed., vol. 1, p. 151). After Clavijo it reappears in Nicolò Conti (c. + 1440; Yule, ibid. p. 173) and in Josafat Barbaro (c. + 1470; Yule, ibid. p. 178). Its estimate of the Chinese craftsmen was echoed by a host of travellers; for example the technicians of the Macartney embassy in + 1793 such as Doweridge (1), p. 49; Barrow (1), p. 106; cf. Cranmer-Byng (2), p. 264.

BIBLIOGRAPHIES

A CHINESE AND JAPANESE BOOKS BEFORE +1800
B CHINESE AND JAPANESE BOOKS AND JOURNAL ARTICLES SINCE +1800
C BOOKS AND JOURNAL ARTICLES IN WESTERN LANGUAGES

In Bibliographies A and B there are two modifications of the Roman alphabetical sequence: transliterated Chh- comes after all other entries under Ch-, and transliterated Hs- comes after all other entries under Hs-. Thus Chhen comes after Chuang and His comes after Hsia. This system applies only to the first words of the titles. Moreover, where Chh- and Hs- occur in words used in Bibliography C, i.e. in a Western language context, the normal sequence of the Roman alphabet is observed.

When obsolete or unusual romanisations of Chinese words occur in entries in Bibliography C, they are followed, wherever possible, by the romanisations adopted as standard in the present work. If inserted in the title, these are enclosed in square brackets; if they follow it, in round brackets. When Chinese words or phrases occur romanised according to the Wade-Giles system or related systems, they are assimilated to the system here adopted without indication of any change. Additional notes are added in round brackets. The reference numbers do not necessarily begin with (1), nor are they necessarily consecutive, because only those references required for this volume of the series are given.

A. CHINESE AND JAPANESE BOOKS BEFORE +1800

- This system applies only to the first words of the titles.

C. BOOKS AND JOURNAL ARTICLES IN WESTERN LANGUAGES

When obsolete or unusual romanisations of Chinese words occur in entries in Bibliography C, they are followed, wherever possible, by the romanisations adopted as standard in the present work. If inserted in the title, these are enclosed in square brackets; if they follow it, in round brackets. When Chinese words or phrases occur romanised according to the Wade-Giles system or related systems, they are assimilated to the system here adopted without indication of any change. Additional notes are added in round brackets. The reference numbers do not necessarily begin with (1), nor are they necessarily consecutive, because only those references required for this volume of the series are given.

- Korean and Vietnamese books and papers are included in Bibliographies A and B.
<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>SEE ALSO p. xxxvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Aribus Asia</td>
</tr>
<tr>
<td>AAA</td>
<td>Archaeologia</td>
</tr>
<tr>
<td>AAE</td>
<td>Archivus p. Antropel. e. Ethol.</td>
</tr>
<tr>
<td>AAN</td>
<td>American Anthropologist</td>
</tr>
<tr>
<td>AAS</td>
<td>Arts antiquae (continuation of Revue des Arts Antiquaires)</td>
</tr>
<tr>
<td>A/AHS</td>
<td>Archives Internationales d'Hist. des Sciences (continuation of Archives)</td>
</tr>
<tr>
<td>AB</td>
<td>Art Bulletin (New York)</td>
</tr>
<tr>
<td>ABA</td>
<td>Art Buddhica (Tokyo)</td>
</tr>
<tr>
<td>ABO</td>
<td>Annals of the Bhandkar Oriental Research Institute (Poona)</td>
</tr>
<tr>
<td>ACA</td>
<td>Acta Archaeologica (Copenhagen)</td>
</tr>
<tr>
<td>ACLS</td>
<td>American Council of Learned Societies</td>
</tr>
<tr>
<td>ACP</td>
<td>Annales de Chimie et Physique</td>
</tr>
<tr>
<td>ACS</td>
<td>Annal of the China Society of Singapore</td>
</tr>
<tr>
<td>ADI</td>
<td>Angew. d. d. Drachtindustrie</td>
</tr>
<tr>
<td>ADVS</td>
<td>Advancement of Science (British Assoc. London)</td>
</tr>
<tr>
<td>AEST</td>
<td>Annales de l'Est (Fac. des Lettres, Univ. Nancy)</td>
</tr>
<tr>
<td>AGHST</td>
<td>Agricultural History (Washington, D.C.)</td>
</tr>
<tr>
<td>AGMW</td>
<td>Abhandlungen z. Geschichte d. Math., Wissenschaft und Technik</td>
</tr>
<tr>
<td>AH</td>
<td>Asian Horizons</td>
</tr>
<tr>
<td>AHAWPH</td>
<td>Abhandlungen d. Heidelberger Akad. Wis. (Phil.-Hist. Klasse)</td>
</tr>
<tr>
<td>AHEIS</td>
<td>Annales d'Hist. Écon. et Sociale de l'Europe et des Amériques</td>
</tr>
<tr>
<td>AHEIS/AHS</td>
<td>Annales d'Hist. Sociale et des Amériques</td>
</tr>
<tr>
<td>AHEIS/MHS</td>
<td>Mélanges d'Hist. Sociale et des Amériques</td>
</tr>
<tr>
<td>AHOR</td>
<td>Antiquarian Historian</td>
</tr>
<tr>
<td>AHR</td>
<td>American Historical Review</td>
</tr>
<tr>
<td>AHSNM</td>
<td>Acta Historica Scientiarum Naturalium et Medicinum (editid Bibliotheca Universitatis Hainemensis, (Copenhagen)</td>
</tr>
<tr>
<td>AJ</td>
<td>Asiatic Journal and Monthly Register for British and Foreign India, China and Australia</td>
</tr>
<tr>
<td>AJSC</td>
<td>American Journal of Science and Arts (Silliman's)</td>
</tr>
<tr>
<td>AL</td>
<td>Annales de l'Est (Paris)</td>
</tr>
<tr>
<td>AMA</td>
<td>American Antiquity</td>
</tr>
<tr>
<td>AMK</td>
<td>Amtsblatt der Me. Kunst (Uster, Zeitschr. f. Kunst, Kunsthandwerk u. Wohlbau)</td>
</tr>
<tr>
<td>AN</td>
<td>Annales des Mines</td>
</tr>
<tr>
<td>ANS</td>
<td>Annales of Science</td>
</tr>
<tr>
<td>ANTJ</td>
<td>Antiquarius Journal</td>
</tr>
<tr>
<td>AO</td>
<td>Acta Orientalia</td>
</tr>
<tr>
<td>AQ</td>
<td>Antiquity</td>
</tr>
<tr>
<td>AQC</td>
<td>Antique Collector</td>
</tr>
<tr>
<td>ARA</td>
<td>Arcaica</td>
</tr>
<tr>
<td>ARAE</td>
<td>Archaiologikh Eriotik (Budapest)</td>
</tr>
<tr>
<td>ARASI</td>
<td>Annual Report of the Archaeological Survey of India</td>
</tr>
<tr>
<td>ARJ</td>
<td>Archaiologikh Journal</td>
</tr>
<tr>
<td>ARS1</td>
<td>Annual Reports of the Librarian of Congress (Division of Orientalia)</td>
</tr>
<tr>
<td>ARSO</td>
<td>Archiv Orientali (Prague)</td>
</tr>
<tr>
<td>ARUSNM</td>
<td>Annual Reports of the Smithsonian Institution</td>
</tr>
<tr>
<td>AS</td>
<td>Archaeological Journal</td>
</tr>
<tr>
<td>ASBO</td>
<td>Annuaire des Sciences et des Arts de l'Egypte</td>
</tr>
<tr>
<td>ASC</td>
<td>Annales de l'Est (Fac. des Lettres, Univ. Nancy)</td>
</tr>
<tr>
<td>ASCJ</td>
<td>Chinese Journal of Archaeology</td>
</tr>
<tr>
<td>ASK</td>
<td>Annales de l'Est (Fac. des Lettres, Univ. Nancy)</td>
</tr>
<tr>
<td>ASK</td>
<td>Annales de l'Est (Fac. des Lettres, Univ. Nancy)</td>
</tr>
<tr>
<td>ASRA</td>
<td>Asiatique Studien; Etudes Antiatiques</td>
</tr>
<tr>
<td>ASR</td>
<td>Aerial Society of Great Britain</td>
</tr>
<tr>
<td>ASRN</td>
<td>Archives des Sciences Physiques et Naturelles (Geneva)</td>
</tr>
<tr>
<td>ASRA</td>
<td>Annales de la Soc. (Roy.) d'Archueil (Brussels)</td>
</tr>
<tr>
<td>ASURG</td>
<td>Annuaire des Surgery</td>
</tr>
<tr>
<td>ASWP</td>
<td>Archiv. f. Sozialwissenschaft u. Sozialpolitik</td>
</tr>
<tr>
<td>AT</td>
<td>Atlantik</td>
</tr>
<tr>
<td>AX</td>
<td>Amric</td>
</tr>
<tr>
<td>BABEL</td>
<td>Babbel; Revue Internationale de la Traduction</td>
</tr>
<tr>
<td>BAFAS</td>
<td>Bulletin de l'Asso. Francaise pour l'Encroacement des Sciences</td>
</tr>
<tr>
<td>BAVH</td>
<td>Bulletin des Amis du Vieux Hé (Indo-China)</td>
</tr>
<tr>
<td>BBHS</td>
<td>Bulletin des British Society for the History of Science</td>
</tr>
<tr>
<td>BCS</td>
<td>Bulletin of Chinese Studies (Chicago)</td>
</tr>
<tr>
<td>BEFEO</td>
<td>Bulletin de l'Ecole Francaise de l'Extreme Orient (Hanoi)</td>
</tr>
<tr>
<td>BFMR</td>
<td>Biographical Memoirs of Fellows of the Royal Society</td>
</tr>
<tr>
<td>BGSC</td>
<td>Bulletin of the Chinese Geological Survey</td>
</tr>
<tr>
<td>BGTT</td>
<td>Beitrag von Gesch. d. Technik u. Industrie (cont. as Technik Geschichte—see BGTT/TC)</td>
</tr>
<tr>
<td>BGTT/TC</td>
<td>Technik Geschichte</td>
</tr>
<tr>
<td>BILRPS</td>
<td>Bulletin d'Information de la Legation de la Republique Pop. de Chine (Beijing)</td>
</tr>
<tr>
<td>BHM</td>
<td>Bulletin of the Johns Hopkins Institute of the History of Medicine (continued as Bulletin of the History of Medicine)</td>
</tr>
<tr>
<td>BLSOAS</td>
<td>Bulletin of the London School of Oriental and African Studies</td>
</tr>
<tr>
<td>BM</td>
<td>Bibliotheca Mathematica</td>
</tr>
<tr>
<td>BMFEA</td>
<td>Bulletin of the Museum of Far Eastern Antiquities (Stockholm)</td>
</tr>
<tr>
<td>BMFJ</td>
<td>Bulletin de la Maison Franco-Japonaise (Tokyo)</td>
</tr>
<tr>
<td>BMRAH</td>
<td>Bulletin des Musées Royaux d'Art et d'Histoire (Brussels)</td>
</tr>
<tr>
<td>BNWACC</td>
<td>Bulletin of the Nat. Assoc. Watch and Clock Collectors (U.S.A.)</td>
</tr>
<tr>
<td>BNGGB</td>
<td>Berichte d. naturforsch. Gesellschaft Bamberg</td>
</tr>
<tr>
<td>BNYAM</td>
<td>Bulletin of the New York Academy of Medicine</td>
</tr>
<tr>
<td>BRGK</td>
<td>Berichte d. Kniash-Germanischen Kommission (d. deutsches Arch. Inst.)</td>
</tr>
<tr>
<td>BRO</td>
<td>Brotis (Lisbon)</td>
</tr>
<tr>
<td>BSAF</td>
<td>Bulletin de la Societe Astronomique de France</td>
</tr>
<tr>
<td>BSEIC</td>
<td>Bulletin de la Societe des Etudes Indo-chinoises</td>
</tr>
<tr>
<td>BSEIN</td>
<td>Bulletin de la Soc. d'Encourage ment pour l'Industrie Nationale</td>
</tr>
<tr>
<td>BSG</td>
<td>Bulletin de la Societe de Geographie (continued as La Geogra phie)</td>
</tr>
<tr>
<td>BSISS</td>
<td>Bulletin de la Societe Internationale des Sciences Sociales D</td>
</tr>
<tr>
<td>BSNAF</td>
<td>Bulletin de la Societe Nationale des Antiquaires de France</td>
</tr>
<tr>
<td>BSRCA</td>
<td>Bulletin of the Society for Research in [the History of] Chinese Architecture</td>
</tr>
<tr>
<td>BTG</td>
<td>Blatter f. Technikgeschichte (Varians)</td>
</tr>
<tr>
<td>BUA</td>
<td>Bulletin de l'Universite d'Alger (Shanghai)</td>
</tr>
<tr>
<td>BUSNM</td>
<td>Burlington Magazine</td>
</tr>
<tr>
<td>BVY</td>
<td>Bayerische Vorgeschichtsblatter</td>
</tr>
<tr>
<td>CAF</td>
<td>Congrés Archéologiques de France</td>
</tr>
<tr>
<td>CAMR</td>
<td>Cambridge Review</td>
</tr>
<tr>
<td>CABN</td>
<td>Catholic Review</td>
</tr>
<tr>
<td>CEN</td>
<td>Centaurus</td>
</tr>
<tr>
<td>CET</td>
<td>Cedi et Terre</td>
</tr>
<tr>
<td>CHER</td>
<td>Ching-Hua Engineering Reports (King Ching-Hua Pang)</td>
</tr>
<tr>
<td>CHES</td>
<td>Ching-Hua Engineering Science Journal (King Ching-Hua Hui Hui Huan, Hui Hui Huan)</td>
</tr>
<tr>
<td>CHI</td>
<td>Cambridge History of India</td>
</tr>
<tr>
<td>CHIM</td>
<td>Chimica (Italy)</td>
</tr>
<tr>
<td>CHJ</td>
<td>Ching-Hua Hui Huan (Chiang-Hua Engineering Journal (Chiang Hua, Hui Huan)</td>
</tr>
<tr>
<td>CHJFJT</td>
<td>Ching-Hua Hui Huan (Chiang-Hua Engineering Journal (Chiang Hua, Hui Huan)</td>
</tr>
<tr>
<td>CJ</td>
<td>China Journal of Science and Arts</td>
</tr>
<tr>
<td>CJBAST</td>
<td>China News (Textile Technology)</td>
</tr>
<tr>
<td>CN</td>
<td>China Journal of Science and Arts</td>
</tr>
<tr>
<td>CLR</td>
<td>Chinaische Literature</td>
</tr>
<tr>
<td>CLIT</td>
<td>Chen Li Tsai Chih (Truth Missel)</td>
</tr>
<tr>
<td>CLTC</td>
<td>Chartered Mechanical Engineer</td>
</tr>
<tr>
<td>CMF</td>
<td>Chinese Miscellaneous</td>
</tr>
<tr>
<td>CMIS</td>
<td>Communication On</td>
</tr>
<tr>
<td>CNP</td>
<td>Classical Philology</td>
</tr>
<tr>
<td>CR</td>
<td>Classical Quarterly</td>
</tr>
<tr>
<td>CRK</td>
<td>China Review (Hongkong and Shanghai)</td>
</tr>
<tr>
<td>CRAAF</td>
<td>Comptes Rendus hebdomadaires de l'Academie d'Agriculture de France</td>
</tr>
<tr>
<td>CRAS</td>
<td>Comptes Rendus hebdomadaires de l'Academie d'Agriculture de France</td>
</tr>
<tr>
<td>CRB</td>
<td>China Reconstructs</td>
</tr>
<tr>
<td>CRRC</td>
<td>Chinese Repository</td>
</tr>
<tr>
<td>CTE</td>
<td>China Trade and Engineering</td>
</tr>
<tr>
<td>CUL</td>
<td>Cambridge University Library</td>
</tr>
<tr>
<td>CUP</td>
<td>Cambridge University Press</td>
</tr>
<tr>
<td>D</td>
<td>Discovery</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>MSPO</td>
<td>Mémoires de la Soc. Finno-Ougrienne</td>
</tr>
<tr>
<td>MSGS</td>
<td>Mitteilungen d. Seminar f. orientalischen Sprachen (Berlin)</td>
</tr>
<tr>
<td>MSTRM</td>
<td>Mainstream (New York)</td>
</tr>
<tr>
<td>MT</td>
<td>Metallurgia</td>
</tr>
<tr>
<td>MW</td>
<td>Materials and Manufacturing Processes (Journal of the I. of Engineers)</td>
</tr>
<tr>
<td>N</td>
<td>Nature</td>
</tr>
<tr>
<td>NATV</td>
<td>Naturen Verden (Copenhagen)</td>
</tr>
<tr>
<td>NAVC</td>
<td>Naval Chronicle</td>
</tr>
<tr>
<td>NBAC</td>
<td>Nuova Arch. deli' Abb. (Florence)</td>
</tr>
<tr>
<td>NCR</td>
<td>New China Review</td>
</tr>
<tr>
<td>NGM</td>
<td>National Geographic Magazine</td>
</tr>
<tr>
<td>NKKZ</td>
<td>Nihon Kagaku Katsusha Zensho (Collection of works concerning the History of Science and Technology in Japan)</td>
</tr>
<tr>
<td>NO</td>
<td>New Oriental (Prague)</td>
</tr>
<tr>
<td>NQCA</td>
<td>Notes and Queries on China and Japan</td>
</tr>
<tr>
<td>NRAS</td>
<td>Notes and Records of the Royal Society</td>
</tr>
<tr>
<td>NS</td>
<td>New Synoptite</td>
</tr>
<tr>
<td>NSN</td>
<td>New Statemen and Nation (London)</td>
</tr>
<tr>
<td>NUK</td>
<td>Neu Christine Kultur (München)</td>
</tr>
<tr>
<td>NV</td>
<td>The Navy</td>
</tr>
<tr>
<td>OAR</td>
<td>Ostasiatische Rundschau</td>
</tr>
<tr>
<td>OAS</td>
<td>Ostasiatische Studien</td>
</tr>
<tr>
<td>OAV</td>
<td>Orientalistisches Archiv (Leipzig)</td>
</tr>
<tr>
<td>OAZ</td>
<td>Ostasiatische Zeitschrift</td>
</tr>
<tr>
<td>OB</td>
<td>Orientalistische Bibliographie</td>
</tr>
<tr>
<td>OC</td>
<td>Open Court</td>
</tr>
<tr>
<td>OE</td>
<td>Orientalisten Externe (Hamburg)</td>
</tr>
<tr>
<td>OLI</td>
<td>Orientalisten Lloyd (Rio)</td>
</tr>
<tr>
<td>OLZ</td>
<td>Orientalistische Literatur-Zeitung</td>
</tr>
<tr>
<td>OR</td>
<td>Orient</td>
</tr>
<tr>
<td>OOA</td>
<td>Oriental Art (Berlin)</td>
</tr>
<tr>
<td>OSIS</td>
<td>Ovist</td>
</tr>
<tr>
<td>OUP</td>
<td>Oxford University Press</td>
</tr>
<tr>
<td>PA</td>
<td>Pacific Affairs</td>
</tr>
<tr>
<td>PC</td>
<td>People's China</td>
</tr>
<tr>
<td>PET</td>
<td>Petroleum</td>
</tr>
<tr>
<td>PFL</td>
<td>Pennsylvania_fatalisme</td>
</tr>
<tr>
<td>PHY</td>
<td>Physique (Florence)</td>
</tr>
<tr>
<td>PIGE</td>
<td>Proc. Inst. Gas Engineers (U.K.)</td>
</tr>
<tr>
<td>PIME</td>
<td>Proceedings of the Institute of Mechanical Engineers (U.K.)</td>
</tr>
<tr>
<td>PKR</td>
<td>Peking Review</td>
</tr>
<tr>
<td>PM</td>
<td>Philosophia, Zeitsschrift f. d. klass. Altertum</td>
</tr>
<tr>
<td>PMPG</td>
<td>Mitteilungen aus Justus Perthes Geographische Anstalt (Petersbach)</td>
</tr>
<tr>
<td>PR</td>
<td>Philosophical Questions (London)</td>
</tr>
<tr>
<td>PRA</td>
<td>Proceedings of the Royal Irish Academy</td>
</tr>
<tr>
<td>PRSA</td>
<td>Proceedings of the Royal Society (Ser. A)</td>
</tr>
<tr>
<td>PRSM</td>
<td>Proceedings of the Royal Society of Medicine</td>
</tr>
<tr>
<td>PSA</td>
<td>Proceedings of the Society of Antiquaries of London</td>
</tr>
<tr>
<td>PSAS</td>
<td>Proceedings of the Society of Antiquaries of Scotland</td>
</tr>
<tr>
<td>PTRS</td>
<td>Philosophical Transactions of the Royal Society</td>
</tr>
<tr>
<td>RAI</td>
<td>Reche Archeologique</td>
</tr>
<tr>
<td>RBMR</td>
<td>Revue de Botanique Appliquee</td>
</tr>
<tr>
<td>RBAQR</td>
<td>Revue de Botanique Appliquee</td>
</tr>
<tr>
<td>RBS</td>
<td>Royal Society Quarterly Review</td>
</tr>
<tr>
<td>RBQ</td>
<td>Revue Bibilographique de Sinologie</td>
</tr>
<tr>
<td>RHS</td>
<td>Revue d'Histoire des Sciences (Centre International de Synthese, Paris)</td>
</tr>
<tr>
<td>RJ7</td>
<td>Revue de l'Ecole d' Ingenieurs; Revue de l'Ecole d' Ingenieurs de L'Institut Polytechnique de Paris; Revue de l'Ecole d' Ingenieurs; Revue de l'Ecole d' Ingenieurs de L'Institut Polytechnique de Paris</td>
</tr>
<tr>
<td>RLEH</td>
<td>Revue de la Soc. de l' Industrie de L'Energie Electrique (Paris)</td>
</tr>
<tr>
<td>RMSQ</td>
<td>Regional Musuem Quarterly Review</td>
</tr>
<tr>
<td>RQ</td>
<td>Research Quarterly</td>
</tr>
<tr>
<td>RQH</td>
<td>Revue d' Inserm</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

WCC	Bulletin of the Nat. Ave. Watch and Clock Collectors (U.S.A.)	ZALES
WEA	Wear (a journal of friction and lubrication studies)	ZAGA
WUDP	Wuhan University Daily	ZDMG
WP	Water Power	ZDVT
WWTK	Wu Wen Wu Tshan Kun Tiao (Reference Materials for History and Archaeology)	ZGT
YAES	Yenching Shih Hsueh Nien Pao (Yenching University Annual of Historical Studies)	ZHKW
YCHP	Yenching University Journal of Chinese Studies	ZMP
Z	Zalmoxis: Recueil des Etudes Religieuses	ZOLAV
ZEFS	Zeitschrift f. Ägyptische Sprachen u. Altertumskunde	ZOIA
ZG	Zeitschrift für Agyptische Archäologie	ZDVTS
ZGTS	Zeitschrift d. deutsch. Orientalischen Gesellschaft	ZDVTS
ZT	Zeitschrift f. die gesamte Turkbauten	ZDVTS
ZTF	Zeitschrift f. historische Wappenkunde (continued as Zeitschrift f. hist. Wappen-und Kunstkunde)	ZDVTS
ZV DI	Zeitschrift f. techn. Fortschritt	ZDVTS
ZF	Zeitschrift f. Math. u. Physik	ZDVTS
ZI	Zeitschrift d. Altertums- und Architekten Vereines	ZDVTS
ZI	Zeitschrift f. techn. Fortschritt	ZDVTS
ZI	Zeitschrift f. Verenias deutsch. Ingenieurs	ZDVTS

A. CHINESE BOOKS BEFORE +1800

Each entry gives particulars in the following order:

(a) title, alphabetically arranged, with characters; (b) alternative title, if any; (c) translation of title; (d) cross-reference to closely related book, if any; (e) dynasty; (f) date as accurate as possible; (g) name of author or editor, with characters; (h) title of other book, if the text of the work exists only incorporated therein; or, in special cases, references to zinological studies of it; (i) references to translations, if any, given by the name of the translator in Bibliography (f); (j) notice of any index or concordance to the book if such a work exists; (k) reference to the number of the book in the Tan Tung catalogue of Winger (6), if applicable; (l) reference to the number of the book in the Sung (Tripitaka) catalogues of Nanjion (1) and Takakusu & Watershow, if applicable. Words which assist in the translation of titles are added in round brackets.

Alternative titles or explanatory additions to the titles are added in square brackets.

It will be remembered (p. 603 above) that in Chinese:

- An-yang Hsin Chih 安陽縣史, Local History and Topography of Anyang District (Hunan), Ching, +1693.
- Ch'en Kuo T'ai 鄭國泰. Records of the Warring States, Ch'in. Writer unknown.
- Ch'en Kung Ch'ing, True Reports. Liang, early 8th century (but the earliest material contained in it is dated +355).

Indexes words beginning Ch'ih- are all listed together after Ch'ih- and Hsün after Hsün, but that this applies to initial words of titles only.

Where there are any differences between the entries in these bibliographies and those in Vol. I-3, the information here given is to be taken as more correct. References to the editions used in the present work, and to the ts'ang-shu collections in which books are available, will be given in the final volume.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/Han</td>
<td>Former Han.</td>
</tr>
<tr>
<td>H/Wei</td>
<td>Eastern Wei.</td>
</tr>
<tr>
<td>H/Chin</td>
<td>Later Ch'in.</td>
</tr>
<tr>
<td>H/Shu</td>
<td>Later Shu (Wu, T'ai)</td>
</tr>
<tr>
<td>H/Chang</td>
<td>Later Chang (Wu, T'ai)</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Ch'en.</td>
</tr>
<tr>
<td>D/Sung</td>
<td>Sung.</td>
</tr>
<tr>
<td>K/Song</td>
<td>Song.</td>
</tr>
<tr>
<td>C/Han</td>
<td>Sung.</td>
</tr>
<tr>
<td>S/Ming</td>
<td>Ming.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>D/Ming</td>
<td>Ming.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
<tr>
<td>J/Chen</td>
<td>Kao.</td>
</tr>
<tr>
<td>D/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Wei</td>
<td>Wei.</td>
</tr>
<tr>
<td>C/Shou</td>
<td>Shou.</td>
</tr>
<tr>
<td>C/Tsing</td>
<td>Tsing.</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY A

Chih Chih Tchou Shou (cont.)

Diagrams and Illustrations of Wonderful Machines.
Ming, 1607.

Chen Yung-Yan (Johann Schreck) 竺錫嶂
& Wang Chöng 王倉
Chih Mei Yao Shu 靑冥菱
Important Arts for the People's Welfare
(lit. Equality).
See T'ang Eh or W(Wei), between +533 and +544.
Chiu Shih-Hsi 蕭賀監
See des Routers (1), p.c, Shih Shih-Han (1).

Chih Tung Yeh Tzu 章曾英傳
Rustic Talks in Eastern Chih.
Sung, c. +1290.

Chou Mi 劉夢

Chia-Han Shu 賈漢書
History of the Former Han Dynasty, [-200 to +24].
H/Han (began about +63), c. +100.

Fan Ku 傅毅, and (after his death in +92) his sister Fan Chao 傅朝.
Partial trs. Dubs (1), Pfaumer (12-14, 17-18), Wylie (1, 3, 10). Swann (1).

Ch'ien Pai Nien Yen 千年斷年
Glimpses of a Thousand Years of History.
Ming, 16th century.
Chang Chih 張之

Ch'an Chih-Chao 章之超
Choice Conversations North of Chihh (chow).
Sung, c.+1667.

Wang Shih-Chên 王士誠

Chia-Ting Chao Kuan I. Shu 答論文章卷一
See Chia Kuan I. Shu.

Chia-Ting Hsu Wen Hsien Thung K'iao 秋宗侯文獻通考
Studies on the History of Literacy.
See the Taiwan Branch.

Chihung, ordered +1724, pr. +1772 (+1784).

Ed. Chih Shao-Nan 崔南, Hsiao Hung Shih 相厚, et al.
This parallels, but does not replace, Wang Chih Hui Wen Hsien Thung K'iao.

Chih-Ting K'桉 Tchun Shu Chih Chih 答廷千叱起集

Chih-Ting Shou Shih Thung K'iao 答廷仲通考

Chih-Ting Shih Ching Shu 答廷神鈔

The Historical Classic with Illustrations.
Chihung (edition by imperial order, 1603).

Chih-Ting Sun K'hu Chihhuan Shu, etc.
See Chih K'hu Chihhuan Shu.

Ching-Hsing T'ao Ch'î 絢成穎
eac. Chinese Records on Green Bamboo Tablets.
Sung, early +11th century.

Chih-I Lu 稚異錄
Records of the Unworldly and the Strange.
W/Wei, c. +950.

Chih Chia Tsa 崇教大绎
Biographies of Mathematicians and Astronomers.
Chihung, +1799.

Jen Yuan 任院
With continuations by Lo Shih-Lin 羅士林, Hsueh Shao-Pao 許紹保, and Huang Ch'ung-Ch'en 黃朝臻.
In HCCG, chs. 155 ff.

Chih Chu Chih Shih Lei 稚異詩詠
Systematic Guide to Court Etiquette.
Sung.

Wen Hsien.

Chih Chu Chih Ch'ing 稚異詠
See Chiang Kuang-Ch'ing (1).

Chih Hsin Ch'ih 稚異詠
Entry into Learning [encyclopaedia].

Ch'ung, +700.

Hai Chien 海川

Chih Tsa 崇政
Elégies de Chihh (State), or Songs of the South.
Chou, c. +300 (with Han additions).

Chih Chuan 賢川 (Chen). See also WANG TCH'ENG-YUAN, Stu.

Chih Tsa 崇政
Partial trsw. Hsiao Hwu, and Hsiao Hwu (chow).

Chih Tsa 崇政
Supplementary Annnotations to the Elégies of Chihh.
Sung, c. +1140.

Ed. Hung Hsing-Tao 恆遠.

Chih Chu Chi 稚政.
Talks about Bygone Things beside the Wending Weir (River in Honan).
Chou, +1300.

Chiu Pien 賜賢.

Ch’ian Hsing 賜興

See Chiu Tso.

See Tung Kao (1).

Chih Chien Lu Wai Chi 稚成瀕外紀
The Chihh Chien Miscellany.
Sung, c. +1290.

Yü Wen-Pao 坡文豹.

Chih Chu 崇裕
Spring and Autumn Annals [i.e. Records of Springs and Autumn].
Chou; a chronicle of the State of Lu kept between +722 and +481.

Writers unknown.

Cf. Tso Chuan; Kang Yu Chuan; Kuang Chuang.

Wu Shih-Chung (1); van der Loon (1).

Tr. Courrègue (1); Legge (11).

Chih Chou Chia Fan Lu 稚序袁序
Strategic Pearls on the Spring and Autumn Annals.
C/Han, c. +135.

Wu Chih-Kuo-Chung-Shu 莊仲舒.
See Wu Kiang (1).

Chih Chou 稚侯
Partial trsw. Weiger (2); Hughes (1); d'Hollander (ed. 95).

Chih Kung Ch'en Ch'eng 稚公陳節
See Lieh T'iao.

Er H Y 仁理
Literary Expositor [dictionary].
Chou material, stabilised in Chihh or C/Han.
Compiler unknown.

Enlarged and commented on c. +500 by Fu Pao 福嘤.
Yin-T'iao Index no. (suppl.) 18.

Fe-Hien Hsing Ch'uan 稚護行傳
See Feo Kao Chi, ch. 5.

Feo Wen Ch'ung Kang Wên Ch'i 稚文敬文集.
Collection of the Writings of Fan Ch'ung-Yen. Sung. c. +1600.

Fan Ch'ung-Yen 稚仲興

Chih Hsi Chao Yü 稚喜超
See Wu Ch'ang Hui-Hui (1).

Chih Hsi Chao Yü 稚喜超
Dictionary of Local Expressions.
C/Han (with much interpolated later). Yu Han 順陽.

Fang Yen Shu Ch'uan 方雲蕉
Dictionary of the History of Local Expressions, with Annotations and Amplifications.
Chihh, +700.

T'ai Chen 畢賢.

Fang Ch'ing Hsiao Tzu 稚政小塲.
Map of Window Memories.
Sung, late +12th century.

Yuan Shih 焉世.
Completed by a later writer soon after +1200.

Fang Shih Wei Ch'ien Chih 稚史外記
Things Seen and Heard by Mr. Feng Tang, late +8th century.

Feng Yen 方雲

Chih Shih Wei Ch'ien Chih 稚史外記
Cheng Shih Wei Ch'ien Chih 稚史外記
The Meaning of Popular Traditions and Superstitions.

H/Han, +175.

Yen Shih 順世.

Chüa-Fang Ch'uan or Fa-Hsien Hsing Ch'uan.
Records of Buddhist Countries [also called Elegies of Fe-Hsien, etc.].
Chin, +416.

Fa-Hsien (monk) 摩訶旅.
Huang Chhing Chieh
Hsiu Chheng
Hsi Chhing Chi 西清記.
Narrative of a New Device (for making an Armillary Sphere and a Celestial Globe (revolved) [including a chain of gears for keeping time and striking the hour], the motive power being a water-wheel checked by an escapement].
Sung, +1906.
Su Shih 蘇試.
Hsin Thang 西藏. Chheng Yung-fong 丁若谷 (1).
Hsi Chhing Chi 西清記.
Hsiu Chheng Ching Chih 敬信集. Records of the Western Capital.
Li, Fu-Chi, 朱 consequently, the main editors.
6. A List of Monographs on Classical Subjects written during the Ching Dynasty.
10. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
15. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
17. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
19. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
22. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
27. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
32. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
33. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
34. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
35. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
36. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
37. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
38. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
40. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
41. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
42. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
43. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
44. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
45. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
46. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
47. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
49. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
50. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
51. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
52. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
53. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
54. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
55. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
56. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
57. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
58. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
60. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
61. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
63. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
64. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
65. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
67. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
68. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
69. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
70. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
71. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
72. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
73. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
74. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
75. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
76. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
77. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
78. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
79. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
80. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
81. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
82. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
83. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
84. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
85. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
86. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
87. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
88. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
89. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
90. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
91. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
92. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
93. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
94. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
95. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
96. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
97. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
98. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
100. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
102. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
103. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
104. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
105. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
106. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
108. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
110. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
111. A Catalogue of Monographs on Classical Subjects written during the Ching Dynasty. The main editors.
BIBLIOGRAPHY A

Notes from the Hall of Learned Chou, -4th century (perhaps partly Han or early material from ancient written records). Repr. in YHS, ch. 76.

Who should be known (to officials) about Ascr. CjHan, between +1091 and +140. Date unknown.

Written unknown.

For translations of passages see the index of Frankel (1).

Liu Tzu (cont.)

Abrid. Lii Yu-Khou 列子. Tr. R. Wilhelm (4); L. Giles (4); Wiegert (4); Graham (6); R. Wilhelm (6).

BIBLIOGRAPHY A

Tang Su Wen 遼多文
Commonly Used Synonyms.
H/Han, + 180.
Fu Chih-Hui 劉異.
YHSF, ch. 61.
T Ch'ing Chhun Wu Lihh 帝王之母.
Description of Things and Customs at the Imperial Capital (Nanking).
Ming, c. + 1600.
Lu Thong 劉同.
T Chih Shang Chi 帝王之相.
Story of the Ancient Monarchs.
San Kuo or Chin, c. + 270.
Huangfu Mi 黃濬.
Talks at Fisherman's Rock.
Wu Tai (S/Tang) & Sung, begun c. + 935.
Shih Hai-Pei 史懷哲.
T'ing Li I Min 御龍見遍.
Recollections of T'ingseung.
Sung, c. + 1127.
Writer unknown.
Cf. Chu Hsi-Tsu (2).
Tungguk MunhOn 同國文顯.
See Chhingguk MunhOn 见《同國文顯》.
Tshun Shu 通書.
Book of Sericulture.
Sung, c. +1090.
Chhun Chhiu 燕春.
Tshun Tshang Chhi 菱常書.
The Kinship of the Three: or, The Agreement (of the Book of Changes) with the Phenomena of Composite Things (alchemical).
H/Han, + 148.
Wei Po-Yang 魏柏陽.
Commeny on Yin Chheng-Seung 陰成聖 隆長生.
Tr. Wu & Davis (5).
Tt'9999.
Tshun Tshang Chhi Po Hui 菱常書會.
Essiociations of the Kinship of the Three (alchemical).
Yuan, + 1275.
Yü Yen 瑤音.
Tt'9995.
Tshun Tshang Chhi Po Chhun Chhao Chhih 菱常書會．
The Kinship of the Three divided into.
Chapters, with Commentary and Analysis.
Yuan, c. + 1330.
Chhun Chih-Hui 劉竹惠 隨政府 (Shang Yang 劉昌陽).
TTCY Jenny 93.
Tshun Tshang Chhih Kao 菱常書會考.
A Study of the Kinship of the Three.
Sung, +1197.
Chhun Hsi 通衡 (originally using pseudonym Tou Hsin 通沁 老鹤).
Tt'9992.
Tshun Tshang Chhih Master Tschiu-Hui's Tradition (or Enlargement) of the Chhun Chhao (Spring and
Autumn Annals) [dealing with the period
~722 to ~435].
Late Chou, compiled from ancient written and oral traditions of several States between ~430 and ~250, but
with additions and changes by Confucian scholars of the Chhun and Han, especially Liu Hsin.
Greatest of the three com-
mentaries is the Chhun Chhao, the others being the Kangyu Chhao and the Kuhng Chhao, but unlike them,
probably originally itself an independent book of history.
Astrid, Tsochhiu Ming 左駱明.
See Kariyag (B); Maasen (1); Chhui Sau-
Ho (1); Wu Kang (1); Wu Shih-
Chiang (1); van de Loun (1); Eberhard,
Müller & Henseling.
Tr. Courveur (1); Legge (11); Pfaffmair
(1-2). Index by Fraser & Lockhart (1).
Tso Chhun Pau Chhui 左塵譔軒.
Commentary on Master Tschiu-Hui's Enlarge-
ment of the Chhun Chhao.
Chhing, + 1718.
Hui Tung 景倫.
Tso Hing Tchhui 蜻蜓蛻.
Miscellaneous Records of the Lone Watcher.
Sung, +1175.
Tsohng Min-Heng 曾德行.
Tsohng Chhui 熊真丁.
Things Uniquely Strange.
Lung Jyng 六境.
Tsohng Tung Tien 景豊麟麟.
The Tu-yang Miscellany.
Thang, c. + 9th century.
Sung, + 1048.
Tsohng Chung Hsia Lu 東蜀事記.
Dreams of the Glory of the Eastern Capital (Kaihifeng).
S/Sung, +1148 (referring to the two decades which ended with the fall of the capital of
North Sung +1126 and the completion of the move to Hangchow +1139).
Meng Yung-Lao 蒙永老.
Tsohng Hsia Pi Lu 仙霞録．
Jottings from the Eastern Side-Hall.
Sung, + 1114.
Wei Thai 魏篤.
Tsohng Peh Chhun Chhih (or Chhhih) 東陂全集 (七集).
The Complete (or Seven) Collections of (Su) Tung-Pho [i.e. Collected Works].
Sung, down to +1101, but put together later.
Su Tung-Pho 松坡.
Tsohng Peh Chhun Chhih (or Chhhih) 東陂全集.
Journal and Miscellany of (Su) Tung-Pho [compiled while in exile in Hainan].
Sung, +1097 to +1101.
Su Tung-Pho 松坡.

BIBLIOGRAPHY A

Tung Chhun Chhing Lu (Chi) 鄭成功錄 (集).
Clarifications of Strange Things [Taoist].
Sung, + 1240.
Chao Hai-Ku 正考休.
Tsohng Chhun Chhing 更性通論.
Comprehensive Mirror (of History) for Aid in Government [-405 to + 999].
Sung, begun, c. +1084.
Ko Shun Kuo 石玉果.
Cf. des Rotours (2), p. 74; Pullyblank (7).
Chung Hui-Thong (7).
Tsohng Jen I Chhia 神機逆算．
Traditions of the Joiners' Craft.
Yuan, + 1265.
Hsiao Chih-Shih 蕭士石.
In Yang Lo Tien, ch. 18, 245.
Ed. Chhui Chhih-Chiên & Liu Tun-Chên.
Tsohng-Ming Chhao Thu Fäau.
See Hsi Chhao-Chiên (2).
Ungh Kitan.
See Tokugawa Nariaki (1).
Waithi 御詩集.
The Origins of Affairs in Japan.
Sung, + 1270.
Koah Eiking 周英書.
Waithi Sunn Sze 御詩山詩集.
The Chinese and Japanese Universal Encyclopedia (based on the San Tahh Tchüeh [1130]).
Japan, + 1712.
Tóresha Ryaen 右原藤原.
Wen Pi Shu 文必書．
Sung, + 1320.
Wei Lhëh 魏億.
Memorable Things of the Wei Kingdom (Shih Kuo).
Sung, + 1300 or We (Chin), + 370 or + 4th century.
Wei Lhëh 魏億.
Memorable Things of the Wei Kingdom (Shih Kuo).
Sung, + 1300 or We (Chin), + 370 or + 4th century.
Wei Lhëh 魏億.
Compendium of Non-Classical Matters.
Sung, c. + 1350.
Wen Lhëh 魏億.
See Tung Liang-Ling 脩亭.
Wei Lihau Shih 物理小識.
Small Encyclopedia of the Principles of Things.
Chhing, + 1664.
Wei Lhëh 魏億.
Yu Chheng-Kwân 余成煥.
San Kuo or Chin, + 1700 or + 4th century.
Wei Lhëh 魏億.
Memorable Things of the Wei Kingdom (Shih Kuo).
Sung, + 1270, but put together from about + 1150 onwards.
Wei Lihau Shih 物理小識.
Small Encyclopedia of the Principles of Things.
Chhing, + 1664.
Fang I-Chhih 方之智.
Wei Lhëh 魏億.
See Tung Liang-Ling 脩亭.
Wen Lin Chhau Shih 武林掌故.
Institutions and Customs of the Old Capital (Hangchow).
Sung, c. + 1750 (but referring to events from about + 1205 onwards).
Chhun Mí 通密.
Wen Lhau 聲侯.
编书 with Master Wu Liang.
Acr. Chou, + 4th or + 5th century.
Chhun Tshun-Thun 通原.
Wen Li Chhia Shih 武林掌故.
Treatise on Armament Technology.
Ming, + 1625.
Mao Yüan-I 藥元一.
Wen Lhau 聲侯.
See San Kuo Chhi."
BIBLIOGRAPHY A

Wu Tai Shih Chi, See Hsin Wu Tai Shih.

Wu Yüeh Chihun Chih Chiang Ch'ien, Spring and Autumn Annals of the States of Wu and Yüeh.

Hsia, Chao Yeh 集史．

Yeh Chung Chi 集申記

Record of Affairs at the Capital of the Later Chao Dynasty, Ch'in, Lu Hsin 鬥史．

Yen Chihou T'ai Shu Shih Hsiang Shu 漢景中三使用書

Book of Physiognomical, Astronomical and Ornithomantic Divination according to the Three Schools.

Aser, Thang, first printed Sung, late 13th century.

Arteh, Yuan Thien-Kang 聖天鋼

Yen Chih Shih Chi, See Juan Yuan (3).

Yen T'ai Chi 愛北奇

Miscellaneous Notes from North of Yen, Liao, Lu Yu-Jen 錯有仁．

Yen Pho Thu Shao, See Ting Kung-Chhen (1).

Yen T'ien Lun 廣雅論

Discourses on Salt and Iron [record of the debate of -85 on state control of commerce and industry].

C.Han, c. -86.

Huan Kuan 潛冤

Partial tr. Gale (1); Gale, Bodeberg & Lin.

Yen, Yen Chi, See Yen-Am Chip.

Yeh Sillik 李相實

Veritable Records of the Yi Dynasty [Chou kingdom, Korea].

Korea, +1302 to 1910.

Officially compiled.

Ying Hsin 偲興

Essay on the Use of Leisure in Retirement, Hsia, +126.

Chang Heng 張衡

Ying Tsao Pa Shih 議注法式

Treatise on Architectural Methods, Sung, +1087; printed +1103; reprinted +1145.

Li Ch'i'en 李稚．

Yo Shu 氣書

Book of Acoustics and Music, N.Wei, c. +535 or E.Wei, c. +540.

Hsien Fang 信苑芳

In VCHP, ch. 31, pp. 194 ff.

Yio Shu Chih Thu Pa 氣書儀軌法

Commentary and Illustrations for the Book of Acoustics and Music, N.Wei, c. +535 or E.Wei, c. +540.

Hsien Fang 信苑芳

Partially preserved in Yo Shu Yao Lu, ch. 6, pp. 158 ff.

Yo Shu Yao Lu 氣書要錄

Record of the Essentials in the Books on Music (and Acoustics), Thang, c. +660.

Wu Huang Hou 武皇后 (the Empress Wu, later known as Wu T'ai Thien), probably written while emperor Kao Tsung was still reigning, incomplete, and only preserved because copied by Kibi no Makibi 吉備真備 between +716 and +732.

Yen-Am Chip 氣蘊要

Collected Writings of Pak Yen-am (Pak Ch'won).

Korea, +1770 onwards, ed. 1901.

Pak Ch'won 李韓翼．

Yio Hai 嘉熙

熱河日記

Diary of a Mission to Jil-Ho [a Korean embassy to congratulate the Chihen-Lung emperor on his seventieth birthday].

Korea, +1784.

Pak Ch'won 李韓翼.

Yio Hui 嘉惠

Ocean of Jade [encyclopedia].

Sung, +1187 (first printed Yuan, +1351).

Wang Ying-Lin 王應麟．

Yio Phien 嘉賢

Jade Page Dictionary.

Liang, +543.

Ku Yeh-Wang 喬野王.

Extended and edited in the Thang (+674) by Sun Chhiang 李覲．

Yio-Yang Tzu Tiu 嘉陽炤

Miscellany of the Yu-yang Mountain [Cave] [in S.E. Szechuan].

Thang, +863.

Tuan Chih-heng-Shih 施成式．

Yio Chien Lei Hsun 嘉輦軼 Lorenzo

The Deep Mirror of Classified Knowledge [literary encyclopedia; a compilation of Thang encyclopedia].

Ch'in, +1710.

Ed. Chang Ying 仁英 et al.

Yio Ching Shih Ta Tien 嘉政拾大典

Institutions of the Yuan Dynasty.

Yuan, +1293 to +1331.

Yio-Ho Chih Hsiao Thu Chih 元教授圖志

Yuan-Ho reign-period General Geography.

Thang, +814.

Li Ch'i Fu 李季甫．

Yio Hui Chih Chhi Thu Shou Lu Tsiu 嘉惠惠赤史溯流

Collective Collection of Yuan Literature.

Yuan, c. +1350.

Ed. Su Tien-Chio 竹天爵．

Yioh Chien Fien 樂觀篇

A Description of Kuangtung [travel diary].

Ming, shortly after +1601.

Wang Lin-Heng 王陵亨．

Yio-Lu Ta Tien 永樂大典

Great Encyclopedia of the Yuan-Lo reignperiod [only in manuscript].

Amounting to 22,877 chapters in 11,093 pps, only about 376 being still extant.

Ming, +1607.

Ed. Hsieh Chin 蕭臣．

See Yuan Thung-Li 子德．
B. CHINESE AND JAPANESE BOOKS AND JOURNAL ARTICLES SINCE 1950

Anon (37). Wen-Wu, Peking, 1959. Names of the 22 writers in this collective work are given on p. 135.
Anon (37). Chang Yin-Lin (2) 張穎林, Discourse on the Boundless Sea (i.e. Nature). [An attempt to show that many post-Renaissance scientific discoveries had been anticipated in ancient and medieval China.] Chung-Kuo Shih Chi, c. 1885.
Anon (37). Chang Yin-Lin (1) 張穎林, History of the Penetration of Western Science and Technology into China in the late Ming and early Ching Periods. CHS, 1944, x (no. 1), 18.
Anon (37). Chang Yin-Lin (2) 張穎林, Ming Ching-chih chih Ch'i Hsi Huang Shu in Ch'ing-Kuo Kuo-liao 明清之際西學入華考, 西學入華考, History of Western Science and Technology in China in the late Ming and early Ching Periods. CHS, 1944, x (no. 1), 18.

BIBLIOGRAPHY B

Anon, (29). Wu-Kuan 胡覲, Ch'ing Kuo Li-Shih Po Wu Kuan 中國歷史詩物館, A Tomb of the Kuo Wei period in the 16th District at Loyang [iron tubular connection joints for carriage canopies]. KKTJ, 1958 (no. 7), 51.
Anon (19). Chang, Kuol Li-Shih Po Wu Kuan 中國歷史詩物館, Catalogue of Recommended Designs at the National Exhibition of Agricultural Machinery. Peking, 1958.

Chih Tien-Chung (1) 翁鏡園.

Hashimoto Masukichi Chariot Construction in the Chang-nan (Kangnam) Arsenal of the Chhing Dynasty. AS/BHIF (Thaiwan ed.), 1951, 23, 145.

Hsii Chao-Chin (1) 賀超敏. "Tsung Tien Chau to Soo Ho 製錠州 主簿在 "Koshin Choki to Shingko Chih Tsao 時代的中國 舊款探源."

Hsii Chao-Chin (3) 賀超敏. "Sangun (I) Chhing period."

Tsao-ti Juan
Koizumi Akio
Japan, 1815.

KKTH, Bronze Forms of Abridged tr. Thompson (1).

Studies in Peking, Yenching Unlv. ArchaeoL

Tsang Fa-Chileh Chien-Pao

Chung Hwa, Shanghai, first printed (in part) Shanghai, 1913; repr. Peking, 1956.

Shi-Chieh shang Tsui-Tsan

Kondō Mitsuô (q. v.).

Tsun no Kōkoku ni taiitei Kankokkai no

Kuo Mo-Jo (q. v.).

Shih Phi Shan Fu 十批判

Chen, Kuok, 1945.

Kuo Mo-Jo (q. v.).

Ko Tai Shih-Hua chih Yen-Chin 古代法

Research of the "Water-powered Reciprocator" or Hydraulic Blowing Engine for iron-works, an ancient discovery in applied science.

WWTK, 1959 (no. 5), 45.

Liu Ch'ung-Chou (q. v.).

Shih-Ching shang Tsin-Tsin ti Shing-Fang 中國古代的水力發射器; "水爪大結論" in the World's Oldest Water-Powered Spinning Machinery—the Great Water-Driven Spinning Machine (described by Wang Chiu Chi in the Yung Shu of +1313.

WWTK, 1959 (no. 12), 29.

Fu Yuan (2) 花園

Kuang-Pi 李光璧 & Chihren Ch'ien-Yeh 丁燕開 (ed.) (1).

Chang Hwa Yüan 轉輪 쉽

The World's Oldest Water-Powered Spinning Machinery—the Great Water-Driven Spinning Machine (described by Wang Chiu Chi in the Yung Shu of +1313.

WWTK, 1959 (no. 12), 29.

Liu Ch'ung-Chou (q. v.).

Kuang-Pi 李光璧 & Chihren Ch'ien-Yeh 丁燕開 (ed.) (1).

Chang Chih-Chih 轉輪bris

The World's Oldest Water-Powered Spinning Machinery—the Great Water-Driven Spinning Machine (described by Wang Chiu Chi in the Yung Shu of +1313.

WWTK, 1959 (no. 12), 29.

Kuang-Pi 李光璧 & Lai Chi-Tu 賴嘉德 (1).

Hai tai Wea Ta Hsiao-Chieh Chou 族域

A Great Scientist of the Han Dynasty; Chang Hsing (astronomer, mathematician, seismologist, etc.).

Essay in Li Kuang-Pi & Chihren Ch'ien-Yeh (q.v.), p. 349.

Liu Ch'ung-Chou (q. v.).

Kuang-Pi 李光璧 & Lai Chi-Tu 賴嘉德 (1).

Hai tai Wea Ta Hsiao-Chieh Chou 族域

A Great Scientist of the Han Dynasty; Chang Hsing (astronomer, mathematician, seismologist, etc.).

Essay in Li Kuang-Pi & Chihren Ch'ien-Yeh (q.v.), p. 349.

Liu Ch'ung-Chou (q. v.).

Kuang-Pi 李光璧 & Lai Chi-Tu 賴嘉德 (1).

Hai tai Wea Ta Hsiao-Chieh Chou 族域

A Great Scientist of the Han Dynasty; Chang Hsing (astronomer, mathematician, seismologist, etc.).

Essay in Li Kuang-Pi & Chihren Ch'ien-Yeh (q.v.), p. 349.

Liu Ch'ung-Chou (q. v.).

Kuang-Pi 李光璧 & Lai Chi-Tu 賴嘉德 (1).

Hai tai Wea Ta Hsiao-Chieh Chou 族域

A Great Scientist of the Han Dynasty; Chang Hsing (astronomer, mathematician, seismologist, etc.).

Essay in Li Kuang-Pi & Chihren Ch'ien-Yeh (q.v.), p. 349.

Liu Ch'ung-Chou (q. v.).

Kuang-Pi 李光璧 & Lai Chi-Tu 賴嘉德 (1).

Hai tai Wea Ta Hsiao-Chieh Chou 族域

A Great Scientist of the Han Dynasty; Chang Hsing (astronomer, mathematician, seismologist, etc.).

Essay in Li Kuang-Pi & Chihren Ch'ien-Yeh (q.v.), p. 349.

Liu Ch'ung-Chou (q. v.).

Kuang-Pi 李光璧 & Lai Chi-Tu 賴嘉德 (1).

Hai tai Wea Ta Hsiao-Chieh Chou 族域

A Great Scientist of the Han Dynasty; Chang Hsing (astronomer, mathematician, seismologist, etc.).

Essay in Li Kuang-Pi & Chihren Ch'ien-Yeh (q.v.), p. 349.
BIBLIOGRAPHY B

Liu Hai-Su (1) (cont.)
Album of Celebrated Paintings. 4 vols.
Chang-Hua, Shanghai, 1935.
Liu Hsien-Chou (4) (revised)
Kung-Chheng (1)
Chung-Kuo T'ai-Shih Shih-Chih Liang-Ch'ing (beings)
Materials for the History of Engineering in China.
CHES, 1935, 3, and 4 (no. 27), 27.
With supplement, CHES, 1942, 3, 135.
Liu Hsien-Chou (5) (revised)
Wang Ch'eng-yi Wu Wu Ta I Pu Chih Chang-Kung-Chih-Shih-
Hsin Ch'uan Ch'eng (1587 (revised)).
Liu Hsien-Chou (4) (revised)
Wang Ch'eng and the First Book on [Modern] Mechanical Engineering in
China p. 390.
CHES, 1943, 3; CLCT, 1943, 2 (no. 225), 215.
Liu Hsien-Chou (3) (revised)
Chung-Kuo t'ai Chi Li-Shih shang ti-Wei 中國自然標本史上的地位.
The Position of China in the History of
Heat Engines.
TPTC, 1943, 39 (no. 18), 35.
Liu Hsien-Chou (4) (revised)
Chung-Kuo t'ai Yung Yung Li-fang-mien ti Fa-Meng 中國在動力方面的發明.
Chinese Inventions in Power-Source Engineering.
CHES, 1943, 3 (no. 10), 3.
Liu Hsien-Chou (5) (revised)
Chung-Kuo t'ai Chuang Tung Ch'ang chih ch'ing-mien ti Fa-Meng 中國在機器機械
之發明.
Chinese Inventions in Power Transmission.
CHES, 1943, 3 (no. 10), 1; with
addendum 1954 (n.s.), 2 (no. 20), 210.
Liu Hsien-Chou (6) (revised)
Chung-Kuo t'ai Chi Chuang Tung Ch'ing chih ch'ing-mien ti Fa-Meng 中國在科學科技方面的發明.
Chinese Inventions in Holographic Engi-
nology.
CHES, 1959 (n.s.), 4; 1, TWHP, 1959, 4 (no. 20), 210.
vol. 1, p. 319.
Liu Hsien-Chou (7) (revised)
Chung-Kuo-Chi Cheh Chung-Ch'ing Fa-Meng 中國建築工程史稿.
A History of Chinese Engineering Inventions.
Liu Wei-Tien (1) (revised)
Chung-Ch'ing Wu Shih Chao T'u. 華世超.
Ensemed Text of The Book of Master Chuang.
Liu Ying (1) (revised)
Chiu Hsin t'ai Hsin Shi. 指揮車輪募.
New Sugggestions about the South-Pointing
[rev. and rev. of Lancaster, 1].
WITP (Scientific and Industrial Supplement).
1947, 19 and 26 Feb.
Liu Yung-Chang-Ping (1)
Ch'ing Chih Chi-Ko Yuan Hsien Hui ti Pei-Wen 鎮海華南省開會紀
述. New Sugggestions about Handicraft Guides on Stone Inscritions found in Suchow and
its Vicinity (Chihching period).
LSTC, 1958 (no. 2), 87.
Liu Yung-Ch'ang (2) (revised)
Tiu Shou-Chen "Chiu T'ao Chuang Ch'ih Pei" Wei ti Hsuan-Fa 雲山府
A Stone Inscriptiosn on Management in the
Silk-Weaving Industry in Suchow [+ 1647].
LSTC, 1938 (no. 4), 87.
Liu Yung-Ch'ang (3) (revised)
Chhuan-Lung-Ssu Yuan Chhuan Chh'ang Wu San Hsien 'I-Ting Chih-Fang Thiao-i Ch'ang Chh'ang' Pei 乾隆歲星入吳三縣
鐵政勘錄及附錄.
Notes on the Regulations for Paper-Mills agreed by the Three Districts of Yuan (ho), Chiang-chou and Wu during the Chhien-Lung reign-period [+ 1736 to + 1799].
LSTC, 1939 (no. 2), 85.
Lo Chen-Yu (1) (revised)
Haih Ch'eng-Ching Sun Chh'ang Kuo Chi Wu Tzu Shou 曹元所留古代物語集.
Illustrated Description of Ancient Objects
Preserved in the Nanking Studio. p. 150.
Lo Jung-Pang (1) (revised)
Ch'ung-Kuo-chih Chih Ch'un Chhuan 中國之未來.
(The History of the Paddle-Wheel Boat in
China.
CHTY, 1960 (n.s.), 2 (no. 1), 213.
Eng. tr., Lo Jung-Pang (3).
Lo Wen-Pin (1) (revised)
Sun Chhuan Fa Ching 四川鹽政史.
Memorials of the Salt Industry of Szechuan.
Compiled and printed at request of the
Governor-General of the province, Ting Pao-Chao, 1882.
Ma Kuo-Han (1) (ed.) (revised)
Hsin Yen Shan Fang Ch'i Pi Shu 玉園書屋
Mandee.
The Jade-Box Mountain Studio Collection (Reconstituted) Lost Books.
1853.
Ma T'ie-Chih (1) (revised)
Chu Chou-Yen-Chen Hsien Wu Chiao-suan ti Fa-Meng 中國水車
永昌州校寺院發展史.
I-chih-nu-shih-shih-ni Yen Anyang Su-T'ao-Kung T'uan Fa-Chih Pao-Kuo - 九
九三五年大學校洲寺發展報告.
84.
Shen Ping-Ch’cheng (2) (cont.)
Essentials of Sericulture.
1956.
Shigawa Toshirō (1) 尾佐川利郎
Shi (no Shohtsushiki Shikan) 同deck思想
的思
想
作
者
人
Shen Ping-Ch’cheng (2) (cont.)
Essentials of Sericulture.
1956.
Shigawa Toshirō (1) 尾佐川利郎
Shi (no Shohtsushiki Shikan) 同deck思想
的思
想
作
者
人
Shen Ping-Ch’cheng (2) (cont.)
Essentials of Sericulture.
1956.
Shigawa Toshirō (1) 尾佐川利郎
Shi (no Shohtsushiki Shikan) 同deck思想
的思
想
作
者
人
Shen Ping-Ch’cheng (2) (cont.)
Essentials of Sericulture.
1956.
Shigawa Toshirō (1) 尾佐川利郎
Shi (no Shohtsushiki Shikan) 同deck思想
的思
想
作
者
人
Shen Ping-Ch’cheng (2) (cont.)
Essentials of Sericulture.
1956.
Shigawa Toshirō (1) 尾佐川利郎
Shi (no Shohtsushiki Shikan) 同deck思想
的思
想
作
者
人
Shen Ping-Ch’cheng (2) (cont.)
Essentials of Sericulture.
1956.
BIBLIOGRAPHY B

Unno Kazutaka

Wang Wang Wang

Wang

The Tomb

Konn-shi Shisui-teki

Soc.

Seoul

Kyoto, 1956.

YCHP,

Chieh

Ij

Chen-To (1)

Chosen Koseki Kenkyu-kai

on Khun-Lun

Chinese Buddhism [wheel-maps centered

Dynasty.

Birthday of

Seismograph of Chang Cheng

the Hodometer (Li-Measuring Drum

Phenomena in China, III

Alchemy and the Development of Metal-

Chung-Kuo Kako-Ki

Kuan-yu

Chung-Kuo Tu Liang

III

Hai Kuo Thu

Collected Commentaries on the Book of

Shui Phai ho

Wang Nien-Sun

Hsien-Chhien

Hsiao

Wu Yen Chai

Wu Yti-Chiang

Wu Ju-Tsu

Yabuuchi Kiyoshi (11) (ed.)

Nihon Tokei no Tokei Kyouiku

1955 (no. 2), 33.

Wu Nan-Hai (1)

Chung-Kuo Wu-Li-Hi-Chih

1935, 2 vols.

Chung-Kuo Wu-Li-Hi-Chih

Chinese History

Pr. pr. Dept. of Physics, Wuhan Unive.

Wu Yu-Chiang (1) (ed.)

Mou Tai Chiao Chu

"Ch'en Hsien-tsai Ch'ang-Lo

the Clocks of the Tokugawa Period.

Wuhan,

Nihon Hyoronsha, Tokyo, 1942.

Yang Chung-I (1)

"Tenho Kaisatsu no Kenkyu

A Study of the Tenh Kung Kung Wu (The

Exploitation of the Works of Nature,

+1637).

Yanguchu Kiyoshi (1) (ed. 内脅

Chishoku no Toshi)

IJHS, 1957 (no. 19), 19

"Tenho Kaisatsu no Kenkyu

A Study of the Tenh Kung Kung Wu

(Yeh Chi-sheng)

quoted).

Yaoshing Lo (1)

Chung-Ho Hsing-Kuo-1 Shu-Wen-Hu Li-

Shih Pien Nien Tui Chao 中國科學史

Chhi-Thien (I).

Illustrated Record of the Maritime [Occi-

dental] Navy

Alchemical and the Development of Metal-

Chung-Kuo Kako-Ki (collected essays).

Chung-Kuo Kako-Hiath Thu-Bhu 1-Chhi

Kung-su, Shanghai, 1935.

Shih-erh Yen Chai Si Pu 十二曆事鑑

Miscellaneous Notes from the Twelve-

Isotatomic Studio.

Wang Chung-Lao (1) 張令澤

Kuan-yu Chung-Kuo Nu Li-Shih Hui ti

Wu-Chih chieh Ch'ing-Chih t'ung

晉初至清初 中國各遞之形及其關係

asymmetry in the formation of the

the Breakdown of the Slave Society in

and the formation of the

The Birth of the Nation

Wang Chung-Lao (1)

Wang Chung-Lao (1) 張令澤

Kuan-yu Chung-Kuo Nu Li-Shih Hui ti

Wu-Chih chieh Ch'ing-Chih t'ung

Chung-Kuo Tu Liang Shih Hsiang

1896.

Wang Hsien-Chhien (1) (cont.)

1888.

See Yen Chieh (1).

Wang Hsien-Chhien (1) (ed.) 王先鈞

Chung Tsau Chi Ch'ih 詩子集

Collected Commentaries on the Book of

Chuan, Wuhan, 1909.

Wang Jen-Chhien (1) 王家賢

Ko Chih Wei 楊吉正

Scientific Traces in Old Times.

Wang Nien-Sun (2). 11

See Kung Ya Su Chung

Wang Su 武安, Huai Lin, 鄒麟 & Wang Liu

王先鈞

1909.

Wu Yu-Chiang (1) (ed.) 吳汝康, Mo Tai Chiao Chu

"Ch'en Hsien-tsai Ch'ang-Lo

the Clocks of the Tokugawa Period.

Wuhan,

Nihon Hyoronsha, Tokyo, 1942.

Yang Chung-I (1)

"Tenho Kaisatsu no Kenkyu

The Lowest Ranks of Society in the

Thang Dynasty period.

SH, 1935 (no. 4), 124.

Ts. Sun & de Frances (1), p. 185.

Yang Chung-I (1) 張令澤

"Chih Hk Shih Thuh Kho Chih Wung Shuh Shuh Thu Kho

植物名實圖

Ilmu Investigation of the Names and

Natures of Plants.

Wu Ju-Tsu 朱超音 & Hu Chhien-Ying

Panchao he Hsin-tai Ch'ing-Lo

Album of Pictures illustrating the Collection

of Paintings in the Lioning Provincial

Museum.

Yang Kuan (1) 鄧觀

Chung-Kuo Tu Yeh-Chhieh Kuo-Fu Lu

ho Shih-Li Yeh-Tsai Li Fu-Ping 中国古代漢代畫風及其

Turns 漢代畫風的發展。
BIBLIOGRAPHY A

Yang Khsuan (1) (cont.)
On the Blast Furnaces used for making Cast Iron in Ancient China, and the Invention of Hydraulic Blowing-Engines for them.
Essay in Li Kuang-Pi and Chihien Chih-Yeh (q.v.), p. 71.
Peking, 1955.

Yang Khsuan (2) 杨宽
Chung-Ku Lo-Tai Chih Tu Khoa 中国古代炼铁技术
A Study of the Chinese Foot-Measure through the Ages.

Yang Khsuan (3) 杨宽
Chung-Kuo Ku-Tai Yeh-Thih Chi-Shu & Fa-Ming fu Fa-Chu 中国唐代炼铁技术
The Origins, Inventions, and Development of Iron [and Steel] Technology in Ancient and Medieval China.
Jen-Min, Shanghai, 1956.

Yang Khsuan (4) 杨宽
Kuan-Yu Shih-Li Yeh-Thih Ku-Fing-Chu 'Shai Phai' Fu-Yuan te Tian-Lun 关于水力压铁风箱水排的发明
Queries on the Reconstruction of the Vertical Water-Wheel Hydraulic Blowing-Engines in Ironworks of the Sung and Yuan periods.
WWWK, 1955 (no. 7), 48.

Yang Lien-Shing (1) 杨连声
Tung Han ti Hao Tsu 东方的豪楚
The Great Families of the Eastern Han.
CHY, 1956, xi (no. 4), 1907.
Tr. Sun & Frances (1), p. 103.

Yeh Chao-Han (1) 谢朝乾
Han Tai Shih Kuo Yeh-Thih Ku-Feng-Lu Thu 汉代石制鼓轮风箱
A Han Relief showing a Blast Furnace for making Cast Iron.
WWWK, 1955 (no. 10), 2 & 20.

Yeh Chihien-Yu 杨其育
Tenhuang Pi Hua 彩绘砖画
The Wall-Paintings at Tenhuang (the Chihien-toung Cave-Temples).
Chiao-Hua I-Shu, Peking, 1957.

Yen Chih (1) (ed.) 袁吉
Huang Chingh Ching Chih 皇朝經世
Collection of more than 150 Monographs on Classical Subjects written during the Chihing Dynasty.
1825 and 2 ed., Keng Shen Pu Kuan, 1866.
Cf. Wang Hien-Chien (3).

Yen Kho-Chin (1) (ed.) 袁珂
Chihhuan Sheng-Ku San-Sai Chih Han San-Kuo Liu Chao Wen 全上古三代秦汉三国六朝文
Complete Collection of Prose Literature (including Fragments) from Remote Antiquity through the Chihing and Han Dynasties, the Three Kingdoms and the Six Dynasties.
Established 1865; published 1887-93.

Yen Lei et al. (1) 連磊
Sheng Chih Shih-hsiaung Chih-Chih Han Ma-tsi-eh-tshen Pa-Chih Chien-Chi 陝西華陰縣嶗山قيق第二第二次鍊鐵
Short Catalogue of Objects found in the Second Excavation of Chih and Han Tombs at Hsing-chhing-tshun near Sian
KKT, 1955 (no. 13), 662.

Yen Yun-Chieh (1) 袁云徹
Po Hung Lin Ming Han Kuo's 'Mei Hui-Yang Shih Kuo yi Chung-Kuo Shih Kuo Pao-Ming' 政興慶視相互的西漢時期
與中國時期之比較.
A Comparison of Chinese and Western Horary Systems by way of a Postscript to [Fang Hao's] 'New Study of the novel Dream of the Red Chamber'.
TPCT, 46 (no. 16), 27.

Yen Ya (1) 袁野
Chung-Kuo Li-Shih shang Chi-Hui Chih-Shu Jen Wu 中國歷史上的科學人物
Lives of twenty-two Scientists and Technologists eminent in Chinese History [including e.g. Chang Hsing, Tsu Chih-Chih, Yu Yen-Wen and Yu Wen-Khan].
Chi-Lien, Shanghai, 1951.

Yen Ya (2) 袁野
Chung-Kuo Ku-Tai hua-shang yu Shen Ching T'ou Chu Chu-Chih Kuo Fu-Ming 中国古代關於深井鑽探技術的發明
The Invention of Deep Drilling Technique for Wells and Boreholes in Ancient China.
Essay in Li Kuang-Pi and Chihien Chih-Yeh (q.v.), p. 186.
Peking, 1955.

Yu Kwangmin (1) 余光敏
Yi Chih Ch'u Yen-Chu SOCIAL INVESTIGATIONS History of Irrigation during the (Korean) Yi Dynasty.
Korean Research Centre, Seoul, 1961 (Korean Studies series, no. 8).

Yonezawa Yoshio (1) 萩原洋雄
Kumari ni oheru Kyoitei Seihaga Kato no Hattotu 某家に於ける營官吏作場構の発展
On the Development of the Organisation of Drowloom Weaving in Palace Workshops during the Han Dynasty.
KK, 1938, nos. 571, 174-7.

BIBLIOGRAPHY B

Yoshida Mitsukuni (1) 吉田光邦
Shibari-Kitchou no Nikkatozai 防堤工記
Notes on some Aspects of 'Technology in the 'Artificers' Record' of the Chu Li.
TOKI, 1959, 30, 187.

Yu Chiang-Hai (1) 喬昌海
Fang Han Chi Yao 西漢冶考
Essentials of Bronze Casting.
1822.
BIBLIOGRAPHY C

AUDINS, SIR EDWIN (5). "The Light of Asia; or, the Great Renunciation, being the Life and Teaching of BUDDHA." London, 1899, frequently reprinted.

AUDIENG, L. (3). Las Cuestiones Chinas; IV, Descripcion des los Jesuitas. Museo de la Raza, Mexico, 1937.

AUDIN, MARCEL (1). "Le Voyage de la Chine à l’Inde et du Tibet..." AOS, 1930, 55, 30, 2, 81. (American Anthropological Association Memoirs, no. 75.)

BIBLIOGRAPHY C

BAROJA, J. CARO (5). "En la Campiña de Córdoba (Observaciones de 1945)." O-mills and presses. DTP, 1945, 18, 270.

BARROW, John (1). "Travels in China." London, 1834. German tr. 1844; French tr. 1852; Dutch tr. 1859.
BULLING, A. (1). 'Descriptive Representations in the Art of the Chhin and Han Period.' Inaug. Diss.

BURGESS, A. (9). 'A Bronze Cart [of Chou or Han].' ORA, 1964, 6 (6a), 1, 127.

BURGITI, M. C. (1). BURGITI, M. C. (2).

BURLINGAME, R. (1). 'Umbrella Motifs in the Decoration of...'

BURSTALL, A. F. (2). 'Experimental Working Models of the Chinese...

BURSTALL, A. F., LANSDALE, W. E.

BUTLER, H. E. (1) (tr.).

CALZA, G. (1).

CARTER-WILSON, E. M. (1). 'The Woollen Industry [in the Middle Ages].'

BIBLIOGRAPHY C
portfolios of plates.
lVlissirm Archeologique dans la Chine S~:t>tlentriQna,(e,
{Publ. de l'Ecole Fr\in<;.
(I I).
sur Piure en Chine aux Temps des .-{""'JV,(j,"-UlSIU'S

CHAVA.NNES,
1893.
CREN', GIDEON. See Chhen Chhi-Thien.
CHftNG CREN-To. See Prusek (3)·
C}~G T~-KHUN (2) (tr.). Travels of the Emperor l~Iu.
C!,ilNG T~-KHuN (4). 'An Introduction to Chinese Ci'vilisation
Aug. p. 28, 'Early Inhabitants' ; Sept. p. 28, 'The Beginnings
of Culture'
CHtNG Tft-KHu:-l (5) (cd.). Illustrated Catalogue of an Exhibition of Chinese
Collection (held in connection with the 23rd International Congress of Or'ie(ltalisi:s).
Museum, Cambridge, 19H·
CHbio Tf!-KHuN (9). Archaeology in China: vol. 1, Prehistoric China; vo!.
Symposium on Information
CHES1';E~UX. & NEEDHAM, J. (1). 'Les Sciences en Extreme-Orient du 16eme a\l
Siede.'
Histoire

. .:>ystem
C>
D'
.
CHESTNUT,
and Regulatmg
eSlgn. ""1
Vv! ey, N ew Y'
ark,
195 1 ; Chapman & Hall, London, 1951 (General Electric monograph series, no. I). (Rev. J. Greig,
N, 1953, I72, 9r.)
.
.
'
resume (an illustrated Korean work on city fortifications described). TP, 189 8 .9. 394·
CHEVALIER, H. (2). 'La Charrue en Asie.' GC, 1899,36,26; 1901 ,38 ,346 .
CHHEN CHHI-THIEN (1). Lin Tse-HsU; Pioneer Promoter of the Adoption of Western Nleans of ll1aritime
Defence in China. Dept. of Economics, Yenching Univ., Vet ch (French Bookstore), Peiping, 1934·
([Studies in) Modem Industrial Technique in China, no. 1.)
..,
.
CHHEN CHHI-THIEN (2). Tseng Kuo-Fan; Pioneer Promoter of the Steamshtp tn Chzna . . Dept. o(
Economics, Yenching Univ., Vetch (French Bookstore), Peiping, 1935· ([Studies in] Modern
Industrial Technique in China, no. 2.)
CHHEN CHHI-THIEN (3). Tso Tsung-Thang; Pioneer Promoter of the Modern Dockyard and.t~e Woolle~1
Mill in China. Dept. of Economics, Yenching Univ., Vetch (French Bookstore), Pelpll1g, I93 8.
([Studies in] Modern Industrial Technique in China, no. 3·)
CHHEN PO-SAN (1). 'Cable-tow Traction for Farm Tools.' PKR, 1959 (no. 8), 23·
CHHEN Tsu-LUNG (1). 'Table de Concordance des Numerotages des Grottes de Touen-Hoang
[Tunhuang].' JA, 196 2, 25 0 , 257·
.
..
CHHU TA-KAO (2) (tr.). Tao Te Ching, a new translation. Buddhist Lodge, London, 1937·
CHI CHHAO-TING (1). Key Ecrmomic Areas in Chinese History, as revealed in the Development vJ PublIC
.
agriculture and farm implements, pp. 295, 304; dentistry, p. 331.)
CHIA.."lG SUAO-YUAN (1). Le Voyage dans la Chine Ancienne, considere principalement sous son Aspect
lvlagique et Religieux. Commission Mixte des ffiuvres Franco-Chinoises (Office de 'ablications),
Shanghai, 1937. Transl. from Chinese by Fan Jen.
CHILDE V. GORDON (1). The Bronze Age. Cambridge, 193 0 .
CHILDE: V. GORDON (9). 'Rotary Querns on the Continent and in the Mediterranean Basin.' AQ,
1943, 17, 19·
. .
.,
CHILDE, V. GORDON (10). 'The First Waggons and Carts-from the Tlgns to the Severn. PPHS,
195 1 , 177·
.
CHILDE, V. GormON (Il). 'Rotary Motion [down to -1000]'. Art. in HIstory of Technology, vo!. I,
CHILDE, V. GORDON (13) .• A Prehistorian's Interpretation of Diffusion.' In lndependerlce,. Convergence
and Borrowing, in Institutions, Thought and Art, p. 3. Harvard Tercentenary PubhcatlOD, Harvard
Dni". Press, Cambridge, l\IIass., 1937·
.
.. ,
CHILDE, V. GORDON (16). 'Wheeled Vehicles [in Early Times to the Fall ~f the AnCIent Emp1!es].

BIBLIOGRAPHY C
CHRlSTENSEN, A.
l'Iran sous ies Sassanides.
Paris, 1936
ed.
Copenhagen
CHURCHILl., A. CHURCHILL, (1) (ed.). A
1704; :md ed. 1732-52.
rCWOT, P. M.] (4). 'Du Kong .. pou [Kung Puj, ou du Tribunal des Om'rages Publics.' .1V!CHSANIUC,
1782, 8, 278.
CLARK, GRAHAME
'Water in Antiquity.' AQ, 1944, 18, L
CLARK, H. O. (I).
on Horse-Mills.' TNS, 1928,8,33.
CUvIJo, Ruy GONZALES (1). Embassy to Tamerlane. London, 1928.
CURK-MA.'{WELL, J. (1). 'On the Motion of Governor-BaUs in Steam.
CUNE, W. (r). lvfininlllJnd l'vietalluTgy in Negro Africa. Banta,
graphed). (General Studies in Antruopology, no. 5, Iron.)
CLUTTON,
(I). 'The First Mechanical Escapement?' AHOR, 1962,3,
182,
COLA.";], M. (5). 'Ethnographie Comparee; V. Pieces et CQutumes Extrem.e-Orientale ou Indonesienne
en Indochinc.' BEFEO, 1938, 38, 212.
BEFEO, 1938, 38, 225. 'VII, Documents ethnographiques divers.' BEFEO, 1938, 38,
COLIN, G. S. (r). 'La Noria Marocaine et les Machines Hydrauliques dans le Monde Arabc.
1932, I4, 22.
COLLADON, M. & CHAMPIONNIERE, lVI.. (I). 'Note sur les Machines a Vupeur de Savery.' ACP, 1835,
59,24·
COMBRIDGE, J. H. (3). 'The Chinese Water-Clock.' HORJ, 196 3, 105, 347,
CONRADIS, H. (1). 'Alte Baggermaschinen.' BGTIITG, 1937, 26, SI.
DE CONTl, NICOUJ (I). In The Most Noble and Famous Travels of ll1arco Polo, together with the Travels
of Nico/a de Conti, edited from the Elizabethan translation of J. Framptrm (1579), etc., by N. IVI.
CONWAY, H. G. (1). 'Some Notes on the Origins of Mechanical Servo-Mechanisms.' TNS, 195+ 29,
55·
L
CONZE, E. (7). 'Recent Progress in Buddhist Studies.' 111lW, 1959,34 (no. r),
COOMARASWAMY, A. K. (2). 'The Treatise of al-Jazari on Automata [+ 1206); Leaves from a MS.
the Kitiibfi Ma'arifat al-ijryaZ al-Handasfya in the Museum of Fine Arts, Boston, and elsewhere,'
Mus. of Fine Arts, Boston, 1924. (Communications to the Trustees, no. 6.)
CORDIER, H. (5). 'Deu..x Voyageurs dans l'Extreme-Orient au 15e et I6e Siecles.' TP, 1899, 10, 380
(de Conti and Varthema; bibliographical only).
CORDIER, H. (8). Essai d'une Bibliographie des Ouvrages publies en Chine par ies Europeens au
et au
CORONELLI, VINCENZO (1). Epitome Cosmographica. Poletti, Venice, 1693.
COURANT, M. (3). Catalogue des Livres Chinois, Coreens, Japonais, etc. dans le Bibliotheque Nationale,
Departement des 11;lanuscrits. Leroux, Paris, 1900-12.
COUVREUR, F. S. (1) (tr.). • Tch'ouen Ts'iou' [Chhun Chhiu) et 'Tso Tchouan' (Tso Chuan]; Texte
(photographically reproduced Vetch, Peiping, 1947).
Cox,]AMES (r). A Descriptive Catalogue of the several Superb and]l;lagnificent Pieces of Mechanism and
Jewellery exhibited in 1V!r Cox's Museum at Spring Gardens, Charing Cross. Cox, London,
1772.
Cox, JAMES (2). A Descriptive Inventory of the several Exquisite and Nlagnificent Pieces of 2V!echanism
and Jewellery comprised in the Schedule annexed to an Act of Parliament made in the 13th year of


BIBLIOGRAPHY

H. M. King George III, for enabling Mr. James Cuny of the City of London, Jeweller, to dispose of his Museum by way of Lottery. Cuny, London, 1774.

[For James (5).] A Description of a Most Magnificent Piece of Mechanism and Art. London, 1796.

Crommelin, J. L. (2). 'Lord Macartney's Embassy to Peking in +793 from Official Chinese Documents.' JOSHK, 1854, 8, 117.

Macartney (1, 2); Gillan (1).

Curwood, O. G. S. (1). 'A Primitive "Throwing-Machine" (the tribulum).' AQ, 1935, 9, 335.

Cuming, H. G. (1). 'A Study of the Evolution of the Chinese World-View.' Open Court, Chicago, 1926. (Note by the author will be found in Vol. 3, p. 155.)

Curwen, E. C. (2). 'Querns.'

Curwen, E. C. (3). 'More about Querns.'

Curwen, E. C. (4). 'The Problem of Early Water-wheel Mills.'

Curwen, E. C. (5). 'The History of Keys.'

Curwen, E. C. (6). 'The Internal Combustion Engine; some Early Stages, in its Development.'

Curwen & Hatfield (1). Plough and Pasture; the Early History of Farming; Pt. I, Prehistoric Farming of Europe and the Near East; Pt. II, Farming of Non-European Peoples. Schuman, New York, 1953. (Note that the University of Chicago Press, 1953, is an error. The correct publisher is Schuman, New York.)

DAECHER, See à Acre.

DAMAN, G. (3). 'Von der Ernte zum Mühlen (Ernten, Dreschen, Werfen, Sieben, Verwaeren, Mahlen).'

Dury, B. (2). (ed.) The New Discoveries [Noue Reptia]. The Sciences, Inventions and Discoveries of the Middle Ages and the Renaissance as represented in 21 Engravings issued in the early 1570's by Stradanus [Jan van der Stradanus]. Book 19 plates and one title-page, also containing the 2 plates and one title-page of America Retrosio. Burnaby Library, Norwalk, Conn., 1953.

DIEHL, H. & SCHRAMM, E. (2) (ed. & tr.). "Philos Beloepa. (Bl. iv of the Mechanick)." APAWH, 1948c, no. 23.

DITTMANN, H. (1). "Der Segelschiff von Medinet Madi." MDIK, 1941, 80, 60.

I. Aerial Navigation, by Sir George Cayley (1809).
II. Aerial Locomotion, by F. W. Wenham (1866).
III. The Art of Flying, by T. Walker (1810).
IV. The Flying Ship, by Francesco Lana (1760).
V. Gliding, by P. S. Pictet (1857); and The Aeronautical work of John Stringfellow (b. 1799).

The Flight of Birds, by Alfonso Borrelli (1860).

HYSBITE ENGINEER, the anonymous. See Anon. (14).

680 BIBLIOGRAPHY

LEGGE, J. (1), (2), (4) (tr.). The Chinese Classics, etc.: The Works of Confucius, the 'I Ching;' the 'Chiu Ching.' Oxford, 1878. (SEE, no. 3; repr. in various eds. Comp. Press, Shanghai.) For the full version of the Shu Ching see Legge (10).

LEGER, J. (4) (tr.). A Record of Buddhist Kingdoms, being an account by the Chinese monk Fa-hsien of his journey to India and Ceylon (+540 to +575) in search of the Buddhist Books of Discipline. Oxford, 1886.

LEGER, J. (10) (tr.). The Chinese Classics, etc.: Vol. 10. The Taoist Library. (Contains (a) Tao Yi Ching, (b) Chuang Tsu, (c) Shao Yang Phin, (d) Ching Ching Ching, (e) Yin Fu Ching, (f) Jih Yung Ching.) 2 vols. Oxford, 1886; photolitho reprint, 1927. (SEE, nos. 29 and 40.)

LEGGE, J. (11) (tr.). The Chinese Classics, etc.: Pt. III. The 'Li Chi.' 2 vols. Oxford, 1885; reprint, 1926. (SEE, nos. 27 and 28.)

LEGGE, J. (17) (tr.). The Chinese Classics, etc.: Pt. II. 'The K'ing [I Ching].' Oxford, 1883, 1890. (SEE, nos. 16 and 17.)

LEGS, J. (1). See Reid, Lindsay (1).

LEGS, J. (1) (tr.). The Tests of Confucianism, translated: Pt. I. 'The Shu Ching,' the religious portion of the 'Shih Ching;' the 'Chiu Ching.' Oxford, 1875. (SEE, no. 3; repeated in various eds. Comp. Press, Shanghai.) For the full version of the Shu Ching see Legge (10).

LEGS, J. (4) (tr.). A Record of Buddhist Kingdoms, being an account by the Chinese monk Fa-hsien of his journey to India and Ceylon (+540 to +575) in search of the Buddhist Books of Discipline. Oxford, 1886.

LEGS, J. (10) (tr.). The Chinese Classics, etc.: Vol. 10. The Taoist Library. (Contains (a) Tao Yi Ching, (b) Chuang Tsu, (c) Shao Yang Phin, (d) Ching Ching Ching, (e) Yin Fu Ching, (f) Jih Yung Ching.) 2 vols. Oxford, 1886; photolitho reprint, 1927. (SEE, nos. 29 and 40.)

LEGS, J. (17) (tr.). The Chinese Classics, etc.: Pt. II. 'The K'ing [I Ching].' Oxford, 1883, 1890. (SEE, nos. 16 and 17.)

Moore, A. C. (4). 'An Introduction to the I Yua Tha Club.' TP, 1930, 27, 179.

Moore, A. C. (3). 'The Wonder of the Capital' (the Sung books Tu Ch'eng Chi Shing and Meng Long Lu about Hangchow.). NCR, 1921, 3, 12, 356.

Moore, A. C. (8). 'Carriages in Marco Polo's Quinqua.' TP, 1925, 24, 66.

Moore, A. C. (14). Quinqua, with other Notes on Marco Polo. Cambridge, 1927.

(Contributions from the Museum of History & Technol., no. 7.)

Van Nabarro, Domingo. See Cummins (1).

Neeham, Joseph (16). 'Central Asia and the History of Science and Technology.' JRCAS, 1940, 3(10). 25.

BIBLIOGRAPHY C

DELLA PONOMAREV, etc.

gattungen.'

College, London, and 2000 outline; from other Sources. *Instruction Sublimes et de Construction*.

Paris, 1788.

Der Alter und Herkunft des europiiischen Flachendrachens' (kite).

to 1912.

717 (mirrors), 736, 737 (pillows), clls.

On the Pumping Engine.

with an International Check-list of Astrolabes.

Egyptians.

Egypt.

London, 1897.

Pietari, W. (93) (tr.). 'Denkwurdigkeiten aus der Geschichte von China (11) (tr.). 'Yantras or Mechanical Contrivances in Ancient India.'

*Wheel of the Ancienrt IVlission of China (1) (tr.). 'Alter und Herkunft des europiiischen Flachendrachens' (kite).

On the Origin of Clockwork, Perpetual Motion Devices, and the [Magnetic Compass].

Om the Pumping Engine.

with an International Check-list of Astrolabes.

Egyptians.

Rotation Correction by his grandmah... Howell, Liverpool, 1869.

On the Origin of Clockwork, Perpetual Motion Devices, and the [Magnetic Compass].

Om the Pumping Engine.

VON WALEY, See McCurdy, E. (1).

VON WALEY, See McCurdy, E. (1).

WALDRICH, See Lassus & Delcroix (1); Hahnloser (1).

WALTER, G. W. (1). 'An Imitation of Life' (automata with two receptors (light and touch), two valves, and two motors (movement and steering)). SAM, 1950, 20a (no. 5), 42 (b) 'A Machine that Learns.' SAM, Chicago Press, 1953.

WARD, F. A. B. (1). 'Fire and Ignes Fatui in Windmills.' JRAS, 1941, 26, 127.
GENERAL INDEX
by Muriel Moyle

Notes

(1) Articles (such as 'the', 'al-', etc.) occurring at the beginning of an entry, and prefixes (such as 'de', 'van', etc.) are ignored in the alphabetical sequence. Saints appear among all letters of the alphabet according to their proper names. Styles such as Mr, Dr, if occurring in book titles or phrases, are ignored; if with proper names, printed following them.

(2) The various parts of hyphenated words are treated as separate words in the alphabetical sequence. It should be remembered that, in accordance with the conventions adopted, some Chinese proper names are written as separate syllables while others are written as one word.

(3) In the arrangement of Chinese words, Chh- and Hs- follow normal alphabetical sequence, and a is treated as equivalent to u.

(4) References to footnotes are not given except for certain special subjects with which the text does not deal. They are indicated by brackets containing the superscript letter of the footnote.

(5) Explanatory words in brackets indicating fields of work are added for Chinese scientific and technological persons (and occasionally for some of other cultures), but not for political or military figures (except kings and princes).

A-Chu (Mongol commander, +1272), 424
Abbey and cathedral clocks, 543
Abhidharma Sutras, 520
Account of the Travels of the Emperor Mu. See Mu Thien Tzu Chuan
Acoustics, xl
Acrobats, 157, 283, 595
Ad-aerial wheels. See Ex-aerial and ad-aerial wheels
Ad-aqueous wheels. See Ex-aqueous and ad-aqueous wheels
Ad-pistonian and ex-pistonian machines. See Ex-pistonian and ad-pistonian machines
Ad-terrestrial wheels. See Ex-terrestrial and ad-terrestrial wheels
Adlay (Job's tears, Coix lacrimal, 182
Advantageous Specifications for Agricultural Tools and Machinery. See Nipu Iienri-ron
Adze, 52, 53
Aerodynamics, 568, 586-9, 591-3
Aeronautical prehistory, xli, 568-99
Aircraft model, 575-6, 580, 586, 591, 592
Aircraft omnitrooper type, 275 (b), 591
Aircraft power-sources, 582, 593, 593
Aircraft Akbar (Mogul emperor, r. +1556 onwards, d. +1605), 88 (j)
Albert of Saxony (natural philosopher, +1316 to +1390), 508
Albertus Magnus (natural philosopher, +1206 to +1280), 46, 237
Albusi. See al-Zahrulwi
Alchemy and alchemists, 18 (d), 48, 64, 501
Aethelmaer (Saxon monk, +11th century), 588
Africa, 185, 317, 328
Age of individual, Chinese reckoning of, 478 (d)
Agricola (Georg Bauer, +1494 to +1555, writer on mining and metallurgy), 94, 123, 141, 149, 154-5, 293, 213, 216, 310-1, 395
Agricultural iconography, 166 ff.
Agricultural literature, 165-74
Ailleth, s (a)
Air-compressors, 91, 222, 244
Air-conditioning, 134, 150-1
Air-currents, 590
Air-lift', 590
Air pipes, 131
Air-pumps. See Pumps
Air-screw, xlv, 124, 226, 565, 574, 576, 582, 583, 585, 592
Aircraft
Aircraft model, 575-6, 580, 585, 591, 592
Aircraft omnitrooper type, 275 (b), 591
Aircraft power-sources, 582, 593, 593
Aircraft Akbar (Mogul emperor, r. +1556 onwards, d. +1605), 88 (j)
Albert of Saxony (natural philosopher, +1316 to +1390), 508
Albertus Magnus (natural philosopher, +1206 to +1280), 46, 237
Albusi. See al-Zahrulwi
Alchemy and alchemists, 18 (d), 48, 64, 501
Aethelmaer (Saxon monk, +11th century), 588
Africa, 185, 317, 328
Age of individual, Chinese reckoning of, 478 (d)
Agricola (Georg Bauer, +1494 to +1555, writer on mining and metallurgy), 94, 123, 141, 149, 154-5, 293, 213, 216, 310-1, 395
Agricultural iconography, 166 ff.
Agricultural literature, 165-74
Ailleth, s (a)
Air-compressors, 91, 222, 244
Air-conditioning, 134, 150-1
Air-currents, 590
Air-lift', 590
Air pipes, 131
Air-pumps. See Pumps
Air-screw, xlv, 124, 226, 565, 574, 576, 582, 583, 585, 592
Aircraft
INDEX

Bellows, 108, 135 ff., 378, 381
box-, 135, 147
ceunate all-wood, 150, 379
fan-, 135, 378, 374 ff.
furnace-, 404
metallurgical, sili, 30-1, 33, 84, 108, 116, 117, 140, 149, 150, 166, 204, 236, 368, 390-8, 483
Bellows piston-, sili, 46, 136 ff., 149-50, 180, 201, 237, 374
'push-and-pull-', 139, 140, 155
pyramidal ceunate wood-and-leather, 149 ff., 374
skin-, 133, 137, 143, 149, 155
technical terms, 137
Beist-drive. See Beiting-drive
Bennett, R. & Elton, J., 356, 406, 563-4
Benon, Michel (Jesuit missionary, + 1715 to + 1774), 133 (d)
Berber harness, 328
Ber, 155 (d)
Bernal, J. D. (i), 546
Bernard, W. D., 427 ff.
bei-Bersche wall-painting, 74 (g), 92
von Bertele, H., 297, 345
Berthoud, E. (i), 441, 444, 492 (c)
Besant, F. X, 598 (d)
Besson, Jacques (engineer, + 1578), 311, 213, 215 ff., 280, 289-30, 350, 407, 561 (g)
Bevets-wheel, 68, 83, 84, 46 (a)
Bhāratīya Śūleśa āyana, 317 (e)
Bhāskara (mathematician and astronomer, c. + 1150), 317 (e)
Bhājja, Prince (mathematecian, c. + 1500), 68, 120, 164
Bienvenu, M. See Launay, M. & Bienvenu, M.
Biochemistry, 300
Biographical sketches of Chinese Mathematicians and Scientists. See Chou Jen Chau
Biology, 67, 300-1
Bion, E. (ii), 15-17, 248
Biplane, 58a, 590, 593
Birch, T., 276
Bireka, bird autonoma, 163-4
'Bird-beaked gun', 121
Bird-trap, 247
Birds
wings of, 581, 591
wooden, 574, 572 (b)
Biringuccio, Vannoccio (metallurgical writer, d. +1538), 140, 379
al-Brītūn, Abū al-Rahāb (+1000), 534
Bishop, H. R. (a), 73, 244
Biton (mechanic, fl. c. -230), 204
Blanchard, J. P. (+1784), 585, 594
Blatt-furnace, 544 (d)
Bloch, Marc (a), 366, 396 (3), 5, 380 (4), 287; 290
Block printing. See Printing
Blocks fitted on the ends of spokes, 80 ff., 91
Blowing machinery, 185, 369 ff.
Blowpipe gun, 140 (d)
Blummer, H. (i), 5
Boats
dismountable, 34, 71-2
Egyptian funerary, 379 (b)
with mechanical figures, 133, 160-2, 507
model, 164
model steamboat, 329-5
paddle-wheel. See Paddle-wheel boats
steam-, 389-9, 414
tug-, 414, 423
Bob-fywheel. See Flywheel
Böckler, G. A. (engineer, +1664), 204, 279
Bodin, Jean (jurist, + 1566), 7
Boethius (philosopher, +527), 443 (d)
Boje, 197 (f), 199, 246 (a)
Bohemiaans, 317 (b)
Boiler, 226, 227
Bolton, A., 141
Bolting machinery, 205-8
Bolton, L., 445
Bolts and staples, 327
Book of Changes. See I Ching
Book of the Devil Valley Master. See Kuei Ku Tzu
Book of the Golden Hall Master. See Chin Liu Tzu
Book of the Knowledge of Ingenious Mechanical Contrivances. See Kīrtī & Moścīla al-Uqlīdī al-Hamstūri
Book of Master Chuan. See Chuang Tzu
Book of Master Han Fei. See Han Fei Tzu
Book of Master Hain. See Hain Tzu
Book of Master Kuan. See Kuan Tzu
Book of Master Kuan Yin. See Yin Tzu
Book of Master Mo. See Mo Tzu
Book of Odes. See Shi Ching
Book of Origins. See Shi Fen
Book of the Pheasant-Cap Master. See Ho Kuan Tzu
Book of Physiological, Astronomical and Orthonomantic Divination according to the Three Schools. See Yin Chen Tzu Shu Son Shi Hsing Shang Tzu
Book of the Preservation-of-Solidarity Master. See Pao Phu Tzu
Book of [the Prince of] Huai Nan. See Huai Nan Tzu
Book of Sericulture. See Shui Shun Tzu
Book of Trader, 106
Bookcase. See Revolving bookcase, Revolving book-case
Boomerang, 866 (d)
Borelli, Alfonso (physicist, +1681), 591
Botany, 509
Boucher, William (+11th-century French artist-craftsman), 132
Bow, 67, 126
Bow-drill. See Drills
Bow-saw, 59
Box-bells. See Bellowes
Box-kite. See Kites
Box-laden. See I-Ching
Bow, 150, 519
Boys, Sir Charles, 357

INDEX

Burmese, 134, 441, 508
Bustan, A. F., models by, 372 (d), 377 (a), 382 (a), 459 (f), Figs. 619a, b
Bury St Edmunds, Abbey of, 544, 555
Byzantine horse harness, 315
Byzantine 'sphinx', 147
Byzantine striking water-clocks, 490 (d), 533, 534
Byzantine vehicles, 308
Byzantium, 243, 479
Cable ploughing. See Ploughing
Cables, 64
Calories, 352
Cokkunzjutsu, 351
Calendrical science, 447, 475, 477, 487 ff. and agriculture, 487, 490
'Calendrical uneasiness', 489-90
California, 280
Caliper gauge, 61
Callinicus (military chemist, +673), 147
Cambered window, xlvii, 579, 581 (d)
Cambodia, 79, 128, 159
Canal, 326, 337
'Canal-back' bearings (journal bearings with caps and pillows), 91, 461
Camp-mills. See Mills, field-
Campamella Tommaso (mystical philosopher, +1623), 276
Campo Dato fresco, Fisa, 54 (b)
Cars, 83, 84
cylindrical, 384-5
Cars, 243, 602
'Candle-drone' (horological striking component), 499, 530
Candle-wicks, 64 (a)
Canestri, 225
Cannon, 508 (b), 509
Canon of the Tao and its Virtue. See Tao T'ing Ching
Canopies, 79, 71 (d)
Cape, 130, 426, 475, 523, 594
'Capitalists' of the Ch’in and Han, 526
Capot-Rey, R. (i), 446
Capron, 9a, 9b, 9a, 112, 116, 121, 213, 223, 235
Cardan, Jerome (+1550), 357, 213, 216, 280, 285
Cardan suspension, 35, 54, 228-36, 236, 597 (c)
technical terms, 313, 314
Carpaccio (+1505), 552
Carpenter's plane, 51, 53
Carpenter's square, 60
Carpentry, 24
Carriage. See Imperial carriages
Carriage, wind-driven, 278
See Sailing carriage
Carrier pigeons, 577
Cart-springs, 126
Catalan philosophy, 300
Cartographers. See Maps
Cartmaks, 127, 245
Cartwrights, 16
Carus-Williams, E. M. (i), 306
Cassini, J. D. (astronomer, +1682), 492 (c)
TABLE OF CHINESE DYNASTIES

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shang (Yin) kingdom</td>
<td>Early Chou period</td>
</tr>
<tr>
<td></td>
<td>C. -3000 to C. -1027</td>
</tr>
<tr>
<td>Zhou dynasty</td>
<td>Ch'un Chiu period</td>
</tr>
<tr>
<td></td>
<td>Spring and Autumn</td>
</tr>
<tr>
<td></td>
<td>Warring States (Ch'in)</td>
</tr>
<tr>
<td></td>
<td>Kuo period</td>
</tr>
</tbody>
</table>

First Unification

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qin dynasty</td>
<td>C. -221 to C. -207</td>
</tr>
<tr>
<td>Han dynasty</td>
<td>Han interregnum</td>
</tr>
<tr>
<td></td>
<td>+9 to +23</td>
</tr>
<tr>
<td>Hou Han (Later Eastern)</td>
<td>+25 to +220</td>
</tr>
</tbody>
</table>

Second Unification

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han dynasty</td>
<td>Eastern Han dynasty</td>
</tr>
<tr>
<td></td>
<td>C. +221 to +265</td>
</tr>
<tr>
<td></td>
<td>C. +220 to +265</td>
</tr>
<tr>
<td></td>
<td>+222 to +280</td>
</tr>
</tbody>
</table>

First Partition

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Shu) dynasty</td>
<td>C. +221 to +204</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+220 to +205</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+222 to +280</td>
</tr>
</tbody>
</table>

Second Partition

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. -265 to C. -317</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+317 to +420</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+420 to +479</td>
</tr>
</tbody>
</table>

Northern and Southern Dynasties

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. -1027 to C. -587</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+557 to +554</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+534 to +543</td>
</tr>
<tr>
<td>Northern Ch'i dynasty</td>
<td>+520 to +517</td>
</tr>
<tr>
<td>Northern Chou dynasty</td>
<td>+517 to +581</td>
</tr>
<tr>
<td>Northern and Southern Dynasties</td>
<td>+581 to +618</td>
</tr>
</tbody>
</table>

Third Partition

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. +557 to +534</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+535 to +554</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+520 to +517</td>
</tr>
<tr>
<td>Northern Ch'i dynasty</td>
<td>+517 to +581</td>
</tr>
<tr>
<td>Northern Chou dynasty</td>
<td>+581 to +618</td>
</tr>
<tr>
<td>Northern and Southern Dynasties</td>
<td>+557 to +534</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+520 to +517</td>
</tr>
</tbody>
</table>

Fourth Partition

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. +386 to +535</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+538 to +554</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+557 to +535</td>
</tr>
<tr>
<td>Northern Ch'i dynasty</td>
<td>+520 to +517</td>
</tr>
<tr>
<td>Northern Chou dynasty</td>
<td>+517 to +581</td>
</tr>
<tr>
<td>Northern and Southern Dynasties</td>
<td>+557 to +534</td>
</tr>
</tbody>
</table>

Fifth Partition

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. +221 to +204</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+220 to +205</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+222 to +280</td>
</tr>
</tbody>
</table>

Northern and Southern Dynasties

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. +557 to +554</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+534 to +543</td>
</tr>
<tr>
<td>Northern Ch'i dynasty</td>
<td>+520 to +517</td>
</tr>
<tr>
<td>Northern Chou dynasty</td>
<td>+517 to +581</td>
</tr>
<tr>
<td>Northern and Southern Dynasties</td>
<td>+557 to +543</td>
</tr>
</tbody>
</table>

Sixth Partition

<table>
<thead>
<tr>
<th>Dynasty</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei (Wei) dynasty</td>
<td>C. +538 to +554</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+557 to +535</td>
</tr>
<tr>
<td>Wei (Wei) dynasty</td>
<td>+520 to +517</td>
</tr>
<tr>
<td>Northern Ch'i dynasty</td>
<td>+517 to +581</td>
</tr>
<tr>
<td>Northern Chou dynasty</td>
<td>+581 to +618</td>
</tr>
<tr>
<td>Northern and Southern Dynasties</td>
<td>+557 to +534</td>
</tr>
</tbody>
</table>

N.B. When no modifying term in brackets is given, the dynasty was purely Chinese. Where the overlapping of dynasties and independent states becomes particularly confused, the tables of Wigger (1) will be found useful. For such periods, especially the Second and Third Partitions, the best guide is Eberhard (9). During the Eastern Chin period there were no less than eighteen independent States (Hunhshung, Tung, Thang, Turkic, etc.) in the north. The term 'Liu chhao' (Six Dynasties) is often used by historians of literature. It refers to the south and covers the period from the beginning of the +3rd to the end of the +6th centuries, including (San Kue) Wu, Chin, (Liu) Sung, Chhi, Liang and Chiben. For all details of reigns and rulers see Moule & Yetts (1).
Part 2, Mechanical Engineering
With the collaboration of Wang Ling

27 Mechanical Engineering

Introduction
The name and concept of engineer
Artisans and engineers in feudal-bureaucratic society
Traditions of the artisanate
Tools and materials

Basic mechanical principles
Levers, hinges and linkwork
Wheels and gear-wheels, pedals and paddles
Pulleys, driving-belts, and chain-drives
Crank and eccentric motion
Screws and worms
Springs and spring mechanisms
Conduits, pipes and siphons
Valves, bellows, pumps and fans

Mechanical toys
Types of machines described in Chinese works
The nature of the Chinese engineering literature
The name and concept of engineer
Tools and materials
Traditions of the artisanate
Power
Basic mechanical principles
Screws
Springs
Conduits, pipes and siphons
Crank and eccentric motion

Hydraulic engineering: I. Water-raising machinery
The swage (chüe/), counterbalanced bailing bucket
The well-windlass
The scoop-wheel
The square-pallet chain-pump and the paternoster pump
The idgya (pot chain-pump)
The noria (peripheral pot wheel)

Power sources and their employment: II. Water flow and descent
Spoon-sil-bamboos
Water-wheels in West and East
The metallurgical blowing-engines of the Han and Sung
Reciprocating motion and the steam-engine's lineage
Hydraulic trip-hammers in the Han and Chin
Water-mills from the Han onwards
The problem of the inventions and their spread
Wheels ex-aqueous and ad-aqueous; ship-mill and paddle-boat in East and West

Clockwork; six hidden centuries
Su Tsu-Jung and his astronomical clock
Clockwork in and before the Northern Sung
The pre-history of Chinese clockwork
From Su Tsu-Jung to Li Ma-Tou; clocks and their makers
Korean ceramic, Astrick sing-songs, and the mechanism of Mt. Meru
Clockwork and inter-cultural relations
Vertical and horizontal mountings; the revolving bookcase in East and West
Power sources and their employment: III. Wind force; the windmill in East and West
The pre-history of aeronautical engineering

Legendary material
Theatralistical artisans
The kite and its origins
The helicopter top; K'6 Hupong and George Cayley on the "hard wind" and "rotary-walls"
The birth of aerodynamics
The parachute in East and West
The balloon in East and West
Conclusion

28 Civil Engineering

Introduction
Roads
Nature and expansion of the network
The post-station system
Walls, and the Wall
Building technology
Introduction
The spirit of Chinese architecture
The planning of towns and cities
Building science in Chinese literature
Principles of construction
Drawings, models and calculations
Perspective
Notes on the historical development of building
Walls and towers
Periods and styles
Pagodas, triumphal gateways, and imperial tombs

Bridges
Beam bridges
Cantilever bridges
Arch bridges
Suspension bridges
Geographical distribution of types
Hydraulic engineering: II. Control, construction, and maintenance of waterways
Problems and solutions
Silt and sour
The river and the forests
Engineering and its social aspects in the corpus of legend
The formative phases of engineering art
Sketch of a general history of operations
The greater works
The Ch'ang-ho irrigation canal (Chhin)
The Kuwahata division-head and cut (Chhin)
The Kusing reservoirs (Yuan) and the Shanxi system (Ming)
The 'Magic Transport Canal' (Chhin and Thang)
The Grand Canal (Sui and Yuan)
The Chihien tang sea-wall (Hun, Wu Tai and Sung)
The literature on civil engineering and water conservancy
Techniques of hydraulic engineering
Planning, calculation and survey
Drainage and tunnelling
Dredging
Reinforcement and repair
Sluice-gates, locks and double slipways
Comparisons and Conclusions

29 Nautical Technology

Introduction
Comparative morphology and evolution of sailing craft

Constructional features of the junk and sampan
Type specimens
Technical terms
Hull shape and its significance
Water-tight compartments
A natural history of Chinese ships
Affinities and hybrids
The Chinese ship in philology and archaeology
From antiquity to the Thang
From the Thang to the Yuan
From the Yuan to the Chhing
The sea they sailed
The ships of the Triple Treasure
The Sea-Prince of the Five Wounds
Contrasts and comparisions
The caps and the kings depart
Motives, medicines and masteries
China and Australia
China and pre-Columbian America

Control: I. Navigation
The three ages of piloting
The compass and rudder in the Eastern seas
Terrestrial globes
Propulsion
Sails: the position of China in the development of the fore-and-aft rig
Introduction
Thestay-and-batten sail; its aerodynamic qualities
Chinese sails in history
The place of Chinese sails in world nautical development

Leebords and centre-boards
Oars
Rowing and the handled oar
Sculling and the self-feathering."propeller"
The human motor in East and West

Control: II. Steering
Introduction
From steering-oar to stern-post rudder in the West
China and the axial rudder
Textual evidence
Iconographic and archaeological evidence
Transmissions and origins
Balanced and fore-and-aft rudders

Techniques of peace and war afloat
Anchors, moorings, docks and lights
Towing and tracking
Cocking, hull-shaving and pumps
Diving and pearlimg
The ram
Armour-plotting and the 'grappling-iron'; projectile tactics versus close combat

Conclusions
The summer and autumn of 1964 I spent three months of study in China as the guest of Academia Sinica, with Dr G. D. Lu and Dr D. M. Needham, F.R.S. For this signal mark of friendship and research co-operation we are greatly indebted to H. E. Dr Kuo Mo-Jo, President of the Academy, to Dr Hou Wai-Lu, Moderator of the Division of Philosophy and Social Sciences, and to Dr Chhien Pao-Tseng, Director of the Institute of the History of Science. Certain new discoveries made during this visit to China enhance at various points the arguments in the preceding sub-sections of the present volume, and there is space to refer to them very briefly here.

Epigraphic records of names and achievements of artisans and craftsmen are now coming to light, and more will be found as one looks for them. The great Buddhist temple of Chhi-Hai Ssu east of Nanking has a number of cave-shrines in its grounds dating from the Southern Chhi dynasty just after +489. One small shrine here has the statue of a mason with chisel and uplifted hammer, surmounted by the inscription ‘Tien the stone-carver.’ A photograph is available. At the same place a Relic Pagoda of the Southern Thang (+930 to +960) has three signatures: ‘Ting Yen-Chien, stone-mason; Hat Chih-Chhien, builder; Wang Wen-Tsai, stone-carver.’

Our fixation of the years +477 to +499 as the approximate date for the earliest representation of equine collar-harness depended on inference from incomplete depictions in the Tunhuang cave-temple frescoes (cf. Fig. 559). But its essential correctness is strikingly supported by the fact that cave no. 10 at the Yinkang cave-temples, some 20 miles west of the city of Ta-thing in northern Shansi, contains a clear carving of collar-harness—a horse-like animal drawing a flying chariot with a haloed saint. The padding of the collar is clear to the touch and can be seen in photographs. Behind the equine animal an elephant can be made out, apparently also motive power for the chariot, but how attached is unclear. The padding of the collar—like animal drawing a flying chariot with a haloed saint. The padding of the collar

The iconographic tradition of representing flying cars with screw-bladed rotors seems to pass over two spindles, is very clearly drawn, and the wheel is mounted on a vertical post with a tripod stand. Here is clearly an archaic type, not only older than the pedal system which freed both hands, but also older than the form which allows the operator to turn the wheel with one hand and spin with the other. This finding strongly confirms the general argument about the antiquity of quilling-wheels and spinning-wheels in China (pp. 105 ff.).

Dr Kuo, in ‘I Fu Sung-Tai Hui Hua Faang-Chhe Thu’, Ww-Wu, 1961 (no. 2), 44, with reproduction.

The Quern Connecting-rod and the ‘Water-powered Reciprocator’ (pp. 116, 389 ff. and Fig. 443)

The quern connecting-rod is obviously an important ancestor of the full assembly of crank, connecting-rod and piston-rod as seen in the standard method of interconversion of rotary and longitudinal motion. It seemed likely to be old, but we could not date it from book illustrations earlier than +1210. The Chiangsu Historical Museum at Nanking, however, possesses an excellent model of the quern connecting-rod and handle taken recently from a tomb of the Nan Chhao period (between +420 and +589) at Teng-fu Shan very near Nanking. A photograph of the model (ca. 9 in. long) is available. This strengthens our view that the standard method was a Chinese development with a long historical background. I always feel that the oldest machine to embody this standard method, the ‘water-powered reciprocator’ itself (Fig. 602), must still be at work in some remote part of China. Though we have never yet found it, we were delighted to see at Chia-chhia-chuang Commune near Fennyang in Shanxi a four-sitter built with a rocking roller connection exactly as in Fig. 461, and in full use with an electric motor as power source. A photograph is available.

Coupling-rods joining two or more cranks have been noted in the traditional Chinese treadmill-powered paddle-wheel boats (Fig. 637), but ascribed to late Western influence. Since at Ching-te-chen we found such coupling-rods in manual use by ropemakers, extrinsic modern influence seems less likely.

Wheelbarrows (pp. 265 ff. and Fig. 509)

Parallel evidence to ours that the wheelbarrow was an invention of the late Chhien Han or early Hou Han periods (1st or +1st century) rather than of the San Kuo period (+3rd century) has been presented independently by Liu Hsien-Chou and Shh Shu-Chhing. Moreover, the Chiangsu Provincial Archaeological Survey has published a frieze relief from a tomb-shrine at Mao-tahun near Hsichow, ca. +100, which shows a wheelbarrow very clearly with a man sitting on it.

Wind-wheels (pp. 570 ff. and Figs. 702, 703)

The iconographic tradition of representing flying cars with screw-bladed rotors seems to go back much further than was thought. The Chiangsu Provincial Archaeological Survey has published reliefs from Hung-lou near Thung-shan (ca. +100) showing three two-wheeled or four-wheeled flying vehicles with wheels of screw type, drawn by magical fishes, dragons and deer amidst the constellations. Since live motive power was provided these cars were not automobile, but the drawing of the wheels suggests strongly that the screw-shaped wind-wheel was known as a toy already in the Han. Cf. our discussion of screw and worm shapes on pp. 115 ff., 124, 564 ff., 383 ff., 586.

Ref. Anon. (55), Chiangsu Hsichow Han Hua Hsia Shh (Kho-Hsiieh, Peking, 1959), pl. 41, fig. 52; pl. 45, fig. 37.