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THE UNITY OF SPACETIME

Relativity describes Nature from quark to cosmos. Relativity empowers its user to
ponder deeply, to analyze widely, to predict accurately. It is a theory of fantastic
innocence, simplicity, and power.

Yet “relativity theory” is a misleading term, a term Albert Einstein avoided for
years. True, he recognized and revealed to the world that the time between two
events is typically different as recorded by Earth observer or spaceship commander.
Time between events is relatzve. Relative too is the distance between events. Yet
behind these differences Einstein discerned unity: concepts and quantities on
which everyone 1n the universe agrees. What concepts and quantities?

Events. An explosion is an explosion. A birth is a birth. Whether it is the
birth of a star or your own birth, everyone agrees that it happens.

Wristwatch time. Carry a wristwatch directly from one event to a second
event, so that both take place at the wristwatch. Or lay a rod between two events

that occur at the same time. Everyone, correctly predicts the wristwatch reading
and this rod length.

The path connecting events. Were you_ there, at the first event? Yes.
And at the second? Yes. And the last? Yes. Does everyone in the universe agree
that you were present at every event in this string? Yes. Does everyone agree on
the advance of your wristwatch time from event to event along this entire string of
events? Yes!

Conservation laws. Everyone agrees that momentum 1s conserved in a
collision of particles. It is also conserved when particles are created, transformed,
or annihilated in that collision. Energy, too, is conserved in the same collision,
everyone agrees.

Agreements of these four kinds bear witness to a powerful and simple unity, the
unity of space and time: spacetrme! Special relativity explores the unity of space-
time. General relativity recognizes that spacetime is not just a passive stage on
which events occur; spacetime is an actor that takes part in physical events. All of
relativity comes in a single simple sentence: Spacetime grips mass, telling it how to
move: and mass grips spacetime, telling 1t how to curve.
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CHAPTER 1

SPACETIME: OVERVIEW

0. imagination is stretched to the utmost, not, as
in fiction, to imagine things which ave not really there,
but just to comprebend those things which ace there,

Richard P. Feynmaon

1.1 PARABLE OF THE SURVEYORS

disagree on northward and eastward
separations; agree on distance

Once upon a time there was a Daytime surveyor who measured off the king's lands.
He took his directions of north and east from a magnetic compass needle. Eastward
separations from the center of the town square he measured in meters. The norchward
direction was sacred. He measured northward separations from the town square in a
different unit, in miles. His records were complete and accurate and were often
consulted by other Daytimers.

A second group, the Nighttimers, used the services of another surveyor. Her north
and east directions were based on a different standard of north: the direction of the
North Star. She too measured separations eastward from the center of the town square
in meters and sacred separations northward in miles. The records of the Nighttime
surveyor were complete and accurate. Marked by a steel stake, every corner of a plot
appeared in her book, along with its eastward and northward separations from the
town square.

Daytimers and Nighttimers did not mix but lived mostly in peace with one another.
However, the two groups often disputed the location of property boundaries. Why?
Because a given corner of the typical plot of land showed up with different numbers in
the two record books for its eastward separation from the town center, measured in
meters (Figure 1-1). Northward measurements in miles also did not agree between the
two record books. The differences were small, but the most careful surveying did not
succeed in eliminating them. No one knew what to do about this single source of
friction between Daytimers and Nighttimers.

One fall a student of surveying turned up with novel open-mindedness. Unlike all
previous students art the rival schools, he attended both. At Day School he learned

1

Daytime surveyor uses
magnetic north

Nighttime surveyor uses
North-Star north
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DAYTIME: MAGNETIC NORTH

Student converts miles to meters

center of

NIGHTTIME: NORTH-STAR NORTH

FIGURE 1-1. The town as plotted by Daytime and Nighttime surveyors. Notice that the line of
Daytime magnetic north just grazes the left side of the north gate, while the line of Nighttime North-Star
north just grazes the right side of the same gate. Steel stakes A, B, C, D driven into the ground mark the
corners of a disputed plot of land. As shown, the eastward separation of stake A from the north—south line
measured by the Daytime surveyor is different from that measured by the Nighttime surveyor.

from one expert his method of recording locations of gates of the town and corners of
plots of land based on magnetic north. At Nighe School he learned the other method,
based on North-Star north.

As days and nights passed, the student puzzled more and more in an attemp to find
some harmonious relationship between rival ways of recording location. His attention
was attracted to a particular plot of land, the subject of dispute between Daytimers and
Nighttimers, and to the steel stakes driven into the ground to mark corners of this
disputed plot. He carefully compared records of the two surveyors (Figure 1-1, Table
1-1).

In defiance of tradition, the student took the daring and heretical step of converting
northward measurements, previously expressed always in miles, into meters by multi-
plying with a constant conversion factor £. He found the value of this conversion factor
to be £#= 1609.344 meters/mile. So, for example, a northward separation of 3 miles
could be converted to £ X 3 miles = 1609.344 meters/mile X 3 miles = 4828.032
meters. ‘‘At last we are treating both directions the same!”" he exclaimed.

Next the student compared Daytime and Nighttime measurements by trying
various combinations of eastward and northward separation between a given stake
and the center of the town square. Somewhere the student heard of the Pythagorean
Theorem, that the sum of squares of the lengths of two perpendicular legs of a right
triangle equals the square of the length of the hypotenuse. Applying this theorem, he
discovered that the expression

Daytime Daytime

northward \ ]2 eastward ]2
£ X | separation =+ | separation 0-n
(miles) (meters)



PARABLE OF THE SURVEYORS

C TABIE 1.1
C TABLE 1-1_>

TWO DIFFERENT SETS OF RECORDS; SAME PLOT OF LAND

Daytime surveyor's axes
oriented to magnetic north

Nighttime surveyor’s axes
oriented to North-Star north

Eastward Northward Eastward Northward

(meters) (miles) (meters) (miles)
Town square 0 0 0 0
Corner stakes:
Stake A 4010.1 1.8330 3950.0 1.8827
Stake B 5010.0 1.8268 4950.0 1.8890
Stake C 4000.0 1.2117 3960.0 1.2614
Stake D 5000.0 1.2054 4960.0 1.2676

based on Daytime measurements of the position of steel stake C had exactly the

same numerical value as the quantity

Nighttime Nighttime
northward \ ]2 eastward |?
£ X | separation + | separation (1-2)
(miles) _ L (meters)

computed from the readings of the Nighttime surveyor for stake C (Table 1-2). He

AT I 1 o
__TABLE 1-2 >

“INVARIANT DISTANCE” FROM CENTER OF TOWN SQUARE TO STAKE (
(Data from Table 1-1)

Daytime measurements

Nighttime measurements

Northward separation
1.2117 miles

Multiply by

k= 1609.344 meters/mile
to convert to meters:
1950.0 meters

Square the value 3,802,500 (meters)?

Eastward separation

4000.0 meters
Square the value and add + 16,000,000 (meters)?

= 19,802,500 (meters)?

Sum of squares

Expressed as a

number squared = (4450 meters)?
This is the square
of what measurement? 4450 meters

A

Northward separation
1.2614 miles

Multiply by

£ = 1609.344 meters/mile
to convert to meters:
2030.0 meters

Square the value

Eastward separation
3960.0 meters

Square the value and add
Sum of squares

Expressed as a
number squared

This is the square
of what measurement?

4,120,900 (meters)?

+ 15,681,600 (meters)?
= 19,802,500 (meters)?

= (4450 meters)?

4450 meters

A

SAME

DISTANCE

from center of Town Square
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Discovery: Invariance of distance

DAYTIME: MAGNETIC NORTH

North-Star north

—— distance

FIGURE 1-2. The distance between stake A

and the center of the town square has the same

oacter b No:ih-S?or value for Daytime and Nighttime surveyors,

Jow gt oo even though the northward and eastward sepa-
rations, respectively, are not the same for the two

NIGHTTIME: NORTH-STAR NORTH s sl

tried the same comparison on recorded positions of stakes A, B, and D and found
agreement here too. The student’s excitement grew as he checked his scheme of
comparison for all stakes at the corners of disputed plots—and found everywhere
agreement.

Flushed with success, the student methodically converted all northward measure-
ments to units of meters. Then the student realized thar the quantity he had calculated,
the numerical value of the above expressions, was not only the same for Daytime and
Nighttime measurements. It was also the square of a length: (meters)?. He decided to
give this length a name. He called it the distance from the center of town.

northward ]? eastward |?
(distance)? = | separation | + | separation (1-3)
(meters) (meters)

He said he had discovered the principle of invariance of distance; he reckoned
exactly the same value for distance from Daytime measurements as from Nighttime
measurements, despite the fact that the two sets of surveyors’ numbers differed
significantly (Figure 1-2).

After some initial confusion and resistance, Daytimers and Nighttimers welcomed
the student’s new idea. The invariance of distance, along with further results, made it
possible to harmonize Daytime and Nighttime surveys, so everyone could agree on the
location of each plot of land. In this way the last source of friction between Daytimers
and Nighttimers was removed. e
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The Parable of the Surveyors illustrates the naive state of physics before the discovery
of special relativity by Einstein of Bern, Lorentz of Leiden, and Poincaré of Paris.
Naive in what way? Three central points compare physics at the turn of the twentieth
century with surveying before the student arrived to help Daytimers and Nighttimers.

First, surveyors in the mythical kingdom measured northward separations in a
sacred unit, the mile, different from the unit used in measuring eastward separations.
Similarly, people studying physics measured time in a sacred unit, called the second,
different from the unit used to measure space. No one suspected the powerful results
of using the same unit for both, or of squaring and combining space and time
separations when both were measured in meters. Time in meters is just the time it takes
a lighe flash to go that number of meters. The conversion factor between seconds and
meters is the speed of light, ¢ = 299,792,458 meters/second. The velocity of light ¢
(in meters/second) multiplied by time # (in seconds) yields ¢# (in meters).

The speed of light is the only natural constant that has the necessary units to convert
a time to a length. Historically the value of the speed of light was regarded as a sacred
number. It was not recognized as a mere conversion factor, like the factor of conversion
between miles and meters—a factor that arose out of historical accident in human-
kind's choice of units for space and time, with no deeper physical significance.

Second, in the parable northward readings as recorded by two surveyors did not
differ much because the two directions of north were inclined to one another by only
the small angle of 1.15 degrees. At first our mythical student thought that small
differences between Daytime and Nighttime northward measurements were due to
surveying error alone. Analogously, we used to think of the separation in time between
two electric sparks as the same, regardless of the motion of the observer. Only with the
publication of Einstein’s relativity paper in 1905 did we learn that the separation in
time between two sparks really has different values for observers in different states of
motion—in different frames.

Think of John standing quietly in the front doorway of his laboratory building.
Suddenly a rocket carrying Mary flashes through the front door past John, zooms
down the middle of the long corridor, and shoots out the back door. An antenna
projects from the side of Mary's rocket. As the rocket passes John, a spark jumps across
the 1-millimeter gap between the antenna and a pen in John's shirt pocket. The rocket
continues down the corridor. A second spatk jumps 1 millimeter between the antenna
and the fire extinguisher mounted on the wall 2 meters farther down the corridor. Still
later other metal objects nearer the rear receive additional sparks from the passing
rocket before it finally exits through the rear door.

John and Mary each measure the lapse of time between “‘pen spark™ and *fire-
extinguisher spark.”” They use accurate and fast electronic clocks. John measures
this time lapse as 33.6900 thousand-millionths of a second (0.0000000336900
second = 33.6900 X 107 second). This equals 33.6900 nanoseconds in the
terminology of high-speed electronic circuitry. (One nanosecond = 107 second.)
Mary measures a slightly different value for the time lapse between the two sparks,
33.0228 nanoseconds. For John the fire-extinguisher spark is separated in space by
2.0000 meters from the pen spark. For Mary in the rocket the pen spark and
fire-extinguisher spark occur at the same place, namely at the end of her antenna. Thus
for her their space separation equals zeto.

Later, laboratory and rocket observers compare their space and time measurements
between the various sparks (Table 1-3). Space locations and time lapses in both frames
are measured from the pen spark.

The second: A sacred unit

Speed of light converts seconds
to meters

Time between events: Different
for different frames

One observer uses laboratory
frame

Another observer uses rocket
frame
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AR T 1 o
_TABLE 1-3 >

SPACE AND TIME LOCATIONS OF THE SAME
SPARKS AS SEEN BY TWO OBSERVERS

Distance and time between sparks as measured by observer who is

standing in laboratory (John) moving by in rocket (Mary)
Distance Time Distance Time
(meters) (nanoseconds) (meters) (nanoseconds)
Reference spark 0 0 0 0
(pen spark)
Spatk A 2.0000 33.6900 0 33.0228
(fire-extinguisher
spark)
Spatk B 3.0000 50.5350 0 49.5343
Spark C 5.0000 84.2250 0 82.5572
Spatk D 8.0000 134.7600 0 132.0915

The third point of comparison between the Parable of the Surveyors and the state of
physics before special relativity is this: The mythical student’s discovery of the concept
of distance is matched by the Einstein — Poincaré discovery in 1905 of the invariant
spacetime interval (formal name Lorentz interval, but we often say just inter-
val), a central theme of this book. Let each time measurement in seconds be converted
to meters by multiplying it by the “‘conversion factor ¢,” the speed of light:

¢ = 299,792,458 metets/second = 2.99792458 X 108 meters/second
= 0.299792458 X 10° meters/second = 0.299792458 meters/nanosecond

Then the square of the spacetime intetval is calculated from the laboratory observer’s
measurements by sxbtracting the square of the space separation from the square of the
time separation. Note the minus sign in equation (1-4).

Laboratory Laboratory
‘ timg 2 space |?
(interval)?> = | ¢ X | separation — | separation (1-4)
(seconds) (meters)

The rocket calculation gives exactly the same value of the interval as the laboratory
calculation,

Rocket Rocket

‘ time 2 space  |?

(interval)> = | ¢ X | separation — | separation (1-5)
(seconds) (meters)

even though the respective space and time separations are not the same. Two observers
find different space and time separations, respectively, between pen spark and fire-
extinguisher spark, but when they calculate the spacetime interval between these
sparks their results agree (Table 1-4).

The student surveyor found that invariance of distance was most simply written
with both northward and eastward separations expressed in the same unit, the meter.
Likewise, invariance of the spacetime interval is most simply written with space and
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w

“INVARIANT SPACETIME INTERVAL” FROM REFERENCE SPARK TO SPARK A

(Data from Table 1-3)

Laboratory measurements

Rocket measurements

Time lapse Time lapse
33.6900 X 1072 seconds
= 33,6900 nanoseconds
Multiply by
¢=0.299792458
meters per nanosecond

to convert to meters;
10.1000 meters

Square the value

Multiply by
¢ =0.299792458

9.9000 meters
102.010 (meters)? Square the value

Spatial separation Spatial separation
2.000 meters zero

— 4.000 (meters)?
= 98.010 (meters)?

Square the value and subtract

Result of subtaction
expressed as a
number squared

Result of subtaction
expressed as a

number squared = (9.900 meters)?

This is the square This is the square

of what measurement?

9.900 meters

A

33.0228 X 1072 seconds
= 33.0228 nanoseconds

meters per nanosecond
to convert to meters:

of what measurement?

98.010 (meters)?

Square the value and subtract — 0

= 98.010 (meters)?

= (9.900 meters)?

9.900 meters

A

SAME SPACETIME
INTERVAL

from the reference event

time separations expressed in the same unit. Time is converted to metets: # (meters) =
¢ X ¢t (seconds). Then the interval appears in simplified form:

time |? space |?
(interval)> = | separation | — | separation (1-6)
(meters) (meters)

The invariance of the spacetime interval —its independence of the state of
motion of the observer — forces us to recognize that time cannot be separated from
space. Space and time are part of a single entity, spacetime. Space has three
dimensions: northward, eastward, and upward. Time has one dimension: onward!
The interval combines all four dimensions in a single expression. The geometry of
spacetime is truly four-dimensional.

To recognize the unity of spacetime we follow the procedure that makes a landscape
take on depth— we look at it from several angles. That is why we compare space and
time separations between events A and B as recorded by two different observers in
relative motion.

Why the minus sign in the equation for the interval? Pythagoras tells us to ADD the
squares of northward and eastward separations to get the square of the distance. Who
tells us to SUBTRACT the square of the space separation between events from the square
of their time separation in order to get the square of the spacetime interval?

Space and time are
part of spacetime
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- Shocked?ThenyoureweHmdwwaytoundumndmgﬂlenewwmidofvetyfast
~  motion! This world goes beyond the three-dimensional textbook geometry of Euclid,
in which distance is reckoned from a sum of squares. In this book we use another
kind of geometry, called Lorentz geometry, more real, more powerful than Euclid
for the world of the very fast. In Lorentz geometry the squared space separation is
combined with the squared time separation in a new way—by swbtraction. The
result is the square of a new unity called the spacetime interval between events. The
numerical value of this interval is invariant, the same for all observers, no matter
how fast they are moving past one another. Proof? Every minute of every day an
experiment somewhere in the world demonstrates it. In Chapter 3 we derive the
invariance of the spacetime interval —with its minus sign—from experiments.
They show the finding that no experiment conducted in a closed room will reveal
whether that room is “‘at rest”” or “in motion” (Einstein’s Principle of Relativity).
We won't wait until then to cash in on the idea of interval. We can begin to enjoy the
payoff right now. e

A CEa

SAMPLE PROBLEM 1-1
SPARKING AT A FASTER RATE (Y

John, the laboratory observer. The second flash
jumps when the rocket antenna reaches a door-

Another, even faster rocker follows the first, enter-
ing the front door, zipping down the long corridor,

and exiting through the back doorway. Each time
the rocket clock ticks it emits a spark. As before,
the first spark jumps the 1 millimeter from the

knob 4.00000000 meters farther along the hall as
measured by the laboratory observer, who records
the time between these two sparks as 16.6782048

passing rocket antenna to the pen in the pocket of ~ nanoseconds.

a. What is the time between sparks, measured in meters by John, the laboratory
observer?

b. What is the value of the spacetime interval between the two events, calculated
from John's laboratory measurements?

¢. Predict: What is the value of the interval calculated from measurements in the
new rocket frame?

d. What is the distance between sparks as measured in this rocket frame?

e. What is the time (in meters) between sparks as measured in this rocket frame?
Compare with the time between the same sparks as measured by John in the
laboratory frame,

f. What is the speed of this rocket as measured by John in the laboratory?
SOLUTION

a. Time in meters equals time in nanoseconds multiplied by the conversion factor,
the speed of light in meters per nanosecond. For John, the laboratory observer,

16.6782048 nanoseconds X 0.299792458 meters/nanosecond
= 5.00000000 meters

b. The square of the interval between two flashes is reckoned by subtracting the
square of the space separation from the square of the time separation. Using
laboratory figures:

(interval)? = (laborarory time)? — (laboratory distance)?
= (5 meters)? — (4 meters)? = 25 (meters)?2 — 16 (meters)?
= 9 (meters)? = (3 meters)?
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Therefore the interval between the two sparks has the value 3 meters (to nine
significant figures).

c. We strongly assert in this chapter that the spacetime interval is invariant —
has the same value by whomever calculated. Accordingly, the interval between
the two sparks calculated from rocket observations has the same value as the
interval (3 meters) calculated from laboratory measurements.

d. From the rocket rider’s viewpoint, both sparks jump from the same place, namely
the end of her antenna, and so distance between the sparks equals zero for the
rocket rider.

e. We know the value of the spacetime interval between two sparks as computed in
the rocket frame (c). And we know that the interval is computed by subtracting
the square of the space separation from the square of the time separation in the
rocket frame. Finally we know that the space separation in the rocket frame
equals zero (d). Therefore the rocket time lapse between the two sparks equals the
interval between them:

(interval)? = (rocket time)? — (rocket distance)?
(3 meters)? = (rocket time)? — (zero)?

from which 3 meters equals the rocket time between sparks. Compare this with 5
meters of light-travel time between sparks as measured in the laboratory frame.

f. Measured in the laboratory frame, the rocket moves 4 meters of distance (state-
ment of the problem) in 5 meters of light-travel time (a). Therefore its speed in
the laboratory is 4/5 light speed. Why? Well, light moves 4 meters of distance in
4 meters of time. The rocker takes longer to cover this distance: 5 meters of time.
Suppose that instead of 5 meters of time, the rocket had taken 8 meters of time,
twice as long as light, to cover the 4 meters of distance. In that case it would be
moving at 4/8—or half—the speed of light. In the present case the rocket
travels the 4 meters of distance in 5 meters of time, so it moves at 4/5 light speed.
Therefore its speed equals

(4/5) X 2.99792458 X 108 meters/second
= 2.3983397 X 108 meters/second
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fools enough to chart matter and motion
without any reference frame

In surveying, the fundamental concept is place. The surveyor drives a steel stake to
mark the corner of a plot of land —to mark a place. A second stake marks another
corner of the same plot—another place. Every surveyor — no matter what his or her
standard of north— can agree on the value of the distance berween the two stakes,
between the two places.

Every stake has its own reality. Likewise the distance between every pair of stakes
also has its own reality, which we can experience directly by pacing off the straight line
from one stake to the other stake. The reading on our pedometer— the distance

Surveying locates a place
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Physics locates an event

Wristwatch measures
interval directly

“Do science’ with intervals alone
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between stakes—is independent of all surveyors’ systems, with their arbitrary choice
of north.

More: Suppose we have a table of distances between every pair of stakes. That is all
we need! From this table and the laws of Euclidean geometry, we can construct the
map of every surveyor (see the exercises for this chapter). Distances between stakes:
That is all we need to locate every stake, every place on the map.

In physics, the fundamental concept is event. The collision between one particle
and another is an event, with its own location in spacetime. Another event is the
emission of a flash of light from an atom. A third is the impact of the pebble that chips
the windshield of a speeding car. A fourth event, likewise fixing in and by itself a
location in spacetime, is the strike of a lightning bolt on the rudder of an airplane. An
event marks a location in spacetime; it is like a steel stake driven into spacetime.

Every laboratory and rocket observer —no matter what his or her relative velocity
— can agree on the spacetime interval between any pair of events.

Every event has its own reality. Likewise the interval between every pair of events
also has its own reality, which we can experience directly. We carry our wristwatch at
constant velocity from one event to the other one. It is not enough just to pass through
the two physical locations— we must pass through the actual events; we must be at
each event precisely when it occurs. Then the space separation between the two events
is zero for us—they both occur at our location. As a result, our wristwatch reads
directly the spacetime interval between the pair of events:

time |2 space |?
(interval)®> = | separation | — | separation
| (meters) | (meters)
[ time ]? time |2
= | separation | — [zero]> = | separation [wristwatch time]
| (meters) | (meters)

The time read on a wristwatch cartied between two events— the intetval between
those events —is independent of all laboratory and rocket reference frames.

More: To chart all happenings, we need no more than a table of spacetime intervals
between every pair of events. That is all we need! From this table and the laws of
Lorentz geometry, it turns out, we can construct the space and time locations of events
as observed by every laboratory and rocket observer. Intervals between events: That is
all we need to specify the location of every event in spacetime.

In brief, we can completely describe and locate events entirely without a reference
frame. We can analyze the physical wotld—we can ‘‘do science” —simply by
cataloging every event and listing the interval between it and every other event. The
unity of spacetime is reflected in the simplicity of entries in our table: intervals only.

Of course, if we want to use a reference frame, we can do so. We then list in our table
the individual northward, eastward, upward, and time separations between pairs of
events. However, these laboratory-frame listings for a given pair of events will be
different from the corresponding listings that our rocket-frame colleague puts in her
table. Nevertheless, we can come to agreement if we use the individual separations to
reckon the interval between each pair of events:

(interval)? = (time separation)? — (space separation)?
That returns us to a universal, frame-independent description of the physical world.

When two events both occur at the position of a certain clock, that special clock
measures directly the interval between these two events. The interval is called the
proper time (or sometimes the local time). The special clock that records the
proper time directly has the name proper clock for this pair of events. In this book
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we often call the proper time the wristwatch time and the proper clock the
wristwatch to emphasize that the proper clock is carried so that it is ““present’ at
each of the two events as the events occur.

In Einstein’s German, the word for proper time is Eigenzeit, or “own-time,”
implying “‘one’s very own time.” The German word provides a more accurate
description than the English. In English, the word “proper’” has come to mean
“following conventional rules.”” Proper time certainly does not do that!

Hey! I just thought of something: Suppose two events occur at the same time in my frame
but very far apart, for example two handclaps, one in New York City and one in San
Francisco. Since they are simultaneous in my frame, the time separation between
bandclaps is zero. But the space separation is not zero— they are separated by the width
of a continent. Therefore the square of the interval is a negative number:

(interval)? = (time separation)? — (space separation)?
= (zero)* — (space separation)? = — (space separation)?

How can the square of the spacetime interval be negative?

In most of the situations described in the present chapter, there exists a reference
frame in which two events occur at the same place. In these cases time separation
predominates in all frames, and the interval squared will always be positive. We call
these intervals timelike intervals.

Euclidean geometry adds squares in reckoning distance. Hence the result of the
calculation, distance squared, is always positive, regardless of the relative magni-
tudes of north and east separations. Lorentz geometry, however, is richer. For your
simultaneous handclaps in New York City and San Francisco, space separation
between handclaps' predominates. In such cases, the interval is called a spacelike
interval and its form is altered to

(interval)?> = (space separation)* — (time separation)? {when spacelike]

This way, the squared interval is never negative.

The timelike interval is measured directly using a wristwatch carried from one
event to the other in a special frame in which they occur at the same place. In contrast,
a spacelike interval is measured directly using a rod laid berween the events in a
special frame in which they occur at the same time. This is the frame you describe in
your example.

Spacelike interval or timelike interval: In either case the interval is invariant— has
the same value when reckoned using rocket measurements as when reckoned using
laboratory measurements. You may want to skim through Chapter 6 where timelike
and spacelike intervals are described more fully. =~

1.4 SAME UNIT FOR SPACE AND TIME:
METER, SECOND, MINUTE, OR YEAR

The parable of the surveyors cautions us to use the same unit to measure both space
and time. So we use meter for both. Time can be measured in meters. Let a flash of
light bounce back and forth between parallel mirrors separated by 0.5 meter of

11

Measure time in meters



12

’4— 0.5 meter —>‘
0= 0

FIGURE 1-3. This two-mirvor “clock’ sends to
the eye flash after flash, each separated from the
next by 1 meter of light-travel time. A light
flash (represented by an asterssk) bounces back
and forth between parallel mirvors separated
from one another by 0.5 meter of distance. The
silver coating of the right-hand mirvor does not
reflect perfectly: It lets 1 percent of the light pass
through to the eye each time the light pulse hits
it. Hence the eye receives a pulse of light every
meter of light-travel time.

Meter officially defined
using light speed

Measure distance in light-years
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distance (Figure 1-3). Such a device is a “‘clock’ that “‘ticks’” each time the light flash
arrives back at a given mirror. Between ticks the light flash has traveled a round-trip
distance of 1 meter. Therefore we call the stretch of time between ticks 1 meter of
light-travel time or more simply 1 meter of time.

One meter of light-travel time is quite small compared to typical time lapses in
our everyday expetience. Light travels nearly 300 million meters per second
(300,000,000 meters/second = 3 X 10 meters/second, four fifths of the way to
Moon in one second). Therefore one second equals 300 million meters of light-travel
time. So 1 meter of light-travel time has the small value of one three-hundred-mil-
lionth of a second. [How come? Because (1) light goes 300 million meters in one
second, and (2) one three-hundred-millionth of that distance (one meter!) is covered in
one three-hundred-millionth of that time.} Nevertheless this unit of time is very useful
when dealing with light and with high-speed particles. A proton early in its travel
through a particle accelerator may be jogging along at “‘only” one half the speed of
light. Then it travels 0.5 meter of distance in 1 meter of light-travel time.

We, our cars, even our jet planes, creep along at the pace of a snail compared with
light. We call a deed quick when we’ve done it in a second. But a second for light
means a distance covered of 300 million meters, seven trips around Earth. As we dance
around the room to the fastest music, oh, how slow we look to light! Not zooming.
Not dancing. Not creeping. Oozing! That long slow ooze racks up an enormous
number of meters of light-travel time. That number is so huge that, by the end of one
step of our frantic dance, the light that carries the image of the step’s beginning is well
on its way to Moon.

In 1983 the General Conference on Weights and Measures officially redefined the
meter in terms of the speed of light. The meter is now defined as the distance
that light travels in a vacuum in the fraction 1,/299,792,458 of a second.
(For the definition of the second, see Box 3-2.) Since 1983 the speed of light is, &y
definition, equal to ¢ = 299,792,458 meters/second. This makes official the central
position of the speed of light as a conversion factor between time and space.

This official action defines distance (meter) in terms of time (second). Every day we
use time to measure distance. ‘‘My home is only ten minutes (by car) from work.”
““The business district is a five-minute walk.”” Each statement implies a speed —the
speed of driving or walking — that converts distance to time. But these speeds can
vary — for example, when we get caught in traffic or walk on crutches. In contrast, the
speed of light in a vacuum does not vary. It always has the same value when measured
over time and the same value as measured by every observer.

We often describe distances to stars and galaxies using a unit of time. These
distances we measure in light-years. One light-year equals the distance that light
travels in one year. Along with the light-year of space goes the year of time. Here again,
space and time are measured in the same units — years. Here again the speed of light is
the conversion factor between measures of time and space. From our everyday per-
spective one light-year of space is quite large, almost 10,000 million million meters: 1
light-year = 9,460,000,000,000,000 meters = 0.946 X 106 meters. Nevertheless
it is a convenient unit for measuring distance between stars. For example, the nearest
star to our Sun, Proxima Centauri, lies 4.28 light-years away.

Any common unit of space or time may be used as the same unit for both space znd
time. For example, Table 1-5 gives us another convenient measure of time, seconds,
compared with time in meters. We can also measure space in the same units,
light-seconds. Our Sun is 499 light-seconds— or, more simply, 499 seconds— of
distance from Earth. Seconds are convenient for describing distances and times among
events that span the solar system. Alternatively we could use minutes of time and
light-minutes of distance: Our Sun is 8.32 light-minutes from Earth. We can also use
hours of time and light-hours of distance. In all cases, the speed of light is the
conversion factor between units of space and time.
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SOME LIGHT-TRAVEL TIMES

C TABLE 1-5 >

Time in seconds
of light-travel time

Time in meters

Telephone call one way:
New York City to San Francisco
via surface microwave link

Telephone call one way:
New York City to San Francisco
via Earth satellite

Telephone call one way:

New York City to San Francisco
bounced off Moon

Flash of light:

Emitted by Sun,

received on Earth

0.0138

0.197

499.0

4,139,000

59,000,000

752,000,000

149,600,000,000

Expressing time and space in the same unit meter is convenient for describing
motion of high-speed particles in the confines of the laboratory. Time and space in the
same unit second (or minute or hour) is convenient for describing relations among
events in our solar system. Time and space in the same unit year is convenient for
describing relations among stars and among galaxies. In all three arenas spacetime is
the stage and special relativity is the spotlight that illuminates the inner workings of

Nature.

We are not accustomed to measuring time in meters. So as a reminder to ourselves
we add a descriptor: meters of light-travel time. But the unit of time is still the meter.
Similarly, the added words *‘seconds of distance” and *‘light-years” help to remind
us that distance is measured in seconds or years, units we usually associate with time.
But this unit of distance is really just second or year. The modifying descriptors are
for our convenience only. In Nature, space and time form a unity: spacetime!

The words sound OK. The mathematics appears straightforward. The Sample Problems
seem logical. But the ideas are so strange! Why should I believe them? How can
invariance of the interval be proved?

No wonder these ideas seem strange. Particles zooming by at nearly the speed of
light—how far this is from our everyday experience! Even the soaring jet plane
crawls along at less than one-millionth light speed. Is it so surprising that the world
appears different at speeds a million times faster than those at which we ordinarily
move with respect to Earth?

The notion of spacetime interval distills a wealth of real experience. We begin with
interval because it endures: It illuminates observations that range from the core of a
nucleus to the center of a black hole. Understand the spacetime interval and you
vault, in a single bound, to the heart of spacetime.

Chapter 3 presents a logical proof of the invariance of the interval. Chapter 4
reports a knock-down argument about it. Chapters that follow describe many
experiments whose outcomes are totally incomprehensible unless the interval is
invariant, Real verification comes daily and houtly in the on-going enterprise of
experimental physics. e~
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Use convenient units,
the same for space and time
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SAMPLE PROBLEM 1-2
PROTON, ROCK, AND STARSHIP (S T

a. A proton moving at 3/4 light speed (with respect to the laboratory) passes
through two detectors 2 meters apart. Events 1 and 2 are the transits through the
two detectors. What are the laboratory space and time separations between the
two events, in meters’? What are the space and time separations between the
events in the proton frame?

b. A speeding rock from space streaks through Earth’s outer atmosphere, creating a
short fiery trail (Event 1) and continues on its way to crash into Sun (Event 2) 10
minutes later as observed in the Earth frame. Take Sun to be 1.4960 X 10"
meters from Earth. In the Earth frame, what are space and time separations
between Event 1 and Event 2 in minutes? What are space and time separations
between the events in the frame of the rock?

c. In the cwenty-third century a starship leaves Earth (Event 1) and travels at 95
percent light speed, later arriving at Proxima Centauri (Event 2), which lies 4.3
light-years from Earth. What are space and time separations between Event 1 and
Event 2 as measured in the Earth frame, in years? What are space and time
separations between these events in the frame of the starship?

SOLUTION

a. The space separation measured in the laboratory equals 2 meters, as given in the
problem. A flash of light would take 2 meters of light-travel time to travel
between the two detectors. Something moving at 1/4 light speed would take four
times as long: 2 meters/(1/4) = 8 meters of light-travel time to travel from one
detector to the other. The proton, moving at 3/4 light speed, takes 2 meters/
(3/4) = 8/3 meters = 2.66667 meters of light-travel time between events as
measured in the laboratory.

Event 1 and Event 2 both occur at the position of the proton. Therefore the
space separation between the two events equals zero in the proton frame. This
means that the spacetime interval — the proper time — equals the time between
events in the proton frame.

(proton time)? — (proton distance)? = (interval)? = (lab time)? — (lab distance)?
(proton time)? — (zer0)? = (2.66667 meters)> — (2 meters)?
= (7.1111 — 4) (meters)?
(proton time)? = 3.1111 (meters)?

So time between evencs in the proton frame equals the square root of this, or
1.764 meters of time.

b. Light travels 60 times as far in one minute as it does in one second. Its speed in
meters per minute is therefore:

2.99792458 X 108 meters/second X 60 seconds/minute
= 1.798754748 X 10'° meters/minute

So the distance from Earth to Sun is

1.4960 X 10" meters
1.798754748 X 10'° meters/minute

= 8.3169 light-minutes
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This is the distance between the two events in the Earth frame, measured in
light-minutes. The Earth-frame time berween the two events is 10 minutes, as
stated in the problem.

In the frame traveling with the rock, the two events occur at the same place; the
time between the two events in this frame equals the spacetime interval — the
proper time— between these events:

(interval)? = (10 minutes)? — (8.3169 minutes)?
= (100 — 69.1708) (minutes)?
= 3(0.8292 (minutes)?

The time between events in the rest frame of the rock equals the square root of

this, or 5.5524 minutes.

c. The distance between departure from Earth and arrival at Proxima Centauri is
4.3 light-years, as given in the problem. The starship moves at 95 percent light
speed, or 0.95 light-years/yeat. Therefore it takes a time 4.3 light-years/(0.95
light-yeats/year) = 4.53 years to arrive at Proxima Centauri, as measured in the
Earch frame.

Starship time between departure from Earth and arrival at Proxima Centauri
equals the interval:

(interval)? = (4.53 years)? — (4.3 years)?
= (20.52 — 18.49) (years)?
= 2.03 (years)?

The time between events in the rest frame of the starship equals the square root of
this, or 1.42 years. Compare with the value 4.53 years as measured in the Earth
frame. This example illustrates the famous idea that astronaut wristwatch time

— proper time — between two events is less than the time between these events

measured by any other observer in relative motion. Travel to stay young! This
result comes simply and naturally from che invariance of the interval.

15

1.5 UNITY OF SPACETIME

’EMC" enon el space: equal foo Enp g but

When time and space are measured in the same unit— whether meter or second or
year—the expression for the square of the spacetime interval between two events
takes on a particularcly simple form:

(interval)? = (time separation)? — (space separation)?
= 2 — x2 [same units for time and spoace]

This formula shows forth the unity of space and time. Impressed by this unity,
Einstein's teacher Hermann Minkowski (1864-1909) wrote his famous words,
““Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a union of the two will preserve an independent reality.”” Today this
union of space and time is called spacetime. Spacetime provides the true theater for

Spacetime is a unity
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PAYOFF OF THE PARABLE

from distance in space to interval in spacetime

DISCUSSION

Location marker

General name for such a location
marker

Canits location be staked out for all
to see, independent of any scheme
of measurement, and independent
of all numbers?

Simple descriptor of separation
between two location markers

Are there ways directly to measure
this separation?

With enough markers already
staked out, how can we tell some-
one where we want the next one?

Instead of boldly staking out the
new marker, or instead of position-
ing it relative to existing markers,
how else can we place the new
marker?

Nature of this reference frame?

Is such a reference frame unique?

How do two such reference frames
differ from one another?

What are names of two such possi-
ble reference frames?

What common unit simplifies analy-
sis of the results?

What is the conversion factor from
conventional units to meters?

SURVEYING TOWNSHIP

Steel stake driven in ground

Point or place

Yes

Distance
Yes

Specify distances from other

points.

By locating point relative to arefer-
ence frame

Surveyor's grid yields northward
and eastward readings of point
(Chapter 1).

No

Tilt of one surveyor's grid relative
to the other

Daytime grid: oriented to magnetic
north

Nighttime grid: oriented to North-
Star north

The unit meter for both northward
and eastward readings

Converting miles to meters:
k = 1609.344 meters/mile

ANALYZING NATURE

Collision between two particles
Emission of flash from atom
Spark jumping from antenna to pen

Event

Yes

Spacetime interval
Yes

Specify spacetime intervals from
other events.

By locating event relative to a ref-
erence frame

Lattice frame of rods and clocks
yields space and time readings of
event (Chapter 2).

No

Uniform velocity of one frame rela-
tive to the other

Laboratory frame
Rocket frame

The unit meter for both space and
time readings

Converting seconds to meters using
the speed of light:
¢ = 299,792,458 meters/second



DISCUSSION

For convenience, all measurements
are referred to what location?

How do readings for a single
marker differ between two refer-
ence frames?

When we change from one marker
to two, how do we specify the offset
between them in reference-frame
language?

How to figure from offset readings
a measure of separation that has
the same value whatever the choice
of reference frame?

Figure how?

Result of this reckoning?

Phrase to summarize this identity of
separation as figured in two refer-
ence frames?

Conclusions from this analysis?

1.5 UNITY OF SPACETIME

SURVEYING TOWNSHIP

A common origin (center of town)

Individual northward and eastward
readings for one point—for one
steel stake — do not have the same
values respectively for two survey-
ors' grids that are tilted relative to
one another.

Subtract: Figure the difference be-
tween eastward readings of the
two points; also the difference in
northward readings.

Figure the distance between the
two points.

(distance)? =
( difference in )2
northward readings
+ ( difference in )2
eastward readings

Distance between points as figured
from readings using one surveyor's
grid is the same as figured from
readings using a second surveyor's
grid tilted with respect to first grid.

Invariance of the distance between
points

(1) Northward and eastward di-
mensions are part of a single entity:
space.

(2) Distance is the simple measure
of separation between two points,
natural because invariant: the same
for different surveyor grids.
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ANALYZING NATURE

A common event (reference spark)

Individual space and time readings
for one event—for one spark —
do not have the same values re-
spectively for two frames that are in
motion relative to one another.

Subtract: Figure the difference be-
tween space readings of the two
events; also the difference in time
readings.

Figure the spacetime interval be-
tween the two events.

(interval)?2 =

( difference in )2

time readings

_( difference in )2
space readings

Interval between events as figured
from readings using one lattice-
work frame is the same as figured
from readings using a second
frame in steady straight-line motion
relative to first frame.

Invariance of the spacetime inter-
val between events.

(1) Space and time dimensions are
part of a single entity: spacetime.

(2) Spacetime interval is the simple
measure of separation between
two events, natural because invar-
iant: the same for different refer-
ence frames.
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Difference between
time and space
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every event in the lives of stars, atoms, and people. Space is different for different
observers. Time is different for different observers. Spacetime is the same for everyone.

Minkowski's insight is central to the understanding of the physical world. It focuses
attention on those quantities, such as spacetime interval, electrical charge, and particle
mass, that are the same for all observers in relative motion. It brings out the merely
relative character of quantities such as velocity, momentum, energy, separation in
time, and separation in space that depend on relative motion of observers.

Today we have learned not to overstate Minkowski’s argument. It is right to say
that time and space are inseparable parts of a larger unity. It is wrong to say that time is
identical in quality with space.

Why is it wrong? Is not time measured in meters, just as space is? In velating the
positions of two steel stakes driven into the ground, does not the surveyor measure
northward and eastward separations, quantities of identical physical character? By
analogy, in locating two events is not the observer measuring quantities of the same
natuve: space and time separations? How else could it be legitimate to treat these
quantities on an equal footing, as in the formula for the interval?

Equal footing, yes; same nature, no. There is a minus sign in the formula for the
interval squared = (time separation)? — (space separation)? that no sleight of hand
can ever conjure away. This minus sign distinguishes between space and time. No
twisting ot turning can ever give the same sign to real space and time separations in
the expression for the interval.

The invariance of the spacetime interval evidences the unity of space and time while
also preserving—in the formula’s minus sign— the distinction between the two.

The principles of special relativity are remarkably simple —simpler than the
axioms of Euclidean geometry or the principles of operating an automobile. Yet both
Euclid and the automobile have been mastered — perhaps with insufficient surprise
— by generations of ordinary people. Some of the best minds of the twentieth century
struggled with the concepts of relativity, not because nature is obscure, but because (1)
people find it difficult to outgrow established ways of looking at nature, and (2) the
world of the very fast described by relativity is so far from common experience that
everyday happenings are of limited help in developing an intuition for its descriptions.

By now we have won the battle to put relativity in understandable form. The
concepts of relativity can now be expressed simply enough to make it easy to think
correctly — *‘to make the bad difficult and the good easy.” This leaves only the second
difficulty, that of developing intuition—a practiced way of seeing. We understand
distance intuitively from everyday experience. Box 1.1 applies our intuition for
distance in space to help our intuition for interval in spacetime.

To put so much into so little, to subsume all of Einstein’s teaching on light and
motion in the single word spacetime, is to cram a wealth of ideas into a small picnic
basket that we shall be unpacking throughout the remainder of this book. =~
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INTRODUCTION TO THE EXERCISES

Important areas of current research can be analyzed  exercises and problems in this text evoke a wide range
very simply using the theory of relativity. This analy-  of physical consequences of the properties of space-
sis depends heavily on a physical intuition, which  time. These properties of spacetime recur here over
develops with experience. Wide experience isnoteasy ~ and over again in different contexts:

to obtain in the laboratory —simple experiments in
relativity are difficult and expensive because the speed
of light is so great. As alternatives to experiments, the * puzzles

» paradoxes
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* derivations

* technical applications

* experimental results

* estimates

* precise calculations

* philosophical difficulties

The text presents all formal tools necessary to solve
these exercises and problems, but intuition—a prac-
ticed way of seeing—is best developed without
hurry. For this reason we suggest continuing to do
more and more of these exercises in relativity after you
have moved on to material outside this book. The
mathematical manipulations in the exercises and
problems are very brief: only a few answers take more

COMPARING SPEEDS

than five lines to write down. On the other hand, the
exercises require some “‘rumination time.”’

In some chapters, exercises are divided into two
categories, Practice and Problems. The Practice exer-
cises help you to get used to ideas in the text. The
Problems apply these ideas to physical systems,
thought experiments, and paradoxes.

WHEELER'S FIRST MORAL PRINCIPLE: Never make
a calculation until you know the answer. Make an
estimate before every calculation, try a simple physical
argument (symmetry! invariance! conservation!) be-
fore every derivation, guess the answer to every para-
dox and puzzle. Courage: No one else needs to know
what the guess is. Therefore make it quickly, by
instinct. A right guess reinforces this instinct. A wrong
guess brings the refreshment of surprise. In either case
life as a spacetime expert, however long, is more fun!

CHAPTER 1 EXERCISES

PRACTICE

1-1 comparing speeds

Compare the speeds of an automobile, a jet plane, an
Earth satellice, Earth in its orbit around Sun, and a
pulse of light. Do this by comparing the relative
distance each travels in a fixed time. Arbitrarily
choose the fixed time to give convenient distances. A
car driving at the USA speed limit of 65 miles/hour
(105 kilometers/hour) covers 1 meter of distance in
about 35 milliseconds = 35 X 1073 second.

a How far does a commercial jetliner go in 35
milliseconds? (speed: 650 miles/hour = 1046
kilometers/hour)

b How far does an Earth satellite go in 35 milli-
seconds? (speed: 17,000 miles/hour = 27,350
kilometers/hour)

¢ How far does Earth cravel in its orbit around
Sun in 35 milliseconds? (speed: 30 kilometers/se-
cond)

d How far does a light pulse go in a vacuum in
35 milliseconds? (speed: 3 X 108 meters /second).
This distance is roughly how many times the distance
from Boston to San Francisco (5000 kilometers)?

1-2 images from Neptune

At 9:00 p.M. Pacific Daylight Time on August 24,
1989, the planetary probe Voyager Il passed by the
planet Neptune. Images of the planet were coded and
transmitted to Earth by microwave relay.

It took 4 hours and 6 minutes for this microwave
signal to travel from Neprune to Earth. Microwaves
(elecrromagnetic radiation, like light, but of fre-
quency lower than that of visible light), when propa-
gating through interplanetary space, move at the
“standard’’ light speed of one meter of distance in one
meter of light-travel time, or 299,792,458 meters/
second. In the following, neglect any relative motion
among Earth, Neptune, and Voyager II.

a Calculate the distance berween Earth and
Neprune at fly-by in units of minutes, seconds, years,
meters, and kilometers.

b Calculate the time the microwave signal takes
to reach Earth. Use the same units as in part a.

1-3 units of spacetime

Light moves at a speed of 3.0 X 10® meters/second.
One mile is approximately equal to 1600 meters.
One furlong is approximately equal to 200 meters.
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How many meters of time in one day?

How many seconds of distance in one mile?
How many hours of distance in one furlong?
How many weeks of distance in one light-year?
How many furlongs of time in one hour?

[ - MR T - i - |

1-4 time stretching and the
spacetime interval

A rocket clock emits two flashes of light and the
rocket observer records the time lapse (in seconds)
between these two flashes. The laboratory observer
records the time separation (in seconds) and space
separation (in light-seconds) between the same pair of
flashes. The results for both laboratory and rocket
observers ate recorded in the first line of the table.
Now a clock in a different rocket, moving at a
different speed with respect to the laboratory, emits a
different pair of flashes. The set of laboratory and
rocket space and time separations are recorded on the

SPACE AND TIME SEPARATIONS
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second line of the table. And so on. Complete the
table.

1-5 where and when?

Two firecrackers explode at the same place in the
laboratory and ate separated by a time of 3 years as
measured on a laboratory clock.

a What is the spatial distance between these two
events in a rocket in which the events are separated in
time by 5 years as measured on rocket clocks?

b What is the relative speed of the rocket and
laboratory frames?

The table shows distances between cities. The units
are kilometers. Assume all cities lie on the same flat
plane.

a Usearuler and a compass (the kind of compass
that makes circles) to construct a map of these cities.
Choose a convenient scale, such as one centimeter on
the map corresponds to ten kilometers on Earth.

Discussion: How to start? With three arbitrary
decisions! (1) Choose any city to be at the center of the

Rocker Laboratory Laboratory map. (2) Choose any second city to be ““due north”
time lapse time lapse distance . . o
(seconds) (seconds) (light-seconds) that is, along any.arbltrary direction you select. (3)
Even with these choices, there are two places you can
Example 20 29 21 locate the third city; choose either of these two places
arbitrarily.
a ? 10.72 595 b If you rotate the completed map in its own
b 20 ? 99 plane— for example, turning it while keeping it flat
c 66.8 72.9 ? on the table — does the resulting map also satisfy the
d ? 8.34 6.58 distance entries above?
e 21 22 ? ¢ Hold up your map between you and a light,
with the marks on the side of the paper facing the
DISTANCES BETWEEN CITIES
Distance
to city A B C D E F G H
from city
A 0 20.0 28.3 28.3 28.3 20.0 28.3 44.7
B 0 20.0 20.0 44.7 40.0 44.7 40.0
C 0 40.0 40.0 44.7 56.6 60.0
D 0 56.6 44.7 40.0 20.0
E 0 20.0 40.0 72.1
F 0 20.0 56.6
G 0 44.7
H
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light. Does the map you see from the back also satisfy
the table entries?

Discussion: In this exercise you use a table con-
sisting only of distances between pairs of cities to
construct a map of these cities from the point of view
of a surveyor using a given direction for north. In
Exercise 5-3 you use a table consisting only of space-
time intervals between pairs of events to draw a
“‘spacetime map” of these events from the point of
view of one free-float observer. Exercise 1-7 previews
this kind of spacetime map.

1-7 spacetime map

The laboratory space and time measurements of
events 1 through 5 are plotted in the figure. Compute
the value of the spacetime interval

a between event 1 and event 2.

b between event 1 and event 3.

¢ between event 1 and event 4.

d between event 1 and event 5.

e A rocket moves with constant velocity from
event 1 to event 2. That is, events 1 and 2 occur at the
same place in this rocket frame. What time lapse is
recorded on the rocket clock between these two
events?

event
2
7 event
6 event|3
T 3 [event
time 4
meters
( ) 3 event
2

0 1 2 3 4 5 6 7
— space (mefers) —>

EXERCISE 1-7. Spacetime map of some events.

PROBLEMS

In one second some desktop computers can carry out
one million instructions in sequence. One instruction
might be, for instance, multiplying two numbers to-
gether. In technical jargon, such a computer operates
at “‘one megaflop.”’ Assume that carrying out one

SPACETIME MAP

instruction requires transmission of data from the
memory (where data is stored) to the processor (where
the computation is carried out) and transmission of
the result back to the memory for storage.

a What is the maximum average distance be-
tween memory and processor in a ‘‘one-megaflop”
computer? Is this maximum distance increased or
decreased if the signal travels through conductors at
one half the speed of light in a vacuum?

b Computers are now becoming available that
operate at “‘one gigaflop,”’ that is, they carry out 10°
sequential instructions per second. What is the maxi-
mum average distance between memory and proces-
sor in a “‘one-gigaflop” machine?

¢ Estimate the overall maximum size of a “‘one-
teraflop”” machine, that is, a computer that can carry
out 10'2 sequential instructions per second.

d Discussion question: In contrast with most
current personal computers, a ‘“‘parallel processing’
computer contains several or many processors that
work together on a computing task. One might think
that a machine with 10,000 processors would com-
plete a given computation task in 1/10,000 the time.
However, many computational problems cannot be
divided up in this way, and in any case some fraction
of the computing capacity must be devoted to coordi-
nating the team of processors. What limits on physi-
cal size does the speed of light impose on a parallel
processing computer?

1-9 trips to Andromeda by
rocket

The Andromeda galaxy is approximately two million
light-years distant from Earth as measured in the
Earth-linked frame. Is it possible for you to travel
from Earth to Andromeda in your lifetime? Sneak up
on the answer to this question by considering a series
of trips from Earth to Andromeda, each one faster
than the one before. For simplicity, assume the Earth-
Andromeda distance to be exactly two million light-
years in the Earth frame, treat Earth and Andromeda
as points, and neglect any relative motion between
Earth and Andromeda.

a TRIP 1. Your one-way trip takes a time 2.01 X
108 years (measured in the Earth-linked frame) to
cover the distance of 2.00 X 10° light-years. How
long does the trip last as measured in your rocket
frame?

b What is your rocket speed on Trip 1 as mea-
sured in the Earth-linked frame? Express this speed as
a decimal fraction of the speed of light. Call this
fraction, v = v, /c, where v, is speed in conven-
tional units, such as meters/second. Discussion: If
your rocket moves at half the speed of light, it takes
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4 X 106 years to cover the distance 2 X 10€ light-
years. In this case

_ 2X 108 light-years
4 X 10° years

1
v -
2
Therefore . . .

¢ TRIP 2. Your one-way Earth-Andromeda trip
takes 2.001 X 106 years as measured in the Earth-
linked frame. How long does the trip last as measured
in your rocket frame? What is your rocket speed for
Trip 2, expressed as a decimal fraction of the speed of
light?

d TRIP 3. Now set the rocket time for the one-
way trip to 20 years, which is all the time you want to
spend getting to Andromeda. In this case, what is
your speed as a decimal fraction of the speed of light?
Discussion: Solutions to many exercises in this text
are simplified by using the following approximation,
which is the first two terms in the binomial expansion

A+tz=1+nz if ]z <<1

Here 7 can be positive or negative, a fraction or an
integer; z can be positive or negative, as long as its
magnitude is very much smaller than unity. This
approximation can be used twice in the solution to
pare d.

1-10 trip to Andromeda by
Transporter

In the Star Trek series a so-called Transporter is used
to “‘beam”” people and their equipment from a star-
ship to the surface of nearby planets and back. The
Transporter mechanism is not explained, but it ap-
pears to work only locally. (If it could transport to
remote locations, why bother with the starship at all?)
Assume that one thousand years from now a Trans-
porter exists that reduces people and things to data
(elementary bits of information) and transmits the
data by light or radio signal to remote locations. There
a Receiver uses the data to reassemble travelers and
their equipment out of local raw materials.

One of your descendants, named Samantha, is the
first ““‘transporternaut’’ to be beamed from Earth to
the planet Zircon orbiting a star in the Andromeda
Nebula, two million light-years from Earth. Neglect
any relative motion between Earth and Zircon, and
assume: (1) transmission produces a Samantha iden-
tical to the original in every respect (except that she is
2 million light-years from home!), and (2) the time
required for disassembling Samantha on Earth and
reassembling her on Zircon is negligible as measured
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in the common rest frame of Transporter and Re-
ceiver.

a How much does Samantha age during her
outward trip to Zircon?

b Samantha collects samples and makes obser-
vations of the Zirconian civilization for one Earth-
year, then beams back to Earth. How much has Sa-
mantha aged during her entire trip?

¢ How much older is Earth and its civilization
when Samantha returns?

d Earth has been taken over by a tyrant, who
wishes to invade Zircon. He sends one warrior and has
him duplicated into attack battalions at the Receiver
end. How long will the Earth tyrant have to wait to
discover whether his ambition has been satisfied?

e A second transporternaut is beamed to a much
more remote galaxy that is moving away from Earth
at 87 percent of the speed of light. This time, too, the
traveler stays in the remote galaxy for one year as
measured by clocks moving with the galaxy before re-
turning to Earth by Transporter. How much has the
transporternaut aged when she arrives back at Earth?
(Careful!)

1-11 time stretching with
muons

At heights of 10 to 60 kilometers above Earth, cosmic
rays continually strike nuclei of oxygen and nitrogen
atoms and produce muons (muons: elementary parti-
cles of mass equal to 207 electron masses produced in
some nuclear reactions). Some of the muons move
vertically downward with a speed nearly that of light.
Follow one of the muons on its way down. In a given
sample of muons, half of them decay to other ele-
mentary particles in 1.5 microseconds (1.5 X 1076
seconds), measured with respect to a reference frame
in which they are at rest. Half of the remainder decay
in the next 1.5 microseconds, and so on. Analyze the
results of this decay as observed in two different
frames. Idealize the rather complicated actual experi-
ment to the following roughly equivalent situation:
All the muons are produced at the same height (60
kilometers); all have the same speed; all travel straight
down; none are lost to collisions with air molecules on
the way down.

a Approximately how long a time will it take
these muons to reach the surface of Earth, as mea-
sured in the Earth frame?

b If the decay time were the same for Earth
observers as for an observer traveling with the muons,
approximately how many half-lives would have
passed? Therefore what fraction of those created at a
height of 60 kilometers would remain when they
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reached sea level on Earth? You may express your
answer as a power of the fraction 1/2.

¢ An experiment determines that the fraction
1/8 of the muons reaches sea level. Call the rest frame
of the muons the rocket frame. In this rocket frame,
how many half-lives have passed between creation of
a given muon and its arrival as a survivor at sea level?

d  Inthe rocket frame, what is the space separation
between birth of a survivor muon and its arrival at the
surface of Earth? (Careful!)

e From the rocket space and time separations,
find the value of the spacetime interval between the
birth event and the arrival event for a single surviving
muon.

Reference: Nalini Easwar and Douglas A. Maclntite, American Jour-
nal of Physics, Volume 59, pages 589592 (July 1991).

1-12 time stretching with
n*-mesons

Laboratory experiments on particle decay are much
more conveniently done with 7+-mesons (pi-plus
mesons) than with [{-mesons, as is seen in the table.

In a given sample of 7T"-mesons half will decay to
other elementary particles in 18 nanoseconds (18 X
1079 seconds) measured in a reference frame in which
the 7T"-mesons are at rest. Half of the remainder will
decay in the next 18 nanoseconds, and so on.

a In a particle accelerator Tt-mesons are pro-
duced when a proton beam strikes an aluminum

TIME STRETCHING WITH 7r*-MESONS

TIME STRETCHING WITH 7z*-MESONS

““Characteristic distance”
(speed of light
multiplied by

Time for half to
decay (measured

Particle in rest frame) foregoing time)
muon 1.5 X 1076 second 450 meters
(207 times
electron mass)

Tt -meson 18 X 107 second 5.4 meters
(273 times

electron mass)

target inside the accelerator. Mesons leave this target
with nearly the speed of light. If there were no time
stretching and if no mesons were removed from the
resulting beam by collisions, what would be the
greatest distance from the target at which half of
the mesons would remain undecayed?

b The m*-mesons of interest in a particular ex-
periment have a speed 0.9978 that of light. By what
factor is the predicted distance from the target for
half-decay increased by time dilation over the
previous prediction — that is, by what factor does this
dilation effect allow one to increase the separation
between the detecting equipment and target?



CHAPTER 2

FLOATING FREE

A¢ thar moment there came to me the happiest

thought of my life . .

for an observer falling freely

from the voof of a house no gravitational field exists

during bis fall

2.1 FLOATING TO MOON

will the astronavt stand on the floor —or float?

Less than a month after the surrender at Appomattox ended the American Civil War
(1861 ~1865), the French author Jules Verne began writing A Trip From the Earth to
the Moon and A Trip Around the Moon. Eminent American cannon designers, so the
story goes, cast a great cannon in a pit, with cannon muzzle pointing skyward. From
this cannon they fire a ten-ton projectile containing three men and several animals
(Figure 2-1).

As the projectile coasts outward in unpowered flight toward Moon, Verne says, its
passengers walk normally inside the projectile on the end nearer Earth (Figure 2-2). As
the trip continues, passengers find themselves pressed less and less against the floor of
the spaceship until finally, at the point where Earth and Moon exert equal but opposite
gravitational attraction, passengers float free of the floor. Later, as the ship nears
Moon, they walk around once again —according to Verne— but now agamst the end
of the spaceship nearer Moon.

Early in the coasting portion of the trip a dog on the ship dies from injuries sustained
at takeoff. Passengers dispose of its remains through a door in the spaceship, only to
find the body floating outside the window during the entire trip (Figure 2-1).

This story leads to a paradox whose resolution is of crucial importance to relativity.
Verne thought it reasonable that Earth’s gravitational attraction would keep a passen-
ger pressed against the Earth end of the spaceship during the early part of the trip. He
also thought it reasonable that the dog should remain next to the ship, since both ship
and dog independently follow the same path through space. But since the dog floats
outside the spaceship during the entire trip, why doesn’t the passenger float around
inside the spaceship? If the ship were sawed in half would the passenger, now
“outside,” float free of the floor?

25

Albert Einstein

Jules Verne:
Passenger stands on floor

Paradox of passenger and dog
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TE WA JHE BODY o SATETLITE

FIGURE 2-1. Illustration from an
early edition of A Trip Around the
. Moon. Satellite is the name of the unfor-
tunate dog.

Reality:
Passenger floats in spaceship

CHAPTER 2 FLOATING FREE

AN INCORRECT PREDICTION \ THE CORRECT PREDICTION .
“,.‘me . ..V.oun

FIGURE 2-2. Incorrect prediction: Jules Verne believed that a passenger inside a free projectile would
stand against the end of the projectile nearest Earth or Moon, whichever had greater gravitational
attraction— but that the dog would float along beside the projectile for the entire trip. Correct prediction:
Verne was right about the dog, but a passenger also floats with respect to the free projectile during the entire
1ip.

Our experience with actual space flights enables us to resolve this paradox (Figure
2-2). Jules Verne was wrong about the passenger’s motion inside the unpowered
spaceship. Like the dog outside, the passenger inside independently follows the same
path through space as the spaceship itself. Therefore he floats freely relative to the ship
during the entire trip (after the initial boost inside the cannon barrel). True: Earth’s
gravity acts on the passenger. But it also acts on the spaceship. In fact, with respect to
Earth, gravitational acceleration of the spaceship just equals gravitational acceleration
of the passenger. Because of this equality, there is no relative acceleration berween
passenger and spaceship. Thus the spaceship serves as a reference frame relative to
which the passenger does not experience any acceleration.

To say that acceleration of the passenger relative to the unpowered spaceship equals
zero is mot to say that his velocity relative to it necessarily also equals zero. He may jump
from the floor or spring from the side — in which case he hurtles across the spaceship
and strikes the opposite wall. However, when he floats with zero initial velocity
relative to the ship the situation is particularly interesting, for he will also float with
zero velocity relative to it at all later times. He and the ship follow identical paths
through space. How remarkable that the passenger, who cannot see outside, never-
theless moves on this deterministic orbit! Without a way to control his motion and
even with his eyes closed he will not touch the wall. How could one do better at
eliminating detectable gravitational influences? e~

2.2 THE INERTIAL (FREE-FLOAT) FRAME

goodbye to the ““force of gravity’”’

It is easy to talk about the simplicity of motion in a spaceship. It is hard to think of
conditions being equally simple on the surface of Earth (Figure 2-3). The reason for
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FIGURE 2-3. The Japan Microgravity Center (JAMIC) installed in an abandoned coal mine
710 meters deep in the small town of Kamisunagawa on the northern island of Hokkaido,
Japan, The capsule carrying the experimental apparatus provides a free-float frame for 10 seconds as it falls
490 meters through a vertical tube, achieving a maximum velocity of nearly 100 meters/second. It is guided
by two contact-free magnetic suspensions along the tube. The vertical tube is not evacuated; downward-
thrusting gas jers on the capsule compensate for air drag as the capsule drops. The capsule is slowed down in
an additional distance of 200 meters near the bottom of the tube by air resistance after thrusters are turned
off, followed by mechanical braking. Twenty meters of cushioning material at the very bottom of the tube
provide emergency stopping. The falling capsule is nearly 8 meters long and nearly 2 meters in diameter with
a mass of 5000 kilograms, including 1000 kilograms of experimental equipment contained in an inner
cylinder 1.3 meters in diameter and 1.8 meters long. The space between capsule and experimental cylinder is
evacuated. The inner experimental cylinder is released just before the outer capsule itself. Optical monitoring
of the vertical position of the inner cylinder triggers downward-pushing thrusters as needed to overcome air
resistance. Thus the experimental cylinder itself acts as an internal “conscience,” ensuring that the capsule
takes the same course that it would have taken had both vesistance and thrust been absent. The vesult? A
nearly free-float frame, with a maximum acceleration of 1,0 X 1074 g in the experimental capsule, where
g is the acceleration of gravity at Earth's surface. Experiments carried out in this facility benefit from
conditions of "'no air pressure, no heat convection, no floating or sinking bucyancy, no vesistance to motion,"”
as well as much lower cost and less environmental damage than those involved in launching and monitoring
an Earth satellite, The facility is designed to carry out 400 drops per year, with experiments such as forming
large superconducting crystals, creating alloys of materials that do not normally mix, studying transitions
between gas and liquid phases, and burning under zero-g. (See also Figure 9-2.)
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Concept of free-float frame

CHAPTER 2 FLOATING FREE

/SAME BAIN

SAME PLACE
SAME TIME

/ |
[ P 1|

FIGURE 2-4. Illusion and Reality. The same ball thrown from the same corner of the same room in the
same direction with the same speed is seen to undergo very different motions depending on whether it is
recorded by an observer with a floor pushing up against bis feet or by an observer in “‘free fall” (*free float”)
in a house sawed free from the cliff. In both descriptions the ball arrives at the same place— relative to
Mother Earth— at the same instant. Let each ball squirt a jet of ink on the wall we are looking at. The
resulting vecord is as crisp for the arc as for the straight line. Is the arc real and the straight line illusion? Or
is the straight line real and the arc illusion? Einstein tells us that the two ink trails are equally valid. We
have only to be honest and say whether the house, the wall, and the describer of the motion are in free float or
whether the describer is continually being driven away from a condition of free float by a push against bis
feet. Einstein alio tells us that physics always looks simplest in a free-float frame. Finally, be tells us that
every truly local manifestation of “gravity" can be eliminated by observing motion from a frame of refevence
that is in free float.

concern is not far to seek. We experience it every day, every minute, every second. We
call it gravity. It shows in the arc of a ball tossed across the room (Figure 2-4, left).
How can anyone confront a mathematical curve like thac arc and not be trapped again
in that tortuous trail of thought that led from ancient Greeks ro Galileo to Newron?
They thought of gravity as a force acting through space, as something mysterious, as
something that had to be “‘explained.”

Einstein put forward a revolutionary new idea. Eliminate gravicy!

Where lies the cause of the curved path of the ball? Is it the ball? Is it some
mysterious *‘force of gravity''? Neither, Einstein tells us. It is the fault of the viewers
—and the fault of the floor that forces us away from the natural state of motion: the
state of free fall, or better put, free float. Remove the floor and our motion
immediately becomes natural, effortless, free from gravirational effects.

Let the room be cut loose at the moment we throw the ball slancwise upward from
the west side at floor level (Figure 2-4, right). The ball has the same motion as it did
before. However, the motion looks different. It looks different because we who look at
it are in a different frame of reference. We are in a free-float frame. In this free-float
frame the ball has straight-line motion. What could be simpler?

Even when the room was not cut away from the cliff, the floor did not affect the
midair flight of the ball. But the floor did affect us who watched the flight. The floor
forced us away from our natural motion, the motion of free fall (free floar). We
blamed the curved path of the ball on the **force of gravity’ acting on the 4a//. Instead
we should have blamed the floor for its force acting on #s. Better yet, get rid of the floor
by cutting the house away from the cliff. Then our point of view becomes the natural
one: We enter a free-float frame. In our free-float frame the ball flies straight.
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What's the fault of the force on my feet?
What pushes my feet down on the floor?
Says Newton, the fault’s at Earth’s core.
Einstein says, the fault’s with the floor;
Remove that and gravity's beat!

—Frances Towne Ruml

How could humankind have lived so many centuries without realizing that the
““arc’’ is an unnecessary distraction, that the idea of local ““gravity” is superfluous —
the fault of the observer for not arranging to look at matters from a condition of free
float?

Even today we recoil instinctively from the experience of free float. We and a
companion ride in the falling room, which does not crash on the ground but drops into
a long vertical tunnel dug for that purpose along the north —south axis of Earth. Our
companion is so filled with consternation that he takes no interest in our experimental
findings about free float. He grips the door jamb in terror. ‘“We're falling!” he cries
out. His fear turns to astonishment when we tell him not to worry.

““A shaft has been sunk through Earth,”” we tell him. “‘It’s not the fall that hurts
anyone but what stops the fall. All obstacles have been removed from our way,
including air. Free fall,”” we assure him, “‘is the safest condition there is. That’s why we
call it free float.”

“You may call it float,” he says, ‘but I still call it fall.”

“Right now that way of speaking may seem reasonable,”” we reply, ‘‘but after we
pass the center of Earth and start approaching the opposite surface, won't the word
‘fall’ seem rather out of place? Might you not then prefer the word ‘float’?”” And with
“float”” our companion at last is happy.

What do we both see? Weightlessness. Free float. Motion in a straight line and at
uniform speed for marbles, pennies, keys, and balls in free motion in any direction
within our traveling home. No jolts. No shudders. No shakes at any point in all the
long journey from one side of Earth to the other.

For our ancestors, travel into space was a dream beyond realization. Equally beyond
our reach today is the dream of a house floating along a tunnel through Earth, but this
dream nonetheless illuminates the simplicity of motion in a free-float frame. Given the
necessary conditions, nothing that we observe inside our traveling room gives us the
slightest possibility of discriminating among different free-float frames: one just above
Earth’s surface, a second passing through Earth’s interior, a third in the uttermost
reaches of space. Floating inside any of them we find no evidence whatever for the
presence of ‘‘gravity.”

Wait a minute! If the idea of local “‘gravity’ is unnecessary, why does my pencil begin
to fall when 1 hold 11 in the air and let go? If there is no gravity, my pencil should remain
at rest.

And so it does remain at rest—as observed from a free-float frame! The natural
motion of your pencil is to remain at rest or to move with constant velocity in a
free-float frame. So it is not helpful to ask: *“Why does the pencil begin to fall when
let go?”’ A more helpful question: ‘‘Before I let go, why must I apply an upward force
to keep the pencil at rest?”’ Answer: Because you are making observations from an
unnatural frame: one held fixed at the surface of Earth. Remove that fixed hold by
dropping your room off a cliff. Then for you “‘gravity”” disappears. For you, no force
is required to keep the pencil at rest in your free-float frame. =~
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Earth's pull nonuniform:
Large spaceship
not a free-float frame

CHAPTER 2 FLOATING FREE

2.3 LOCAL CHARACTER OF FREE-FLOAT
FRAME

tidal effects intrude in larger domains

First to strike us about the concepr free float has been its paradoxical character. As a
first step to explaining gravity Einstein got rid of gravity. There is no evidence of
gravity in the freely falling house.

Well, a/most no evidence. The second feature of free float is its local character.
Riding in a very small spaceship (Figure 2-5, left) we find no evidence of gravity. But
the enclosure in which we ride—falling near Earth or plunging through Earth—
cannot be too large or fall for too long a time without some unavoidable relative
changes in motion being detected between particles in the enclosure. Why? Because
widely separated particles within a large enclosed space are differencly affected by the
nonuniform gravitational field of Earth, to use the Newtonian way of speaking. For
example, two particles released side by side are both attracted toward the center of
Earth, so they move closer together as measured inside a falling long natrow borizontal
railway coach (Figure 2-5, center). This has nothing to do with “gravitational attrac-
tion”" between the particles, which is entirely negligible.

As another example, think of two particles released far apart vertically but directly
above one another in a long narrow vertical falling railway coach (Figure 2-5, right).
This time their gravitational accelerations toward Earth are in the same direction,

FIGURE 2-5. Three vebicles in free fall near Earth: small space capsule, Einstein's old-fa-
shioned railway coach in free fall in a horizontal orientation, and another railway coach in
vertical orientation.
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according to the Newtonian analysis. However, the particle nearer Earth is more
strongly attracted to Earth and slowly leaves the other behind: the two particles move
farther apart as the coach falls. Conclusion: the large enclosure is not a free-float frame.

Even a small room fails to qualify as free-float when we sample it over a long
enough time. In the 42 minutes it takes our small room to fall through the tunnel from
North Pole to South Pole, we notice relative motion between test particles released
initially from rest at opposite sides of the room.

Now, we want the laws of motion to look simple in our floating room. Therefore we
want to eliminate all relative accelerations produced by external causes. ‘‘Eliminate”
means to reduce these accelerations below the limit of detection so that they do not
interfere with more important accelerations we wish to study, such as those produced
when two particles collide. We eliminate the problem by choosing a room that is
sufficiently small. Smaller room? Smaller relative accelerations of objects at different
points in the room!

Let someone have instruments for detection of relative accelerations with any given
degree of sensitivity. No matter how fine that sensitivity, the room can always be made
so small that these perturbing relative accelerations are too small to be detectable.
Within these limits of sensitivity our room is a free-float frame. ‘‘Official”’ names for
such a frame are the inertial reference frame and the Lorentz reference frame.
Here, however, we often use the name free-float frame, which we find more
descriptive. These are all names for the same thing.

A reference frame is said to be an “inertial” or “free-float” or “Lorentz”
reference frame in a certain region of space and time when, throughout that
region of spacetime —and within some specified accuracy — every free test
particle initially at rest with respect to that frame remains at rest, and every
free test particle initially in motion with respect to that frame continues its
motion without change in speed or in direction.

Wonder of wonders! This test can be carried out entirely within the free-float frame.
The observer need not look out of the room or refer to any measurements made
external to the room. A free-float frame is “‘local” in the sense that it is limited in space
and time—and also “local’’ in the sense that its free-float character can be determined
from within, locally.

Sir Isaac Newton stated his First Law of Motion this way: ‘‘Every body perseveres in
its state of rest, or of uniform motion in a right {straight] line, unless it is compelled to
change that state by forces impressed upon it.”” For Newton, inertia was a property of
objects that described their tendency to maintain their state of motion, whether of rest
or constant velocity. For him, objects obeyed the “Law of Inertia.”” Here we have
turned the “‘Law of Inertia” around: Before we certify a reference frame to be inertial,
we require observers in that frame to demonstrate that every free particle maintains its
initial state of motion or rest. Then Newton'’s First Law of Motion defines a reference
frame —an arena or playing field — in which one can study the motion of objects and
draft the laws of their motion.

When is the room, the spaceship, or any other vebicle small enough to be called a local
free-float frame? Or when is the relative acceleration of two free particles placed at
opposite ends of the vebicle too slight to be detected?

“Local” is a tricky word. For example, drop the old-fashioned 20-meter-long
railway coach in a horizontal orientation from rest at a height of 315 meters onto the
surface of Earth (Figure 2-5, center). Time from release to impact equals 8 seconds,
or 2400 million meters of light-travel time. At the same instant you drop the coach,
release tiny ball bearings from rest—and in midair—at opposite ends of the coach.

/1)
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THE TIDE-DRIVING POWER
OF MOON AND SUN

Note: Neither astronomers nor newspapers say ‘‘the Venus'’ or “‘the Mars." All
say simply ‘“Venus'’ or “‘Mars."” Astronomers follow the same snappy practice
for Earth, Moon, and Sun. More and more of the rest of the world now follows —
as do we in this book—the recommendations of the International Astronomical
Union.

The ocean’srise and fall in a never-ending rhythmic cycle bears witness to
the tide-driving power of Moon and Sun. In principle those influences are no
different from those that cause relative motion of free particles in the vicinity
of Earth. In a free-float frame near Earth, particles separated vertically in-
crease their separation with time; particles separated horizontally decrease
their separation with time (Figure 2-5). More generally, a thin spattering of
free-float test masses, spherical in pattern, gradually becomes egg-shaped,
with the long axis vertical. Test masses nearer Earth, more strongly atiracted
than the average, move downward to form the lower bulge. Similarly, test
masses farther from Earth, less strongly oftracted than the average, lag be-
hind to form the upper bulge.

By like action Moon, acting on the waters of Earth—floating free in space
—would draw them out into an egg-shaped pattern if there were water
everywhere, water of uniform depth. There isn't. The narrow Straits of Gi-
braltar almost cut off the Mediterranean from the open ocean, and almost kill
all tides in it. Therefore it is no wonder that Galileo Gadlilei, although a great
pioneer in the study of gravity, did not take the tides as seriously as the more
widely traveled Johannes Kepler, an expert on the motion of Moon and the
planets. Of Kepler, Galileo even said, *‘More than other people he was a
person of independent genius . . . [but he] later pricked up his ears and
became interested in the action of the moon on the water, and in other occult
phenomena, and similar childishness."

Foolishness indeed, it must have seemed, to assign to the tiny tides of the
Mediterranean an explanation so cosmic as Moon. But mariners in northern
waters face destruction unless they track the tides. For good reason they
remember that Moon reaches its summit overhead an average 50.47 minutes
later each day. Their own bitter experience tells them that, of the two high
tides a day —two because there are two projections on an egg— each also
comes about 50 minutes later than it did the day before.

Geography makes Mediterranean tides minuscule. Geography also
makes tides in the Gulf of Maine and Bay of Fundy the highest in the world.
How come? Resonance! The Bay of Fundy and the Gulf of Maine make
together a great bathtub in which water sloshes back and forth with a natural
period of 13 hours, near to the 12.4-hour timing of Moon's tide-driving
power—and to the 12-hour timing of Sun’s influence. Build a big power-
producing dam in the upper reaches of the Bay of Fundy? Shorten the length
of the bathtub? Decrease the slosh time from 13 hours to exact resonance
with Moon? Then get one-foot higher tides along the Maine coast!

Want to see the highest tides in the Bay of Fundy? Then choose your visit
according to these rules: (1) Come in summer, when this northern body of
water tilts most strongly toward Moon. (2) Come when Moon, in its elliptic
orbit, is closest to Earth—roughly 10 percent closer than its most distant
point, yielding roughly 35 percent greater tide-producing power. (3) Take
into account the tide-producing power of Sun, about 45 percent as great as
that of Moon. Sun's effect reinforces Moon's influence when Moon is dark,
dark because interposed, or almost interposed, between Earth and Sun, so
Sun and Moon pull from the same side. But an egg has two projections, so Sun
and Moon also assist each other in producing tides when they are on oppo-
site sides of Earth; in this case we see a full Moon.



The result? Burncoat Head in the Minas Basin, Nova Scotia, has the great-
est mean range of 14.5 meters (47.5 feet) between low and high tide when
Sun and Moon line up. At nearby Leaf Basin, a unique value of 16.6 meters
(54.5 feet) was recorded in 1953.

High and low tides witness to the relative accelerations of portions of the
ocean separated by the diameter of Earth. High tides show the “‘stretching'*
relative acceleration at different radial distances from Moon or Sun. Low
tides witness to the ‘‘squeezing’’ relative accelerations at the same radial
distance from Moon or Sun but at opposite sides of Earth.
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During the time of fall, they move toward each other a distance of 1 millimeter—a
thousandth of a meter, the thickness of 16 pages of this book. Why do they move
toward one another? Not because of the gravitational attraction berween the ball
bearings; this is far too minute to bring about any “‘coming together.” Rather,
according to Newton's nonlocal view, they are both attracted toward the center of
Earth. Their relative motion results from the difference in direction of Earth’s
gravitational pull on them, says Newton.

As another example, drop the same antique railway coach from rest in a vertical
orientation, with the lower end of the coach initially 315 meters from the surface of
Earth (Figure 2-5, right). Again release tiny ball bearings from rest at opposite ends
of the coach. In this case, during the time of fall, the ball bearings move apart by a
distance of 2 millimeters because of the greater gravitational acceleration of the one
nearer Earth, as Newton would put it. This is twice the change thac occurs for
horizontal separation.

In either of these examples let the measuring equipment in use in the coach be just
short of the sensitivity required to detect this relative motion of the ball bearings.
Then, with a limited time of observation of 8 seconds, the railway coach—or, to use
the earlier example, the freely falling room —serves as a free-float frame.

When the sensitivity of measuring equipment is increased, the railway coach may
no longer serve as a local free-float frame unless we make additional changes. Either
shorten the 20-meter domain in which observations are made, or decrease the time
given to the observations. Or better, cut down some appropriate combination of
space and time dimensions of the region under observation. Or as a final alternative,
shoot the whole apparatus by rocket up to a region of space where one cannor detect
locally the *differential gravirational acceleration” between one side of the coach and
another—to use Newton's way of speaking. In another way of speaking, relative
accelerations of particles in different parts of the coach must be too small to perceive.
Only when these relative accelerations are too small to detect do we have a reference
frame with respect to which laws of motion are simple. That’s why “local’ is a tricky
word!

Hold on! You just finished saying that the idea of local gravity is unnecessary. Yer here
you use the ‘differential gravitational acceleration’' to account for relative accelera-
tions of test particles and ocean tides near Earth. Is local gravity necessary or not?

Near Earth, two explanadions of projectile paths or ocean flow give essendially the
same numerical results. Newton says there is a force of gravity, to be treated like any
other force in analyzing motion. Einstein says gravity differs from all other forces:
Get rid of gravity locally by climbing into a free-float frame. Near the surface of
Earth both explanations accurately predict relative accelerations of falling particles
toward or away from one another and motions of the tides. In this chapter we use the
more familiar Newronian analysis to predict relative accelerations.

When tests of gravity are very sensitive, or when gravitational effects are large,
such as near white dwarfs or neutron stars, then Einstein's predictions are not the
same as Newton's. In such cases Einstein's battle-tested 1915 theory of gravity
(general relatvity) predicts results thar are observed; Newton's theory makes incor-
rect predictions. This justifies Einstein's insistence on getting rid of gravity locally
using free-float frames. All that remains of gravity is the relative accelerations of
nearby particles—rtidal accelerations. =~

2.4 REGIONS OF SPACETIME

special relativity is limited to free-float frames

“Region of spacetime.” What is the precise meaning of this term? The long narrow
railway coach in Figure 2-5 probes spacetime for a limited stretch of time and in one or
another single direction in space. It can be oriented north—south or east—west or
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up—down. Whatever its orientation, relative acceleration of the tiny ball bearings
released at the two ends can be measured. For all three directions—and for all
intermediate directions— let it be found by calculation that the relative drift of two
test patticles equals half the minimum detectable amount or less. Then throughout a
cube of space 20 meters on an edge and for a lapse of time of 8 seconds (2400 million
meters of light-travel time), test particles moving every which way depart from
straight-line motion by undetectable amounts. In other words, the reference frame is
free-float in a local region of spacetime with dimensions

(20 meters X 20 meters X 20 meters of space) X 2400 million meters of time

Notice that this “‘region of spacetime” is four-dimensional: three dimensions of space
and one of time.

Why pay so much attention to the small relative accelerations ddscribed above? Why not
from the beginning consider as reference frames only spaceships very far from Earth, far
from our Sun, and far from any other gravitating body? At these distances we need not
worry at all about any relative acceleration due to a nonuniform gravitational field,
and a free-float frame can be huge without worrying about relative accelerations of
particles at the extremities of the frame. Why not study special relativity in these vemote
regions of space?

Most of our experiments are carried out near Earth and almost all in our part of the
solar system. Near Earth or Sun we cannot eliminate relative accelerations of test
particles due to nonuniformity of gravitational fields. So we need to know how large
a region of spacetime our experiment can occupy and still follow the simple laws that
apply in free-float frames.

/1y

For some experiments local free-float frames are not adequate. For example, a
comet sweeps in from remote distances, swings close to Sun, and returns to deep space.
(Consider only the head of the comet, not its 100-million-kilometer-long tail.)
Particles traveling near the comet during all those years move closer together or farther
apart due to tidal forces from Sun (assuming we can neglect effects of the gravitational
field of the comet itself). These relative forces are called tidal, because similar
differential forces from Sun and Moon act on the ocean on opposite sides of Earth to
cause tides (Box 2-1). A frame large enough to include these particles is not free-float.
So reduce spatial size until relative motion of encompassed particles is undetectable
during that time. The resulting frame is very much smaller than the head of the comet!
You cannot analyze the motion of a comet in a frame smaller than the comet. So
instead think of a larger free-float frame that surrounds the comet for a limited time
during its orbit, so that the comet passes through a seties of such frames. Or think of a
whole collection of free-float frames plunging radially toward Sun, through which the
comet passes in sequence. In either case, motion of the comet over a small portion of its
trajectory can be analyzed rigorously with respect to one of these local free-float frames
using special relativity. However, questions about the entire trajectory cannot be
answered using only one free-float frame; for this we require a series of frames. General
relativity — the theory of gravitation — tells how to describe and predict orbits that
traverse a string of adjacent free-float frames. Only general relativity can describe
motion in unlimited regions of spacetime.

Please stop beating around the bush! In defining a free-float frame, you say that every
test particle at vest in such a frame remains at vest “‘within some specified accuracy.”
What accuracy? Can't you be more specific? Why do these definitions depend on
whether or not we are able to perceive the tiny motion of some test particle? My eyesight
gets worse. Or I take my glasses off. Does the world suddenly change, along with the
standards for “‘inertial frame’’? Surely science 15 move exact, move objective than that!
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~-Z Science can be “exact” only when we agree on acceptable accuracy. A 1000-ton
™ rocket streaks 1 kilometer in 3 seconds; do you want to measure the sequence of its
positions during that time with an accuracy of 10 centimeters? An astronaut in an
= orbiting space station releases a pencil tha floats at rest in frone of her; do you want to
track its position to 1-millimeter accuracy for 2 hours? Each case places different
demands on the inertial frame from which the observations are made. Specific
figures imply specific requirements for inertial frames, requirements that must be
verified by test particles. The astronaut takes off her glasses; then she can determine
the position of the pencil with only 3-millimeter accuracy. Suddenly — yes!—
requirements on the inertial frame have become less stringent — unless she is willing

to observe the pencil over a longer period of time. =~

2.5 TEST PARTICLE

ideal tool to probe spacetime without affecting it

“Test particle.” How small must a particle be to qualify as a test particle? It must
have so little mass that, within some specified accuracy, its presence does not affect the
motion of other nearby particles. In terms of Newtonian mechanics, gravitational
attraction of the test particle for other particles must be negligible within the accuracy
specified.

As an example, consider a particle of mass 10 kilograms. A second and less massive
particle placed 10 centimeters from it and initially at rest will, in less than 3 minutes,
be drawn toward it by 1 millimeter (see the exercises for this chapter). For measure-
ments of this sensitivity or greater sensitivity, the 10-kilogram object is not a test
particle. A particle counts as a test particle only when it accelerates as a result of
gravitational forces without itself causing measurable gravitational acceleration in
other objects —according to the Newtonian way of speaking.

It would be impossible to define a free-float frame were it not for a remarkable
feature of nature. Test particles of different size, shape, and material in the same
location all fall with the same acceleration toward Earth. If this were not so, an observer
inside a falling room would notice that an aluminum object and a gold object
accelerate relative to one another, even when placed side by side. At least one of these
test particles, initially at rest, would not remain at rest within the falling room. That is,
the room would not be a free-float frame according to definition.

How sure are we that particles in the same location but of different substances all
fall toward Earth with equal acceleration? John Philoponus of Alexandria argued, in
517 A.D., that when two bodies “differing greatly in weight' are released simulta-
neously to fall, “‘the difference in their time [of fall} is a very small one.” According to
legend Galileo dropped balls made of different materials from the Leaning Tower of
Pisa in order to verify this assumption. In 1905 Baron Roland von Etviss checked that
the gravitational acceleration of wood toward Earth is equal to that of platinum within
1 part in 100 million. In the 1960s R. H. Dicke, Peter G. Roll, and Robert V.
Krotkov reduced this upper limit on difference in accelerations—for aluminum and
gold responding to the gravitational field of Sun—to less than 1 part in 100,000
million (less than 1 in 10"). This—and a subsequent experiment by Vladimir
Braginsky and colleagues—is one of the most sensitive checks of fundamental
physical principles in all of science: the equality of acceleration produced by gravity on
test particles of every kind.

It follows that a particle made of any material can be used as a test particle to
determine whether a given reference frame is free-float. A frame that is free-float for a
test particle of one kind is free-float for test particles of all kinds. ==
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2.6 LOCATING EVENTS WITH A
LATTICEWORK OF CLOCKS

only the nearest clock records an event

The fundamental concept in physics is event. An event is specified not only by a place
but also by a time of happening. Some examples of events are emission of a particle or a
flash of light (from, say, an explosion), reflection or absorption of a particle or light
flash, a collision.

How can we determine the place and time at which an event occurs in a given
free-float frame? Think of constructing a frame by assembling meter sticks into a
cubical latticework similar to the jungle gym seen on playgrounds (Figure 2-6). At
every intersection of this latticework fix a clock. These clocks are identical. They can be
constructed in any manner, but their readings are in meters of light-travel time
(Section 1.4).

How are the clocks to be set? We want them all to read the ‘‘same time"" as one
another for observers in this frame. When one clock reads midnight (00.00 hours =0
meters), all clocks in the same frame should read midnight (zero). That is, we want the
clocks to be synchronized in this frame.

How are the several clocks in the lattice to be synchronized? As follows: Pick one
clock in the lattice as the standard and call it the reference clock. Start this reference

FIGURE 2-6. Latticework of meter sticks and clocks.
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clock with its pointer set initially at zero time. At this instant let it send out a flash of
light that spreads out as a spherical wave in all directions. Call the flash emission the
reference event and the spreading spherical wave the reference flash.

When the reference flash gets to a slave clock 5 meters away, we want that clock to
read 5 meters of light-travel time. Why? Because it takes light 5 meters of light-travel
time to travel the 5 meters of distance from reference clock to slave clock. So an
assistant sets the slave clock to 5 meters of time long before the experiment begins,
holds it at 5 meters, and releases it only when the reference flash arrives. (The assistant
has zero reaction time or the slave clock is set ahead an additional time equal to the
reaction time.) When assistants at all slave clocks in the lattice follow this prearranged
procedure (each setting his slave clock to a time in meters equal to his own distance
from the reference clock and starting it when the reference light flash arrives), the
lattice clocks are said to be synchronized.

This is an awkward way to synchronize lattice clocks with one another. Is there some
simpler and more conventional way to carry out this synchronization?

There are other possible ways to synchronize clocks. For example, an extra portable
clock could be set to the reference clock at the origin and carried around the lattice in
order to set the rest of the clocks. However, this procedure involves a moving clock.
We saw in Chapter 1 that the time between two events is not necessarily the same as
recorded by clocks in relative motion. The portable clock will not even agree with the
reference clock when it is brought back next to it! (This idea is explored more fully in
Section 4.6.) However, when we use a moving clock traveling at a speed that is a very
small fraction of light speed, its reading is only slightly different from that of clocks
fixed in the lattice. In this case the second method of synchronization gives a result
nearly equal to the first— and standard — method. Moreover, the error can be made
as small as desired by carrying the portable clock around sufficiently slowly.

Use the latticework of synchronized clocks to determine location and time at which
any given event occurs. The space position of the event is taken to be the location of the
clock nearest the event. The location of this clock is measured along three lattice
directions from the reference clock: northward, eastward, and upward. The time of the
event is taken to be the time recorded on the same lattice clock nearest the event. The
spacetime location of an event then consists of four numbers, three numbers that
specify the space position of the clock nearest the event and one number that specifies
the time the event occurs as recorded by that clock.

The clocks, when installed by a foresighted experimenter, will be recording clocks.
Each clock is able to detect the occurrence of an event (collision, passage of light-flash
or particle). Each reads into its memory the nature of the event, the time of the event,
and the location of the clock. The memory of all clocks can then be read and analyzed,
perhaps by automatic equipment.

Why a latticework built of rods that are 1 meter long? What is special about 1 meter?
Why not a lattice separation of 100 meters between recording clocks? Or 1 millimeter?

When a clock in the 1-meter lattice records an event, we will not know whether the
event so recorded is 0.4 meters to the left of the clock, for instance, or 0.2 meters to
the right. The location of the event will be uncertain to some substantial fraction of a
meter. The time of the event will also be uncertain with some appreciable fraction of
a meter of light-travel time, because it may take that long for a light signal from the
event to reach the nearest clock. However, this accuracy of a meter or less is quite
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adequate for observing the passage of a rocket. It is extravagantly good for measure-
ments on planetary orbits— for a planet it would even be reasonable to increase the
lattice spacing from 1 meter to hundreds of meters.

Neither 100 meters nor 1 meter is a latrice spacing suitable for studying the tracks
of particles in a high-energy accelerator. There a centimeter or 2 millimeter would be
more appropriate. The location and time of an event can be determined to whatever
accuracy is desired by constructing a latticework with sufficiently small spacing.

-

2.7 OBSERVER

Wi

In relativity we often speak about the observer. Where is this observer? At one place,
or all over the place? Answer: The word “observer” is a shorthand way of
speaking about the whole collection of recording clocks associated with
one free-float frame. No one real observer could easily do what we ask of the *‘ideal
obsetver” in our analysis of relativity. So it is best to think of the observer as a person
who goes around reading out the memories of all recording clocks under his control.
This is the sophisticated sense in which we hereafter use the phrase “‘the observer
measures such-and-such.”

Location and time of each event is recorded by the clock nearest that event. We
intentionally limit the observer’s report on events to a summary of data collected from
clocks. We do not permit the observer to report on widely separated events that he
himself views by eye. The reason: travel time of light! It can take a long time for light
from a distant event to reach the observer's eye. Even the order in which events are seen
by eye may be wrong: Light from an event that occurred a million years ago and a
million light-years distant in our frame is just entering our eyes now, after light from an
event that occurred on Moon a few seconds ago. We see these two events in the “'wrong
order” compared with observations recorded by our far-flung latticework of recording
clocks. For this reason, we limit the observer to collecting and reporting data from the
recording clocks.

The wise observer pays attention only to clock records. Even so, light speed still
places limits on how soon he can analyze events after they occur. Suppose that events in
a given experiment are widely separated from one another in interstellar space, where a
single free-float frame can cover a large region of spacetime. Let remote events be
recorded instantly on local clocks and transmitted by radio to the observer’s central
control room. This information transfer cannot take place faster than the speed of
light — the same speed at which radio waves travel. Information on dispersed events is
available for analysis at a central location only after light-speed transmission. This
information will be full and accurate and in no need of correction — but it will be late,
Thus all analysis of events must take place after — sometimes long after! — events are
over as recorded in that frame. The same difficulty occurs, in principle, for a free-float
frame of any size.

Nature puts an unbreakable speed limit on signals. This limit has profound
consequences for decision making and control. A space probe descends onto Triton, a
moon of the planet Neptune. The probe adjusts its rocket thrust to provide a
slow-speed “‘soft” landing. This probe must carry equipment to detect its distance
from Triton’s surface and use this information to regulate rocket thrust on the spot,
without help from Earth. Earth is never less than 242 lighe-minutes away from
Neptune, a round-trip radio-signal time of 484 minutes— more than eight hours.
Therefore the probe would crash long before probe-to-sutface distance data could be
sent to Earth and commands for rocket thrust returned. This time delay of information
transmission does not prevent a detailed retrospective analysis on Earth of the probe’s
descent onto Triton—but this analysis cannot take place until at least 242 minutes
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Observer limited to clock readings

Speed limit: ¢
It's the law!
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CHAPTER 2

AETEOR ALERT!

FLOATING FREE

Interstellar Command Center receives word by
radio that a meteor has just whizzed past an out-
post situated 100 light-seconds distant (a fifth of
Farth-Sun distance). The report warns that the
meteor is headed directly toward Command
YOLUTION
The warning radio signal and the meteor leave the
outpost at the same time. The radio signal moves
with light speed from outpost to Command
Center, covering the 100 light-seconds of distance
in 100 seconds of time. During this 100 seconds
the meteor also travels toward Command Center.
The meteor moves at one quarter light speed, so in
100 seconds it covers one quarter of 100 light-se-
conds, or 25 light-seconds of distance. Therefore,

Center at one quarter light speed. Assume radio
signals travel with light speed. How long do Com-
mand Center personnel have to take evasive ac-
tion?

The meteor takes an additional 100 seconds of
time to move each additional 25 light-seconds of
distance. So it covers the remaining 75 light-se-
conds of distance in an additional time of 300
seconds.

In brief, after receiving the radio warning,
Command Center personnel have a relaxed 300
seconds— or five minutes — to stroll to their me-
teor-proof shelter.

when the warning arrives at Command Center, the
meteor is 100 — 25 = 75 light-seconds away.

after the event. Could we gather last-minute information, make a decision, and send
back control instructions? No. Nature rules out micromanagement of the far-away
(Sample Problem 2-1). we~

2.8 MEASURING PARTICLE SPEED

reference frame clocks and rods put to use

The recording clocks reveal particle motion through the lattice: Each clock that the
particle passes records the time of passage as well as the space location of this event.
How can the path of the particle be described in terms of numbers? By recording
locations of these events along the path. Distances between locations of successive
events and time lapse between them reveal the particle speed —speed being space
separation divided by time taken to traverse this separation.

The conventional unit of speed is meters per second. However, when time is
measured in meters of light-travel dme, speed is expressed in meters of distance
covered per meter of time. A flash of light moves one meter of distance in one meter of
light-travel time: its speed has the value unity in units of meters per meter. In contrast,
a particle loping along at half light speed moves one half meter of distance per meter of
time; its speed equals one half in units of meter per meter. More generally, particle
speed in meters per meter is the ratio of its speed to light speed:

Speed in meters per meter

(meters of distance covered by particle)
(meters of time required to cover thar distance)

_ (particle speed in meters/second)
(speed of light in meters/second)

(particle speed) =
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In this book we use the letter » to symbolize the speed of a particle in meters of distance
per meter of time, or simply meters per meter. Some authors use the lowercase Greek
letter beta: f. Let v, stand for velocity in conventional units (such as meters per
second) and ¢ stand for light speed in the same conventional units. Then

v,
v=ﬂ (2-1)
c

From the motion of test particles through a latticework of clocks — or rather from
records of coincidences of these particles with clocks—we determine whether the
latticework constitutes a free-float frame, IF records show (a) that— within some
specified accuracy —a test particle moves consecutively past clocks that lie in a straight
line, (b) that test-particle speed calculated from the same records is constant—again,
within some specified accuracy—and, (c) that the same results are true for as many
test-particle paths as the most industrious observer cares to trace throughout the given
region of space and time, THEN the lattice constitutes a free-float (inertial) frame
throughout that region of spacetime.

Test for free-float frame

Particle speed as a fraction of light speed is certainly an unconventional unit of
meastive. What advantages does it have that justify the work needed to become familiar
with it?

The big advantage is that it is a measure of speed independent of units of space and
time. Suppose that a particle moves with respect to Earth at half light speed. Then it
travels— with respect to Earth— one half meter of distance in one meter of light
- A cravel time, It travels one half light-year of distance in a period of one year. It travels
one half light-second of distance in a time of one second, one half light-minute in one
minute. Units do not matter as long as we use the same units to measure distance and
time; the result always equals the same number: 1/2. Another way to say this is that
speed is a fraction; same units on top and bottom of the fracrion cancel one another.
Fundamentally, ¢ is unit-free. Of course, if we wish we can speak of “‘meters per
meter."" e

m

2.9 ROCKET FRAME

it move? or is it the one at resi?

Let two reference frames be two different latticeworks of meter sticks and clocks, one
moving uniformly relative to the other, and in such a way that one row of clocks in each
frame coincides along the direction of relative motion of the ewo frames (Figure 2-7).
Call one of these frames laboratory frame and the other— moving to the right
relative to the laboratory frame— rocket frame. The rocket is #npowered and coasts
along with constant velocity relative to the laboratory. Let rocket and laboratory
latticeworks be overlapping in the sense that a region of spacetime exists common to
both frames. Test particles move through this common region of spacetime. From
motion of these test particles as recorded by his own clocks, the laboratory observer
verifies that his frame is free-float (inertial). From motion of the same test particles as
recorded by her own clocks, the rocket observer verifies that her frame is also free-float
(inertial).

Now we can describe the motion of any particle with respect to the laboratory
frame. The same particles and —if they collide — the same collisions may be mea-
sured and described with respect to the free-floar rocker frame as well. These particles,
their paths through spacetime, and events of their collisions have an existence inde-

Rocket frame defined
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Different frames lead to
different descriptions

CHAPTER 2 FLOATING FREE

FIGURE 2-7. Laboratory and rocket frames, A second ago the two latticeworks were intermeshed.

pendent of any free-float frames in which they are observed, recorded, and described.
However, descriptions of these common paths and events are typically different for
different free-float frames. For example, laboratory and rocket observers may not
agree on the direction of motion of a given test particle (Figure 2-8). Every track that is
straight as plotted with respect to one reference frame is straight also with respect to the
other frame, because both are free-float frames. This straightness in both frames is
possible only because one free-float frame has uniform velocity relative to any other

] “laboratory “rocket
i /cylinder” \ /cflinder”
.

(| & |=

ftime
_ fme = 2
Going
ftime = 1
Well
started
LABORATORY ROCKET
FRAME (UNPOWERED)
FRAME

FIGURE 2-8. A series of “snapshots’ of a typical test particle as measured from laboratory and
rocket free-float frames, represented by cutaway cylinders. Start at the bottom and read upward

(time progresses from bottom to top).
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overlapping free-float frame. However, the direction of this path differs from labora-
tory to rocket frame, except in the special case in which the particle moves along the
line of relative motion of two frames.

How many different free-float rocket frames can there be in a given region of
spacetime? An unlimited number! Any unpowered rocket moving through that region
in any direction is an acceptable free-float frame from which to make observations.
More: There is nothing unique about any of these frames as long as each of them is
free-float. All “‘rocket” frames are unpowered, all are equivalent for carrying out
experiments. Even the so-called “laboratory frame"” is not unique; you can rename it
“Rocket Frame Six"* and no one will ever know the difference! All free-float (inertial)
frames are equivalent arenas in which to carry out physics experiment. That is the
logical basis for special relativity, as described more fully in Chapter 3.

A rocket carries a firecracker. The firecracker explodes. Does this event — the explosion
— take place in the rocket frame or in the laboratory frame? Which is the “‘home”’ frame
for the event? A second firecracker, originally at rest in the laboratory frame, explodes.
Does this second event occur in the laboratory frame or in the rocket frame?

Events are primary, the essential stuff of Nature. Reference frames are secondary,
devised by humans for locating and comparing events. A given event occurs in both
frames—and in all possible frames moving in all possible directions and with all
o  possible constant relative speeds through the region of spacetime in which the event
occurs. The apparatus that “'causes”” the event may be at rest in one free-float frame;
another apparatus that “‘causes’ a second event may be at rest in a second free-float
frame in motion relative to the first. No matter. Each event has its own unique
existence. Neither is ‘owned’ by any frame at all.

A spark jumps 1 millimeter from the antenna of Mary's passing spaceship to a pen
in the pocket of John who lounges in the laboratory doorway (Section 1.2). The
“apparatus’ that makes the spark has parts riding in different reference frames —
pen in laboratory frame, antenna in rocket frame. The spark jump — in which frame
does this event occur? It is not the property of Mary, not the property of John—not
the property of any other observer in the vicinity, no matter what his or her state of
motion. The spark-jump event provides data for every observer.

Drive a steel surveying stake into the ground to mark the comer of a plot of land.
Is this a “‘Daytime stake"' or a ' Nighttime stake''? Neither! It is just a stake, marking
a location in space, the arena of surveying. Similarly an event is neither a "‘laboratory
event” nor a “‘rocket event.” It is just an event, marking a location in spacetime, the
arena of science.

1

Laboratory frame or rocket frame: Which one is the “‘primary’’ free-float frame, the
one ‘‘really” at rest? There is no way to tell! We apply the names “‘laboratory’” and
“rocket” to two free-float enclosures in interstellar space. Someone switches the
nameplates while we sleep. When we wake up, there is no way to decide which is
which. This realization leads to Einstein’s Principle of Relativity and proof of the
invariance of the interval, as described in Chapter 3. =

2.10 SUMMARY

what a free-float frame is and whal

The free-float frame (also called the inertial frame and the Lorentz frame)
provides a setting in which to carry out experiments without the presence of so-called
“‘gravitational forces.” In such a frame, a particle released from rest remains at rest and
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Many possible free-float frames

No unique free-float frame
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a particle in motion continues that motion without change in speed or in direction
(Section 2.2), as Newton declared in his First Law of Motion.

Whete does that frame of reference sit? Where do the east-west, north-south,
up-down lines run? We might as well ask where on the flat landscape in the state of
Towa we see the lines that mark the boundaries of the townships. A concrete marker, to
be sure, may show itself as a corner marker at a place where a north-south line meets an
east-west line. Apart from such on-the-spot evidence, those lines are largely invisible.
Nevertheless, they serve their putpose: They define boundaries, settle lawsuits, and fix
taxes. Likewise imaginary for the most part are the clock and rod paraphernalia of the
idealized inertial reference frame. Work of the imagination though they are, they
provide the conceptual framework for everything that goes on in the world of particles
and radiation, of masses and motions, of annihilations and creations, of fissions and
fusions in every context where tidal effects of gravity are negligible.

Our ability to define a free-float frame depends on the fact that a test particle
made of any material whatsoever experiences the same acceleration in a given gravita-
tional field (Section 2.5).

Near a massive (*‘gravitating’’) body, we can still define a free-float frame. How-
ever, in such a frame, free test patticles typically accelerate toward or away from one
another because of the nonuniform field of the gravitating body (Section 2.3). This
limits— in both space and time — the size of a free-float frame, the domain in which
the laws of motion are simple. The frame will continue to qualify as free-float and
special relativity will continue to apply, provided we reduce the spatial extent, or the
time duration of our experiment, or both, until these relative, or tidal, motions of test
particles cannot be detected in our circumscribed region of spacetime. This is what
makes special relativity “‘special”” or limited (French: relativité restreinte: *‘restricted
relativity”’). General relativity (the theory of gravitation) removes this limitation
(Chapter 9).

So there are three central characteristics of a free-float frame. (1) We can “‘get rid of
gravity” by climbing onto (getting into) a free-float frame. (2) The existence of a
free-float frame depends on the equal acceleration of all particles at a given location in
a gravitational field —in Newton's way of speaking. (3) Every free-float frame is of
limited extent in spacetime. All three characteristics appear in a fuller version of the
quotation by Albert Einstein that began this chapter:

At that moment there came to me the happiest thought of my life . . . for an observer
falling freely from the roof of a house no gravitational field exists during his fall— at least
not in his immediate vicinity. That is, if the observer releases any objects, they remain in a
state of rest or uniform motion relative to him, respectively, independent of their unique
chemical and physical nature. Therefore the observer is entitled to interpret his state as
that of “rest.”’ -~
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CHAPTER 2 EXERCISES

PRACTICE

A person rides in an elevator that is shot upward out
of a cannon. Think of the elevator after it leaves the
cannon and is moving freely in the gravitational field
of Earth. Neglect air resistance.

a While the elevator is still on the way up, the
person inside jumps from the ““floor” of the elevator.
Will the person (1) fall back to the “floor” of the
elevator? (2) hit the “ceiling” of the elevator? (3) do
something else? If so, what?

b The person waits to jump until after the eleva-
tor has passed the top if its trajectory and is falling
back toward Earth. Will your answers to part a be
different in this case?

¢ How can the person riding in the elevator tell
when the elevator reaches the top of its trajectory?

Test your skill as an acrobat and contortionist! Fasten
a weight-measuring bathroom scale under your feet
and bounce up and down on a trampoline while
reading the scale. Describe readings on the scale at

different times during the bounces. During what part
of each jump will the scale have zero reading? Ne-
glecting air resistance, what is the longest part of the
cycle during which you might consider yourself to be
in a free-float frame?

2-3 practical synchronization of
clocks

You are an observer in the laboratory frame stationed
near a clock with spatal coordinates x = 6 light-
seconds, y = 8 light-seconds, and z= 0 light-seconds.
You wish to synchronize your clock with the one at
the origin. Describe in detail and with numbers how
to proceed.

2-4 synchronization by a
traveling clock

Mr. Engelsberg does not approve of our method of
synchronizing clocks by light flashes (Section 2.6).

a ‘T can synchronize my clocks in any way I
choose!” he exclaims. Is he righe?

Mr. Engelsberg wishes to synchronize two identical
clocks, named Big Ben and Little Ben, which are
relatively at rest and separated by one million kilome-
ters, which is 10° meters or approximately three tirhes
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the distance between Earth and Moon. He uses a third
clock, identical in construction with the fitst two, that
travels with constant velocity between them. As his
moving clock passes Big Ben, it is set to read the same
time as Big Ben. When the moving clock passes Little
Ben, that outpost clock is set to read the same time as
the traveling clock.

b ‘“Now Big Ben and Little Ben are synchro-
nized,” says Mr. Engelsberg. Is he right?

¢ How much out of synchronism are Big Ben and
Little Ben as measured by a latticework of clocks —at
rest relative to them both— that has been synchro-
nized in the conventional manner using light flashes?
Evaluate this lack of synchronism in milliseconds
when the traveling clock that Mr. Engelsberg uses
moves at 360,000 kilometers/hour, or 10%> meters/
second.

d Evaluate the lack of synchronism when the
traveling clock moves 100 times as fast.

e Is there any earthly reason —aside from mat-
ters of personal preference— why we all should not
adopt the method of synchronization used by Mr.
Engelsberg?

2-5 Earth’s surface as a free-
float frame

Many experiments involving fast-moving particles
and light itself are observed in earthbound laborato-
ries. Typically these laboratories are not in free fall!
Nevertheless, under many circumstances laboratories
fixed to the surface of Earth can satisfy the conditions
required to be called free-float frames. An example:

a In an earthbound laboratory, an elementary
particle with speed v = 0.96 passes from side to side
through a cubical spark chamber one meter wide. For
what length of laboratory time is this particle in transit
through the spark chamber? Therefore for how long a
time is the experiment ‘“‘in progress”’? How far will a
separate test particle, released from rest, fall in this
time? [Distance of fall from rest = (1/2)gt,.%, where
& = acceleration of gravity = 10 meters/second? and
t... is the time of free fall in seconds.} Compare your
answer with the diameter of an atomic nucleus (a few
times 1071° meter).

b How wide can the spark chambert be and still
be considered a free-float frame for this experiment?
Suppose that by using sensitive optical equipment (an
interferometer) you can detect a test patticle
change of position as small as one wavelength of
visible light, say 500 nanometers = 5 X 1077 meter.
How long will it take the test particle to fall this
distance from rest? How far does the fast elementary
particle of part a move in that time? Therefore how
long can an earthbound spark chamber be and still be
considered free-float for this sensitivity of detection?

EARTH’S SURFACE AS A FREE-FLOAT FRAME

EXERCISE 2-6. Schematic diagram of two ball bearings falling
onto Earth’s surface. Not to scale.

2-6 horizontal extent of free-
float frame near Earth

Consider two ball beatings near the surface of Earth
and originally separated horizontally by 20 meters
(Section 2.3). Demonstrate that when released from
rest (relative to Earth) the particles move closer to-
gether by 1 millimeter as they fall 315 meters, using
the following method of similar triangles or some
other method.

Each particle falls from rest toward the center of
Earth, as indicated by atrows in the figure. Solve the
problem using the ratio of sides of similar triangles
abc and 2’4’ . These triangles are upside down with
respect to each other. However, they are similar be-
cause their respective sides are parallel: Sides #c and
4'c’ are parallel to each other, as are sides &c and 4’¢’
and sides 24 and 4’4’. We know the lengths of some
of these sides. Side @’c” = 315 meters is the height of
fall (greatly exaggerated in the diagram); side ac is
effectively equal to the radius of Earth, 6,371,000
meters. Side @6 = (1/2) (20 meters) equals half the
original separation of the particles. Side 4’4’ equals
HALF their CHANGE in separation as they fall onto
Earth’s surface. Use the ratio of sides of similar trian-
gles to find this “half-change” and therefore the en-
tire change in separation as two particles initially 20
metets apart horizontally fall from rest 315 meters
onto the surface of Earth.

2-7 limit on free-float frame
near Earth’s Moon

Release two ball bearings from rest a horizontal dis-
tance 20 meters apart near the surface of Earth’s
Moon. By how much does the separation between
them decrease as they fall 315 meters? How many
seconds elapse duting this 315-meter fall? Assume
that an initial vertical separation of 20 meters is in-
creased by twice the change in horizontal separation in
a fall through the same height. State clearly and com-
pletely the dimensions of the region of spacetime in
which such a freely falling frame constitutes an inertial
frame (to the given accuracy). Moon radius equals
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1738 kilometers. Gravitational acceleration at
Moon’s surface: g = 1.62 meters/second?.

2-8 vertical extent of free-float
frame near Earth

Note: This exercise makes use of elementary calculus
and the Newtonian theory of gravitation.
A paragraph in Section 2.3 says:

As another example, drop the same antique [20-meter-
long} railway coach from rest in a vertical otientation,
with the lower end of the coach initially 315 meters
from the surface of Earth (Figure 2-5, right). Again
release two tiny ball bearings from rest at opposite ends
of the coach. In this case, during the time of fall [8
seconds], the ball bearings move apart by a distance of
two millimeters because of the greater gravitational
acceleration of the one nearer Earth, as Newton would
put it. This is twice the change that occurs for horizontal
separation.

Demonstrate this 2-millimeter increase in separation.
The following outline may be useful. Take the gravi-
tational acceleration at the surface of Earth to be g, =
9.8 meters/second? and the radius of Earth to be 7, =
6.37 X 106 meters. More generally, the gravitational
acceleration g of a particle of mass 7 a distance r from
the center of Earth (mass M) is given by the expression

_F_GM_GMR _ gz
E 0 » 2 y2 2
a Take the differential of this equation for g to
obtain an approximate algebraic expression for Ag,
the change in g, for a small change Ar in height.

1
b Now use Ay = EAgtz to find an algebraic

expression for increase in distance Ay between ball
bearings in a fall that lasts for time 2.

¢ Substitute numbers given in the quotation
above to verify the 2-millimeter change in separation
during fall.

2-9 the rising railway coach

You are launched upward inside a railway coach in a
horizontal position with respect to the surface of
Earth, as shown in the figure. After the launch, but
while the coach is still rising, you release two ball
bearings at opposite ends of the train and at rest with
respect to the train.

a Riding inside the coach, will you observe the
distance between the ball beatings to increase or de-
crease with time?

b Now you ride in a second railway coach
launched upwatd in a vertical position with respect to

TEST PARTICLE? 47
|$|:||:\|:n:||:||:1|:||:||:||:n:|$|
Earth

EXERCISE 2-9. Free-float railway coach rising from Earth’s sur-
face, as observed in Earth frame. Two ball bearings were just
released from rest with respect to the coach. What will be their
subsequent motion as observed from inside the coach? Figure not to
scale.

the surface of Earth (not shown). Again you release
two ball bearings at opposite ends of the coach and at
rest with respect to the coach. Will you observe these
ball bearings to move together or apart?

¢ In either of the cases described above, can you,
the rider in the railway coach, distinguish whether the
coach is rising or falling with respect to the surface of
Earth solely by observing the ball bearings from inside
the coach? What do you observe at the moment the
coach stops rising with respect to Earth and begins to
fall?

2-10 test particle?

a Verify the statement in Section 2.5 that a can-
didate test particle of mass 10 kilograms placed 0.1
meter from a less massive particle (initially stationary
with respect to it), draws the second toward it by 1
millimeter in less than 3 minutes. If this relative
motion is detectable by equipment in use at the test
site, the result disqualifies the 10-kilogram particle as
a “‘test particle.” Assume that both particles are
spherically symmetric. Use Newton’s Law of Gravi-
tation:

GMm
F =

72

where the gravitation constant G has the value G =
6.673 X 107!t meter?/(kilogram-second?) . Assume
that this force does not change appreciably as the
particles decrease separation by one millimeter.

b Section 2.3 describes two ball bearings re-
leased 20 meters apart horizontally in a freely falling
railway coach. They move 1 millimeter closer together
during 8 seconds of free fall, showing the limitations
on this inertial frame. Verify that these ball bearings
qualify as test particles by estimating the distance that
one will move from rest in 8 seconds under the gravi-
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tational attraction of the other, if both were initially at
rest in interstellar space far from Earth. Make your
own estimate of the mass of each ball bearing.

PROBLEMS

Sun emits a tremendous burst of particles that travels
toward Earth. An astronomer on Earth sees the emis-
sion through a solar telescope and issues a warning.
The astronomer knows that when the particles arrive,
they will wreak havoc with broadcast radio transmis-
sion. Communications systems require three minutes
to switch from broadcast to underground cable. What
is the maximum speed of the particle pulse emitted by
Sun such that the switch can occur in time, between
warning and arrival of the pulse? Take Sun to be 500
light-seconds from Earth.

2-12 the Dicke experiment

a The Leaning Tower of Pisa is about 55 meters
high. Galileo says, ‘‘The variation of speed in air
between balls of gold, lead, copper, porphyry, and
other heavy materials is so slight that in a fall of 100
cubits {about 46 meters} a ball of gold would surely
not outstrip one of copper by as much as four fingers.
Having observed this I came to the conclusion that in
a medium totally devoid of resistance all bodies
would fall with the same speed.”

Taking four fingers to be equal to 7 centimeters,
find the maximum fractional difference in the accel-
eration of gravity Ag/g between balls of gold and

COMMUNICATIONS STORM!

copper that would be consistent with Galileo’s exper-
imental result.

b The result of the more modern Dicke experi-
ment is that the fraction Ag/g is not greater than 3 X
10711, Assume that the fraction has this more recently
determined maximum value. Reckon how far behind
the first ball the second one will be when the first
reaches the ground if they are dropped simultaneously
from the top of a 46-meter vacuum chamber. Under
these same circumstances, how far would balls of
different materials have to fall in a vacuum in a
uniform gravitational field of 10 meters/second/se-
cond for one ball to lag behind the other one by a
distance of 1 millimeter? Compate this distance with
the Earth—Moon separation (3.8 X 108 meters).
Clearly the Dicke experiment was not carried out
using falling balls!

¢ A plumb bob of mass 7 hangs on the end of a
long line from the ceiling of a closed room, as shown
in the first figure (left). A very massive sphere at one
side of the closed room exerts a horizontal gravita-
tional force mg, on the plumb bob, where g, = GM/
R?, M is the mass of the large sphere, and R the
distance between plumb bob and the center of the
sphere. This horizontal force causes a static deflection
of the plumb line from the vertical by the small angle
&. (Similar practical example: In notthern India the
mass of the Himalaya Mountains results in a slight
sideways deflection of plumb lines, causing difficul-
ties in precise surveying.) The sphere is now rolled
around to a cotresponding position on the other side
of the room (right), causing a static deflection of the
plumb by an angle € of the same magnitude but in the
opposite direction.

T T
€ I <
mgs | | mgs
I |
mg mg

EXERCISE 2-12, first figure. Left: Nearby massive sphere vesults
in static deflection of plumb line from vertical. Right: Rolling the

sphere to the other side results in static deflection of plumb line in the
opposite direction.
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Now the angle € is very small. (Deflection due to
the Himalayas is about 5 seconds of atc, which equals
0.0014 degrees.) However, as the sphete is rolled
around and around outside the closed room, an ob-
server inside the room can measure the gravitational
field g, due to the sphere by measuring with greater
and greater precision the total deflection angle 2&=2
sin & of the plumb line, where € is measured in ra-
dians. Derive the equation that we will need in the
calculation of g,.

d We on Earth have a large sphere effectively
rolling around us once every day. It is the most mas-
sive sphere in the solar system: Sun itself! What is the
value of the gravitational acceleration g, = GM/R?
due to Sun at the position of Earth? (Some constants
useful in this calculation appear inside the back cover
of this book.)

e One additional acceleration must be consid-
ered that, however, will not enter our final compari-
son of gravitational acceleration g, for different mate-
rials. This additional acceleration is the centrifugal
acceleration due to the motion of Earth around Sun.
When you round a corner in a car you are pressed
against the side of the car on the outward side of the
turn. This outward force—called the centrifugal
pseudoforce or the centrifugal inertial force—is due
to the acceleration of your reference frame (the car)
toward the center of the circular turn. This centrifugal
inertial force has the value m22 ,/r, where v, is the
speed of the car in conventional units and 7 is the
radius of the turn. Now Earth moves around Sun in a
path that is nearly circular. Sun’s gravitational force
mg, acts on a plumb bob in a direction toward Sun; the
centrifugal inertial force m22,,,/R acts in a direction
away from Sun. Compare the “centrifugal accelera-
ton” #2,,/R at the position of Earth with the oppo-
sitely directed gravitational acceleration g, calculated
in part d. What is the net acceleration toward or away
from Sun of a particle riding on Earth as observed in
the (accelerated) frame of Earth?

f Of what use is the discussion thus far? A plumb
bob hung near the surface of Earth experiences a
gravitational acceleration g, toward Sun—and an
equal but opposite centtifugal acceleration ms2,,/R
away from Sun. Therefore — in the accelerating refer-
ence frame of Earth— the bob experiences no net
force at all due to the presence of Sun. Indeed this is
the method by which we constructed an inertial frame
in the first place (Section 2.2): Let the frame be in free
fall about the center of gravitational attraction. A
particle at rest on Earth’s surface is in free fall about
Sun and therefore experiences no net force due to Sun.
What then does all this have to do with measuring the
equality of gravitational acceleration for particles
made of different substances—the subject of the
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Dicke experiment? Answer: Our purpose is to detect
the difference —if any — in the gravitational acceler-
ation g, toward Sun for different materials. The cen-
trifugal acceleration »2/R away from Sun is presum-
ably the same for all materials and therefore need not
enter any compatison of different materials.

Consider a torsion pendulum suspended from its
center by a thin quartz fiber (second figure). A light
rod of length L supports at its ends two bobs of equal
mass made of different materials—say aluminum
and gold. Suppose that the gravitational acceleration
& of the gold due to Sun is slightly greater than the
acceleration g, of the aluminum due to Sun. Then
there will be a slight net torque on the torsion pendu-
lum due to Sun. For the position of Sun shown at left
in the figure, show that the net torque is counter-
clockwise when viewed from above. Show also that
the magnitude of this net torque is given by the
expression

torque = mg, L/2 — mg, L/2 = m(g, — g,) L/2
= mg(Ag/g) L/2

g Suppose that the fraction (Ag/g,) has the
maximum value 3 X 107! consistent with the results
of the final experiment, that L has the value 0.06
meters, and that each bob has a mass of 0.03 kilo-
grams. What is the magnitude of the net torque?
Compare this to the torque provided by the added
weight of a bacterium of mass 107" kilogram placed
on the end of a meter stick balanced at its center in the
gravitational field of Earth.

h Sun moves around the heavens as seen from
Earth. Twelve hours later Sun is located as shown at
right in the second figure. Show that under these
changed circumstances the net torque will have the
same magnitude as that calculated in part g but now
will be clockwise as viewed from above—in a sense
opposite to that of part g. This change in the sense of
the torque every twelve hours allows a small differ-
ence Ag = g; — g, in the acceleration of gold and
aluminum to be detected using the torsion pendu-
lum. As the torsion pendulum jiggles on its fiber
because of random motion, passing trucks, Earth
tremors and so forth, one needs to consider only those
deflections that keep step with the changing position
of Sun.

i A torque on the rod causes an angular rotation
of the quartz fiber of 0 radians given by the formula

torque = £0
where £ is called the torsion constant of the fiber.

Show that the maximum angular rotation of the tor-
sion pendulum from one side to the other during one



EXERCISE 2-13

50

mg,

To sun
(morning)

~ — " Aluminum

EXERCISE 2-12, second figure. Schematic diagram of the
Dicke expersment. Left: Hypothetical effect: morning. Right: Hy-
pothetical effect: evening. Any difference in the gravitational accel-
eration of Sun for gold and aluminum should vesult in opposite sense

rotation of Earth is given by the expression

o, ="t (ﬁ)
£ \&

i In practice Dicke’s torsion balance can be

thought of as consisting of 0.030-kilogram gold and
aluminum bobs mounted on the ends of a beam 6 X
1072 meter in length suspended in a vacuum on a
quartz fiber of torsion constant 2 X 1078 newton
meter/radian. A statistical analysis of the angular
displacements of this torsion pendulum over long
periods of time leads to the conclusion that the frac-
tion Ag/g for gold and aluminum is less than 3 X
107!, To what mean maximum angle of rotation
from side to side during one rotation of Earth does this
cotrespond? Random motions of the torsion
pendulum — noise! — are of much greater amplitude
than this; hence the need for the statistical analysis of
the results.
References: R. H. Dicke, “The Eotvis Experiment,” Scientific
American, Volume 205, pages 84—94 (December, 1961). See also
P. G. Roll, R. Krotkov, and R. H. Dicke, Annals of Physics, Volume
26, pages 442—-517 (1964). The first of these articles is a popular
exposition written early in the course of the Dicke experiment. The
second article reports the final results of the experiment and takes on
added interest because of its account of the elaborate precautions
required to insure that no influence that might affect the experiment
was disregarded. Galileo quote from Galileo Galilei, Dialogues Con-
cerning Two New Sciences, translated by Henry Crew and Alfonso de
Salvio (Northwestern University Press, Evanston, Illinois, 1950).

DEFLECTION OF STARLIGHT BY SUN

Gold
//’ - =
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To sun
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Aluminum

of net torque on torsion pendulum in the evening compared with the
morning. The large aluminum ball has the same mass as the small

bigh-density gold ball.

2-13 deflection of starlight by
Sun

Estimate the deflection of starlight by Sun using an
elementary analysis. Discussion: Consider first a
simpler example of a similar phenomenon. An eleva-
tor car of width L is released from rest near the surface
of Earth. At the instant of release a flash of light is
fired horizontally from one wall of the car toward the
other wall. After release the elevator car is an inertial
frame. Therefore the light flash crosses the car in a
straight line with respect to the car. With respect to
Earth, however, the flash of light is falling — because
the elevator is falling. Therefore a light flash is de-
flected in a gravitation field, as Newton would phrase
it. (How would Einstein phrase it? See Chapter 9.) As
another example, a ray of statlight in its passage
tangentially across Earth’s surface receives a gravita-
tional deflection (over and above any refraction by
Earth’s atmosphere). However, the time to cross
Earth is so short, and in consequence the deflection so
slight, that this effect has not yet been detected on
Earth. At the surface of Sun, however, the acceleration
of gravity has the much greater value of 275 meters/
second/second. Moreover, the time of passage across
the surface is much increased because Sun has a
greater diameter, 1.4 X 10° meters. In the following,
assume that the light just grazes the surface of Sun in
passing.

a Determine an “effective time of fall”” from the
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diameter of Sun and the speed of light. From this time
of fall deduce the net velocity of fall toward Sun
produced by the end of the whole petiod of gravita-
tional interaction. (The maximum acceleration acting
for this “‘effective time” produces the same net effect
[calculus proofl] produced by the actual acceleration
—changing in magnitude and direction along the
path—in the entire passage of the ray through Sun’s
field of force.)

b Comparing the lateral velocity of the light with
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its forward velocity, deduce the angle of deflection.
The accurate analysis of special relativity gives the
same result. However, Einstein’s 1915 general rela-
tivity predicted a previously neglected effect, asso-
ciated with the change of lengths in a gravitational
field, that produces something like a supplementary
refraction of the ray of light and doubles the predicted
deflection. [Deflection observed in 1947 eclipse of
Sun: (9.8 + 1.3) X 107 radian; in the 1952 eclipse:
(8.2 £ 0.5) X 1076 radian.}






CHAPTER 3

SAME LAWS FOR ALL

The name relativity theory was an unfortunate
choice: The relativity of space and time is not the essential
thing, which is the independence of laws of Nature from
the viewpoint of the observer.

Arthur Sommerfeld

3.1 THE PRINCIPLE OF RELATIVITY

fundamental science needs only a closed room

How do you know you are moving? Or at rest? In a car, you pause at a stoplight. You
see the car next to you easing forward. With a shock you suddenly realize that, instead,
your own car is rolling backward. On an international flight you warch a movie with
the cabin shades drawn. Can you tell if the plane is traveling at minimum speed or full
speed? In an elaborate joke, could the plane actually be sitting still on the runway,
engines running? How would you know?

Everyday observations such as these form the basis for a conjecture that Einstein
raised to the status of a postulate and set at the center of the theory of special reladivity.
He called it the Principle of Relativity. Roughly speaking, the Prindple of
Relativity says that without looking out the window you cannot tell which reference
frame you are in or how fast you are moving.

Galileo Galilei made the first known formulation of the Principle of Relativiry.
Listen to the characters in his book:

Principle of Relativity:
With shades drown you cannot tell
your speed

SALVATIUS: Shut yourself up with some friend in the main cabin below decks on some

large ship, and have with you there some flies, butterflies, and other small flying animals.

Have a large bowl of warer with some fish in it; hang up a bottle thar empties drop by

drop into a wide vessel beneath it. With the ship standing still, observe carefully how the

little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in

all directions; the drops fall into the vessel beneath; and, in throwing something to your : 1 :
friend, you need throw it no more strongly in one direction than another, the distances ch':,'l?of F'lrst :‘ :olw‘t‘i f_ormuluhon
being equal; jumping with your feet together, you pass equal spaces in every direction. 0%, Frincpio OF ooty
When you have observed all these things carefully (though there is no doubt thar when

the ship is standing still everything must happen in this way), have the ship proceed with

any speed you like, so long as the motion is uniform and not fluctuating this way and that.

You will discover not the least change in all the effects named, nor could you tell from any
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of them whether the ship was moving or standing still. In jumping, you will pass on the
floor the same spaces as before, nor will you make larger jumps toward the stern than
toward the prow even though the ship is moving quite rapidly, despite the fact that during
the time that you are in the air the floor under you will be going in a direction opposite to
your jump. In throwing something to your companion, you will need no more force to get
it to him whether he is in the direction of the bow or the stern, with yourself situared
opposite. The droplets will fall as before into the vessel beneath without dropping toward
the stern, although while the drops are in the air the ship runs many spans. The fish in
their water will swim toward the front of their bowl with no more effort than toward the
back, and will go with equal ease to bait placed anywhere around the edges of the bowl.
Finally the burterflies and flies will continue their flights indifferently toward every side,
nor will it ever happen that they are concentrated toward the stern, as if tired out from
keeping up with the course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air . . .

GALILEO GALILEI
Pisa, February 15, 1564 — Arcetri, near Florence, January 8, 1642

"My portrait is now finished, a very good likeness, by an excellent hand.”
— September 22, 1635

* % »
“If ever any persons might challenge o be signally distinguished for their intellect from
other men, Prolemy and Copernicus were they that had the honor to see farthest into and
discourse most profoundly of the World's systems.”

*

* =
“My dear Kepler, what shall we make of all this? Shall we laugh, or shall we cry?”
* * *

“When shall I cease from wondering?”
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SAGREDUS: Although it did not occur to me to put these observations to the test when I
was voyaging, I am sure that they would take place in the way you describe. In
confirmation of this I remember having often found myself in my cabin wondering
whether the ship was moving or standing still; and sometimes at a whim I have supposed
it to be going one way when its motion was the opposite . . .

The Galilean Principle of Relativity is simple in this early formulation, yet not as
simple as it might be. In what way is it simple? Physics looks the same in a ship moving
uniformly as in a ship at rest. Relative uniform motion of the two ships does not affect
the laws of motion in either ship. A ball falling straight down onto one ship appears
from the other ship to follow a parabolic coutse; a ball falling straight down onto that
second ship also appears to follow a parabolic course when observed from the first ship.
The simplicity of the Galilean Principle of Relativity lies in the equivalence of the two
Earthbound frames and the symmetry between them.

In what way is this simplicity not as great as it might be? In Galileo’s account the
frames of reference are not yet free-float (inertial). To make them so requires only a
small conceptual step: from two uniformly moving sea-going ships to two unpowered
spaceships. Then up and down, north and south, east and west, all become alike. A
ball untouched by force undergoes no acceleration. Its motion with respect to one
spaceship is as uniform as it is with respect to the other. This identity of the law of free
motion in all inertial reference frames is what one means today by the Galilean
Principle of Relativity.

Galileo could not by any stretch of the imagination have asked his heater to place
himself in a spaceship in the year 1632. Yet he could have desctibed the greater
simplicity of physics when viewed from such a vantage point. Bottles, drops of water,
and all the other test objects float at rest or move at uniform velocity. The zero
acceleration of every neatby object relative to the spaceship would have been intelligi-
ble to Galileo of all people. Who had established more clearly than he that relative to
Earth all nearby objects have a common acceleration?

Einstein’s Principle of Relativity is a generalization of such expetiments and many
other kinds of experiments, involving not only mechanics but also electromagnetism,
nuclear physics, and so on.

All the laws of physics are the same in every free-float (inertial) reference
frame.

Einstein’s Principle of Relativity says that once the laws of physics have been estab-
lished in one free-float frame, they can be applied without modification in any other
free-float frame. Both the mathematical form of the laws of physics and the numerical
values of basic physical constants that these laws contain are the same in every
free-float frame. So far as concerns the laws of physics, all free-float frames are
equivalent.

We can tell where we are on Earth by looking out of the window. Where we ate in
the Milky Way we can tell by the configuration of the Big Dipper and other
constellations. How fast and in what direction we are going through the larger
framework of the universe we measure with a set of microwave horns pointed to pick
up the microwave radiation streaming through space from all sides. But now exclude
all information from outside. Screen out all radiation from the heavens. Pull down the
window shade. Then do whatever experiment we will on the movement and collision
of particles and the action of electric and magnetic forces in whatever free-float frame
we please. We find not the slightest difference in the fit to the laws of physics between
measurements made in one free-float frame and those made in another. We atrive at
the Principle of Relativity in its negative form:

No test of the laws of physics provides any way whatsoever to distinguish one
free-float frame from another. <=~
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THE PRINCIPLE OF RELATIVITY RESTS ON
EMPTINESS!

In his paper on special relativity, Einstein says, ‘“We will raise this conjecture
(whose intent will from now on be referred to as the ‘Principle of Relativity') to

apostulate . . . " Is the Principle of Relativity just a postulate? All of special
relativity rests on it. How do we know it is true? What lies behind the Principle
of Relativity?

This is a philosophical question, not a scientific one. You will have your own
opinion; here is ours. We think the Principle of Relativity as used in special
relativity rests on one word: emptiness.

Space is empty; there are no kilometer posts or mileposts in space. Do you
want to measure distance and time? Then set up a latticework of meter sticks
and clocks. Pace off the meter sticks, synchronize the clocks. Use the lattice-
work to carry out your measurements. Discover the laws of physics. This
latticework is your construction, not Nature's. Do not ask Nature to choose
your latticework in preference to the similar latticework that | have con-
structed. Why not? Because space is empty. Space accommodates both of us
as we go about our constructions and our investigations. But it does not
choose either one of us in preference to the other. How can it? Space is
empty. Nothing whatever can distinguish your latticework from mine. If we
decide in secret to exchange latticeworks, Nature will never be the wiser! It
follows that whatever laws of physics you discover employing your lattice-
work must be the same laws of physics | discover using my latticework. The
same is true even when our lattices move relative to one another. Which one
of us is at rest? There is no way to tell in empty space! This is the Principle of
Relativity.

But is space really empty? “‘Definitely not!"" says modern quantum physics.
““Space is a boiling cauldron of virtual particles. To observe this cauldron,

3.2 WHAT IS NOT THE SAME IN
DIFFERENT FRAMES

nof the same: space separ ations,
time separations, velocities,
accelerations, forces, fields

Notice what the Principle of Relativity does nor say. It does not say that the time
between two events is the same when measured from two different free-float frames.
Neither does it say that space separation between the two events is the same in the two
frames. Ordinarily neither time nor space separations are the same in the two frames.

The catalog of differences between readings in the two frames does not end with
laboratory and rocket records of pairs of events. Physics to the Greeks meant the
science of change and so it does to us today. Motion gives us a stream of events, for
example the blinks of a firefly or the pulses of a sparkplug flashing as it moves. These
flashes trace out the sparkplug’s trajectory. Record the positions of two sequential

Space and time separations
not the same in different frames
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sample regions of space much smaller than the proton. Carry out this sam-
pling during times much shorter than the time it takes light to cross the diame-
ter of the proton.” These words are familiar or utterly incomprehensible,
depending on the amount of our experience with physics. In either case, we
can avoid dealing with the ‘‘boiling cauldron of virtual particles’’ by observ-
ing events that are far apart compared with the dimensions of the proton,
events separated from one another by times long compared with the time it
takes light to cross the diameter of the proton.

In the realm of classical (nonquantum) physics is space really empty? ““Of
course not!” says modern cosmology. ‘‘Space is full of stars and dust and
radiation and neutrinos and white dwarfs and neutron stars and (many be-
lieve) black holes. To observe these structures, sample regions of space
comparable in size to that of our galaxy. These structures evolve and move
with respect to one another in times comparable to millions of years.”

So we choose regions far from massive structures, avoid dust, ignore neu-
trinos and radiation, and measure events that take place close together in
time compared with a million years.

Notice that for the very small and also for the very large, the “‘regions’
described span both space and time — they are regions of spacetime. ‘‘Emp-
tiness'’ refers to spacetime. Therefore we should have said from the begin-
ning, ‘‘Spacetime is empty’’ — except for us and our apparatus — with limita-
tions described above.

In brief, we can find “‘effectively empty’’ regions of spacetime of spatial
extent quite a few orders of magnitude larger and smaller than dimensions of
our bodies and of time spread quite a few orders of magnitude longer and
shorter than times that describe our reflexes. In spacetime regions of this
general size, empty spacetime can be found. In empty spacetime the Principle
of Relativity applies. Where the Principle of Relativity applies, special relativ-
ity correctly describes Nature.

spark emissions in the laboratory frame. Record also the laboratory time between these
sparks. Divide the change in position by the increase in time, yielding the laboratory-
measured velocity of the sparkplug.
Spark events have identities that rise above all differences between reference frames.
These events are recorded not only in the laboratory but also by recording devices and
clocks in the rocket latticework. From the printouts of the recorders in the rocket frame
we read off rocket space and time separations between sequential sparks. We divide.
The quotient gives the rocket-measured velocity of the sparkplug. But both the space
separation and the time separation between events, respectively, ate ordinarily differ-
ent for the rocket frame than for the laboratory frame. Therefore the rocket-measured
velocity of the sparkplug is different from the laboratory-measured velocity of that ~ Velocity not the same
sparkplug. Same world. Same motion. Different records of that motion. Figures for
velocity that differ between rocket and laboratory.
Apply force to a moving object: Its velocity changes; it accelerates. Accelerationis  Acceleration not the same
the signal that force is being applied. Two events are enough to reveal velocity; three
reveal change in velocity, therefore acceleration, therefore force. The laboratory ob-
server reckons velocity between the first and second events, then he reckons velocity
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A “fundamental constant of nature”?

THE SPEED OF LIGHT

Or a mere factor of conversion between two units of measurement?

METERS AND MILES IN THE
PARABLE OF THE SURVEYORS

Meter?

Originally (adopted France, 1799) one ten-millionth of
the distance along the surface of Earth from its equator
to its pole (in a curved line of latitude passing through
the center of Paris).

Mile?
Originally one thousand paces — double step: right to
left to right — of the Roman soldier.

Modern conversion factor?
1609.344 meters per mile,

Authority for this number?

Measures of equator-to-pole distance eventually
(1799 to today) lagged in accuracy compared to labo-
ratory measurement of distance. So the platinum meter
rod at Sévres, Paris, approximating one ten-millionth of
that distance, for awhile became —in and by itself —
the standard of distance. During that time the British
Parliament and the United States Congress redefined
the inch to be exactly 2.54 centimeters. This decree
made the conversion factor (5280 feet/mile) times (12
inches/foot) times (2.54 centimeters/inch) times (1/100
of a meter per centimeter) equal to 1609.344 meters
per mile — exactly!

A fundamental constant of nature?
Hardly! Rather, the work of two centuries of commit-
tees. '

SECONDS AND METERS IN SPACETIME

Second?

Originally 1/24 of 1/60 of 1/60 of the time from high
noon one day to high noon the next day. Since 1967,
“The second is the duration of 9,192,631,770 periods
of the radiation corresponding to the transition be-
tween the two hyperfine levels of the fundamental state
of the atom cesium 133."

Meter?

Definition evolved from geographic to platinum meter
rod to today's “One meter is the distance traveled by
light, in vacuum, in the fraction 1/299,792,458 of a
second."

Modern conversion factor?
299,792,458 meters per second.

Authority for this number?

Meeting of General Conference on Weights and Mea-
sures, 1983. In the accepted definition of the meter
important changes took place over the years, and like-
wise in the definition of the second. With the 1983 defi-
nition of the meter these two streams of development
have merged. What used to be understood as a mea-
surement of the speed of light is understood today as
two ways to measure separation in spacetime.

A fundamental constant of nature?
Hardly! Rather, the work of two centuries of commit-
tees.

berween the second and third events. Subtracting, he obtains the change in velocity.
From this change he figures the force applied to the object.

The rocket observer also measures the motion: velocity between the first and second
events, velocity between second and chird events; from these the change in velocity;
from this the force acting on the object. But the rocket-observed velocities are not

Force not the same

equal to the corresponding laboratory-observed velocities. The change in velocity also
differs in the two frames; therefore the computed force on the object is different for
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Commentary

Is the distance from Earth’s equator to its pole a fundamental constant of
nature? No. Earth is plastic and ever changing. Is the distance between the
two scratches on the standard meter bar constant? No. Oxidation from
decade to decade slowly changes it. Experts in the art and science of mea-
surement move to ever-better techniques. They search out an ever-better
object to serve as benchmark. Via experiment after experiment they move
from old standards of measurement to new. The goals? Accuracy. Availabil-
ity. Dependability. Reproducibility.

Make a better measurement of the speed of light. Gain in that way better
knowledge about light? No. Win instead an improved value of the ratio
between one measure of spacetime interval, the meter, and another such
measure, the second—both of accidental and historical origin? Before
1983, yes. Since 1983, no. Today the meter is defined as the distance light
travels in a vacuum in the fraction 1/299,792,458 of a cesium-defined sec-
ond. The two great streams of theory, definition, and experiment concerning
the meter and the second have finally been unified.

What will be the consequence of a future, still better, measuring technique?
Possibly it will shift us from the cesium-atom-based second to a pulsar-based
second or to a still more useful standard for the second. But will thatimprove-
ment in precision change the speed of light? No. Every past International
Committee on Weights and Measures has operated on the principle of mini-
mum dislocation of standards; we have to expect that the speed of light will
remain at the decreed figure of 299,792,458 meters per second, just as the
number of meters in the mile will remain at 1609.344. Through the fixity of this
conversion factor ¢, any substantial improvement in the accuracy of defining
the second will bring with it an identical improvement in the accuracy of
defining the meter.

Is 299,792,458 a fundamental constant of nature? Might as well ask if 5280
is a fundamental constant of nature!

rocket observer and laboratory observer. The Principle of Relativity does not deny that
the force acting on an object is different as reckoned in two frames in relative motion.
An electric field or a magnetic field or some combination of the two, acting on the
electron, is the secret of action of many a device doing its quiet duty day after day in
home, factory, or car. An electromagnetic force acting on an electron changes its
velocity as it moves from event P to event Q and from Q to R. Laboratory and rocket
observers do not agree on this change in velocity. Therefore they do not agree on the

Electric and magnetic fields
not the same
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Laws of physics the same
in different frames

Fundamental constants the same

Speed of light the same

CHAPTER 3 SAME LAWS FOR ALL

value of the force that changes that velocity. Nor, finally, do they agree on the
magnitudes of the electric and magnetic fields from which the force derives.

In brief, figures for electric and magnetic field strengths, for forces, and for
accelerations agree no better berween rocket and laboratory observers than do figures
for velocity. The Principle of Relativity does not deny these differences. It celebrates
them. It explains them. It systematizes them. ==~

3.3 WHAT IS THE SAME IN DIFFERENT
FRAMES

the same: physical laws, physical constants in
those laws

Different values of some physical quantities between the two frames? Yes, but
identical physical Zzws! For example, the relation between the force acting on a particle
and the change in velocity per unit time of that particle follows the same law in the
laboratory frame as in the rocket frame. The force is not the same in the two frames.
Neither is the change in velocity per unit time the same. But the law that relates force
and change of velocity per unit time is the same in each of the two frames. All the laws
of motion are the same in the one free-float frame as in the other.

Not only the laws of motion but also the laws of eleccromagnetism and all other
laws of physics hold as true in one free-float frame as in any other such frame. This is
what it means to say, ‘‘No test of the laws of physics provides any way whatsoever to
distinguish one free-float frame from another.”

Deep in the laws of physics are numerical values of fundamental physical constants,
such as the elementary charge on the electron and the speed of light. The values of
these constants must be the same as measured in overlapping free-float frames in
relacive motion; otherwise these frames could be distinguished from one another and
the Principle of Relativity violated.

One basic physical constant appears in the laws of electromagnetism: the speed of
light in a vacuum, ¢ = 299,792,458 meters per second. According to the Principle of
Reladivity, this value must be the same in all free-float frames in uniform relative
motion. Has observation checked this conclusion? Yes, many experiments demon-
strate it daily and hourly in every particle-accelerating facility on Earth. Nevertheless,
it has taken a long time for people to become accustomed to the apparently absurd
idea that there can be one special speed, the speed of light, thac has the same value
measured in each of two overlapping free-float frames in relative motion.

Values of the speed of light as measured by laboratory and by rocket observer turn
outidentical. This agreement has cast a new light on light. Its speed rates no longer as a
constant of nature. Instead, today the speed of light ranks as mere conversion factor
between the meter and the second, like the factor of conversion from the centimeter to
the meter. The value of this conversion factor has now been set by decree and the meter
defined in terms of it (Box 3.2). This decree assumes the invariance of the speed of
light. No experimental result contradicts this assumption.

In 1905 the Principle of Relativity was a shocking heresy. It offended most people’s
intuition and common-sense way of looking at Narure. Consequences of the Principle
of Relativity are tried out every day in many experiments where it is continually under
severe test. Never has this Principle been verified to lead to a single incorrect experi-
mental prediction. =~
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SAMPLE PROBLEM 3-1

EXAMPLES OF THE PRINCIPLE OF C
RELATIVITY

Two overlapping free-float frames are in uniform  must necessarily be the same as measured in the
relative motion. According to the Principle of Rel-  two frames? Which quantities are nos necessarily
ativity, which of the quantities on the following list ~ the same as measured in the two frames?

a. numerical value of the speed of light in a vacuum

speed of an electron
c. value of the charge on the electron

d. kinetic energy of a proton (the nucleus of a hydrogen atom)

e. value of the electric field at a given point
f. time between two events
g. order of elements in the periodic table
h. Newton's First Law of Motion (A partcle initally at rest remains at rest,
and . .. ")
SOLUTION

a. The speed of light IS necessarily the same in the two frames. This is one of the
central tenets of the Principle of Relativity and a basis of the theory of relativity.

b. The speed of an electron IS NOT necessarily the same in the two frames.
Determining the speed of a particle depends on space and time measurements
between events — such as flashes emitted by the particle. Space and time separa-
tions between events, respectively, can be measured to be different for observers
in relative motion. So the speed — ratio of distance covered to time elapsed — can
be different.

c.  The value of the charge on the electron IS necessarily the same in the two frames.
Suppose that the charge had one value for the laboratory frame and progressively
smaller values for rocket frames moving faster and faster relative to the laboratory
frame. Then we could detect the “‘absolute velocity” of the frame we are in by
measuring the charge on the electron. But this violates the Principle of Relativiry.
Therefore the charge on the electron must have che same value in all free-float
frames.

d. The kinetic energy of a proton IS NOT necessarily the same in the two frames,
The value of its kinetic energy depends on the speed of the proton. But speed is
not necessarily the same as measured in the two frames (b). -

e. The value of the electric field at a given point IS NOT necessarily the same in the
two frames. The argument is indirect but inescapable: The electric field is
measured by determining the force on a test charge. Force can be measured by
change in velocity that the force imparts to a particle of known mass. But the
velocity — and the change in velocity — of a particle can be different for observers
in relative motion (b). Therefore the electric field may be different for observers in

relative motion.

f. The time between two events IS NOT necessarily the same in the two frames.
This is a direct result of the invariance of the interval (Chapter 1 and Section 3.7).



62

CHAPTER 3 SAME LAWS FOR ALL

g- The order of elements in the periodic table by atomic number IS necessarily the
same in the two frames. For suppose that the atomic number (the number of
protons in the nucleus) were smaller for helium than for uranium in the labora-
tory frame but greater for helium than for uranium in the rocket frame. Then we
could tell which frame we were in by comparing the atomic numbers of helium

and uranium.

h. Newton's First Law of Motion IS necessarily the same in the two frames.
Newton's First Law is really a definition of the inertial (free-float) frame. We
assume that all laboratory and rocket trames are inertial.

Train Paradox: Two lightning bolts
strike simultaneously
for ground observer

Two lightning bolts do not
strike simultaneously
for train observer

3.4 RELATIVITY OF SIMULTANEITY

““same time’’? ordinarily true for only one
frame!

The Principle of Relativity directly predicts effects that initially seem strange— even
weird. Strange or not, weird or not; logical argument demonstrates them and experi-
ment verifies them. One effect has to do with simultaneity: Let two events occur
separated in space along the direction of relative motion between laboratory and rocket
frames. These two events, even if simultaneous as measured by one observer, cannot be
simultaneous as measured by both observers.

Einstein demonstrated the relativity of simultaneity with his famous Train Paradox.
(When Einstein developed the theory of special relativity, the train was the fastest
common carrier.) Lightning strikes the front and back ends of a rapidly moving train,
leaving char marks on the train and on the track and emitting flashes of light thac
travel forward and backward along the train (Figure 3-1). An observer standing on the
ground halfway berween the two char marks on the track receives the two light flashes
at the same time. He therefore concludes that the two lightning bolts struck the track
at the same time — with respect to him they fell simultaneously.

A second observer rides in the middle of the train. From the viewpoint of the
observer on the ground, the train observer moves toward the flash coming from the
front of the train and moves away from the flash coming from the rear. Therefore the
train observer receives the flash from the front of the train first.

This is just what the train observer finds: The flash from the front of the train arrives
at her position first, the flash from the rear of the train arrives later. But she can verify
that she stands equidistant from the front and rear of the train, where she sees char
marks left by the lightning. Moreover, using the Principle of Relativity, she knows
that the speed of light has the same value in her train frame as for the ground observer
(Section 3.3 and Box 3-2), and is the same for light traveling in both directions in her
frame. Therefore the arrival of the flash first from the front of the train leads her to
conclude that the lighting fell first on the front end of the train. For her the lightning
bolts did not fall simultaneously. (To allow the train observer to make only measure-
ments with respect to the train, forcing her to ignore Earth, let the train be a cylinder
without windows—in other words a spaceship!)

Did the two lightning bolts strike the front and the back of the train simulta-
neously? Or did they strike at different times? Decide!

Strange as it seems, there is no unique answer to this question. For the situation
described above, the two events are simultaneous as measured in the Earth frame; they
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FIGURE 3-1. Einstein's Train Paradox illustrating the relativity of simultaneity. Top: Light-
ning stvikes the front and back ends of a moving train, leaving char marks on both track and train. Each
emitted flash spreads out in all directions. Center: Observer viding in the middle of the train concludes that
the two strokes are not simultaneous. Her argument: ''(1) I am equidistant from the front and back char
marks on the train. (2) Light bas the standard speed in my frame, and equal speed in both divections. (3) The
flash arrived from the front of the train first. Therefore, (4) the flash must have left the front of the train first;
the front lightning bolt fell before the vear lightning bolt fell. 1 conclude that the lightning strokes were not
simultaneous,’’ Bottom: Observer standing by the tracks halfway between the char marks on the tracks
concludes that the strokes were simultaneous, since the flashes from the strokes reach him at the same time.

are not simultaneous as measured in the train frame. We say that the simultaneity of
events is, in general, relative, different for different frames. Only in the special case of
two or more events that occur at the same point (or in a plane perpendicular to the line
of relative motion at that point— see Section 3.6) does simultaneity in the laboratory
frame mean simultaneity in the rocket frame. When the events occur at different
locations along the direction of relative motion, they cannot be simultaneous in both
frames. This conclusion is called the relativity of simultaneity.

The relativity of simultaneity is a difficult concept to understand. Almost without
exception, every puzzle and apparent paradox used to “‘disprove’ the theory of
relativity hinges on some misconception about the relativity of simultaneity. «=~

3.5 LORENTZ CONTRACTION OF LENGTH

How do we measure the length of a2 moving rod — the distance between one end and
the other end? One way is to use our latticework of clocks to mark the location of the
two ends at the same time. But when the rod lies along the direction of relative motion,
someone riding with the rod does not agree that our marking of the positions of the
two ends occurs at the same time (Section 3.4). The relativity of simultaneity tells us

63

Simultaneity is relative

Length of a rod = separation
between simultaneous sparks
at its two ends
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Disagree about simultaneity?
Then disagree about length.
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that rocket and laboratory observers disagree about the simultaneity of two events
(firecrackers exploding at the two ends of the rod) that occur at different locations
along the direction of relative motion. Therefore the two observers disagree about
whether or not a valid measurement of length has taken place.

Go back to the Train Paradox. For the observer standing on the ground, the two
lightning bolts strike the front and back of the train at the same time. Therefore for
him the distance between the char marks on the track constitutes a valid measure of the
length of the train. In contrast, the observer riding on the train measures the front
lightning bolt to strike first, the rear bolt later. The rider on the train exclaims to her
Earth-based colleague, “‘See here! Your front mark was made before the back mark
—since the flash from the front reached me (at the middle of the train) before the flash
from the back reached me. Of course the train moved during the time lapse between
these two lightning strikes. By the time the stroke fell at the back of the train, the front
of the train had moved well past the front char mark on the track. Therefore your
measurement of the length of the train is too small. The train is really longer than you
measured.”

There are other ways to measure the length of a moving rod. Many of these methods
lead to the same result: the space separation between the ends of the rod is less as
measured in a frame in which the rod is moving than as measured in a frame in which
the rod is at rest. This effect is called Lorentz contraction. Section 5.8 examines the
Lorentz contraction quantitatively.

Suppose we agree to measure the length of a rod by determining the position of its
two ends at the same time. Then an observer for whom the rod is at rest measures the
rod to be longer than does any other observer. This “‘rest length’ of the rod is often
called its proper length.

You keep using the word ‘“‘measure.”’ Occasionally you say “‘observe.” You never talk
about that most delicate, sensitive, and refined of our frve senses: sight. Why not just
look and see these remarkable relativistic effects?

We have been careful to say that the relativity of simultaneity and the Lorentz
contraction are measured, not seen with the eye. Measurement employs the latticework
of rods and clocks that constitutes a free-float frame. As mentioned in Chapter 2,
seeing with the eye leads to confused images due to the finite speed of light. Stand in
an open field in the southern hemisphere as Sun sets in the west and full Moon rises in
the east: You see Moon as it was 1.3 seconds ago, Sun as it was eight minutes ago, the
star Alpha Centauri (nearest star visible to the naked eye) as it was 4.34 years ago,
the Andromeda nebula as it was 2 million years ago—you see them all now.
Similarly, light from the two separated ends of a speeding rod typically takes
different times to reach your eye. This relative time delay results in visual distortion
that is avoided when the location of each end is recorded locally, with zero or
minimal delay, by the nearest lattice clock. Visual appearance of rapidly moving
objects is itself an interesting study, but for most scientific work it is an unnecessary
distraction. To avoid this kind of confusion we set up the free-float latticework of
synchronized recording clocks and insist on its use—at least in principle!

-
—
>

Aba! Then 1 have caught you in a contradiction. Figure 3-1 shows lightning flashes
and trains. Is this not a picture of what we would see with our eyes?

No. Strictly speaking, each of the three “‘pictures” in Figure 3-1 summarizes where
parts of the train are as recorded by the Earth latticework of clocks at a given instant
of Earth time. The position of each light flash at this instant is also recorded by the
clocks in the lattice. The summary of data is then given to a draftsman, who draws
the picture for that Earth time. To distinguish such a drafted picture from the visual
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view, we will often refer to it as a plot. For example, Figure 3-1 (top) is the Earth
plot at the time when lightning bolts strike the two ends of the train.

Actually, all three plots in Figure 3-1 show approximately what you see through a
telescope when you are very far from the scene in a direction perpendicular to the
direction of motion of the train and at a position centered on the action. At such a
remote location, light from all parts of the scene takes approximately equal times to
reach your eye, so you would see events and objects at approximately the same time
according to Earth clocks. Of course, you receive this information later than it
actually occurs because of the time it takes light to reach you. =

3.6 INVARIANCE OF TRANSVERSE
DIMENSION

‘““faster’’ does not mean ““thinner’’ or ""fatter’”

A rocket ship makes many trips past the laboratory observer, each at successively
higher speed. For each new and greater speed of the rocket, the laboratory observer
measures its length to be shorter than it was on the trip before. This observed
contraction is longitudinal —along its direction of motion. Does the laboratory
observer also measure contraction in the transverse dimension, perpendicular to the
direction of relative motion? In brief, is the rocket measured to get thinner as well as
shorter as it moves faster and faster?

The answer is No. This is confirmed experimentally by observing the width of
electron and proton beams traveling in high-energy accelerators. It is also easily
demonstrated by simple thought experiments.

Speeding-Train Thought Experiment: Return to Einstein's high-speed
railroad train seen end-on (Figure 3-2). Suppose the Earthbound observer measures
the train to get thinner as it moves faster. Then for the Earth observer the right and left
wheels of the train would come closer and closer together as the train speeds up, finally
slipping off between the tracks to cause a terrible wreck. In contrast, the train observer
regards herself as at rest and the tracks as speeding by in the opposite direction. If she

WRONG! WRONG!
at rest
in motion ——
at resl\ N Xin motion
LS N 2 L
ALLEGED “EARTH PLOT” ALLEGED “TRAIN PLOT”

FIGURE 3-2. Two possible alternatives (both wrong!) if the moving train is measured to shrink
transverse to its direction of motion, The “Earth plot” assumes the speeding train to be measured as
getting thinner with increasing speed, The train’s wheels would slip off between the tracks. The “train
plot” of the same circumstance assumes the speeding rails to be measured as getting closer together. In this
case the wheels wonld slip off ourside the tracks. But this is a contradiction. Therefore the wheel separation
— and the transverse dimensions of train and track— must be invariant, the same for all free-float observers
moving along the track. (If you think that the actual transverse contraction might be too small to cause a
wreck for the train shown, assume that both the wheels and the track are knife edges; the same argument still

applies.)
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Transverse dimension same for
laboratory and rocket observers
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Thought experiments demonstrate
invariance of transverse dimension
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measures the speeding tracks to get closer together as they move faster and faster, the
train wheels will slip off outside the tracks, also resulting in a wreck. But this is absurd:
the wheels cannot end up between the tracks and outside the tracks under the same
circumstances. Conclusion: High speed leads to no measured change in transverse
dimensions — no observed thinning or fattening of fast objects. We are left with the
conclusion that high relative speed affects the measured values of longitudinal dimen-
sions but not transverse dimension: a welcome simplification!

Speeding-Pipes Thought Experiment: Start with a long straight pipe. Paint
one end with a checkerboard pattern and the other end with stripes. Cut out and
discard the middle of the pipe, leaving only the painted ends. Now hutl the ends
toward each other, with their cylindrical axes lying along a common line parallel to the
direction of relative motion (Figure 3-3). Suppose that a moving object is measured to
be thinner. Then someone riding on the checkerboard pipe will observe the striped
pipe to pass inside her cylinder. A/ observers — everyone looking from the side— will
see a checkerboard pattern. In contrast, someone riding on the striped pipe will observe
the checkerboard pipe to pass inside his cylinder. In this case, all observers will see a
striped pattern. Again, this is absurd: All observers must see stripes, or all must see
checkerboard. The only tenable conclusion is that speed has no measurable effect on
transverse dimensions and the pipe segments will collide squarely edge on.

A simple question leads to an even more fundamental argument against the differ-
ence of transverse dimensions of a speeding object as observed by different free-float
observers in relative motion: About what axis does the contraction take place?

We try to define an “*axis of shrinkage” parallel to the direction of relative motion.
Can we claim that a speeding pipe gets thinner by shrinking uniformly toward an
“axis of shrinkage” lying along its center? Then what happens when two pipe
segments move along their lengths, side by side as a pair? Does each pipe shrink
separately, causing the clear space between them to #ncrease? Ot does the combina-
tion of both pipes contract toward the line midway between them, causing the clear
space between them to decrease? Is the answer different if one pipe is made of lead
and the other one of paper? Or if one pipe is entirely in our imagination?

There is no logically consistent way to define an “‘axis of shrinkage.”” Given the
direction of relative motion of two objects, we cannot select uniquely an “‘axis of
shrinkage” from the infinite number of lines that lie parallel in this direction. For
each different choice of axis a different pattern of distortions results. But this is
logically intolerable. The only way out is to conclude that there is no transverse
shrinkage at all (and, by a similar argument, no transverse expansion).

The above analysis leads to conclusions about events as well as about objects. A set
of explosions occurs around the perimeter of the checkerboard pipe. More: These
explosions occur simultaneously in this checkerboard frame. Then these events are
simultaneous also in the striped frame. How do we know? By symmetry! For suppose
the explosions were #o¢ simultaneous in the striped frame. Then which one of these

_________________________ FIGURE 3-3. Two identical-size pipe

| <
l“- ) segments hurtle toward each other
" along a common centerline. What will
/ happen when they meet? Here are two

possible alternatives (both wrong!) if a

moving object is observed to shrink
WRONG! WRONG! transverse to direction of motion.
Which pipe passes inside the other?
The impossibility of a consistent an-
swer to this question leads to the con-
clusion that neither pipe can be mea-
sured to change transverse dimension.

“CHECKERBOARD PLOT” “STRIPED PLOT”
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events would occur first in the striped frame? The one on the right side of the pipe ot
the one on the left side of the pipe? But “left’” and “right”” cannot be distinguished by
means of any physical effect: Each pipe is cylindrically symmetric. Moreover, space is
the same in all ditections—space is isotropic, the same to right as to left. So neither
the event on the right side nor the event on the left side can be first. They must be
simultaneous. The same argument can be made for events at the “'top”” and “‘bottom”’
of the pipe, and for every other pair of events on opposite sides of the pipe. Conclusion:
If the explosions ate simultaneous in the checkerboard frame, they must also be
simultaneous in the striped frame.

We make the following summary conclusions about dimensions transverse to the
direction of relative motion:

Dimensions of moving objects transverse to the direction of relative motion
are measured to be the same in laboratory and rocket frames (invariance of
transverse distance).

Two events with separation only transverse to the direction of relative
motion and simultaneous in either laboratory or rocket frame are simulta-
neous in both. «e=—

3.7 INVARIANCE OF THE INTERVAL
PROVED

observers agree on

The Principle of Relativity has a major consequence. It demands that the spacetime
interval have the same value as measured by observers in every overlapping free-float
frame; in brief, it demands “‘invariance of the interval.”” Proof? Plan of artack:
Determine the separation in space and the separation in time between two events, E
and R, in the rocket frame. Then determine the quite different space and time
separations between the same two events as measured in a free-float laboratory frame.
Then look for—and find — what is invariant. It is the “interval.” Now for the details
(Figures 3-4 and 3-5).

Event E we take to be the reference event, the emission of a flash of light from the
central laboratory and rocket reference clocks as they coincide at the zero of time
(Section 2.6). The path of this flash is tracked by the recording clocks in the rocket
lattice. Riding with the rocket, we examine that portion of the flash that flies straight
“up” 3 meters to a mirror. There it reflects straight back down to the photodetector
located at our rocket reference clock, where it is received and recorded. The act of
reception constitutes the second event we consider. This event, R, is located at the
rocket space origin, at the same location as the emission event E. Therefore, for the
rocket observer, the space separation between event E and event R equals zero.

What is the time separation between events E and R in the rocket frame? The light
travels 3 meters up to the mirror and 3 meters back down again, a total of 6 meters of
distance. At the “‘standard’’ light speed of 1 meter of distance per meter of light-travel
time, the flash takes a total of 6 meters of time to complete the round trip. In
summary, for the rocket observer the event of reception, R, is separated from the event
of emission, E, by zero meters in space and 6 meters in time.

What are the space and time separations of events E and R measured in the
free-float laboratory frame? As measured in the laboratory, the rocket moves at high
speed to the right (Figures 3-4 and 3-5). The rocket goes so fast that the simple
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**Same time"" agreed on for
events separated only transverse
to relative motion

Principle of Relativity leads to
invariance of spacetime interval
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Greater distance of travel
for light flash: longer time!
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A FINISH FIGURE 3-4. Plot of the flash path
as recorded in the laboratory
Jframe. Time progresses from bottom to
top: Well started: The flash (repre-
sented as an asterisk) has been emitted
(event E) from a moving rocket clock
(shown as a circle) that coincided with
a laboratory clock (shown as a square).
Reaching mirror and Home
stretch: The flash reaches a mirvor
and reflects from it. The mirror moves
along in step with the rocket clock.
Finish: The flash is received (event
R) back at the same rocket clock, which
bas moved in the laboratory frame to
o) coincide with a second laboratory
clock. Figure 3-5 shows the trajectory
of the same flash in three different
free-float frames.

HOME STRETCH

fime

WELL STARTED

up-down track of the light in the rocket frame appears in the laboratory to have the
profile of a tent, with its right-hand corner — the place of reception of the light—8
meters to the right of the starting point.

When does the event of reception, R, take place as registered in the laboratory
frame? Note that it occurs at the time 6 meters in the rocket frame. All we know about
everyday events urges us to say, *“Why, obviously it occurs at 6 meters of time in the
laboratory frame too.” But no. More binding than preconceived expectations are the
demands of the Principle of Relativity. Among those demands none ranks higher than
this: The speed of light has the standard value 1 meter of distance in 1 meter of
light-travel time in every free-float frame.

Figure 3-6 punches us in the eye with this point: The light flash travels fzrtber as
recorded in the laboratory frame than as recorded in the rocket frame. The perpendic-
ular “altitude” of the mirror from the line along which the rocket reference clock
moves has the same value in laboratory frame as in rocket frame no matter how fast the
rocket — as shown in Section 3.6. Therefore on its slanted path toward and away from
the mirror the flash must cover more distance in the laboratory frame than it does in
the rocket frame. More distance covered means more time required at the ‘‘standard”’
light speed. We conclude that the time between events E and R is greater in the
laboratory frame than in the rocket frame —a staggering result that stood physics on
its ear when first proposed. There is no way out.

In the laboratory frame the flash has to go “‘up’’ 3 meters, as before, and “down”’
again 3 meters. But in addition it has to go 8 meters to the right: 4 meters to the right
while rising to hit the mirror, and 4 meters more to the right while falling again to the
receptor. The Pythagorean Theorem, applied to the right triangles of Figure 3-6, tells
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FIGURE 3-5. Plots of the path in space of a reflected flash of light as measured in three different

frames, showing event E, emission of the flash, and event R, its reception after reflection. Squares,
circles, and triangles represent latticeworks of recording clocks in laboratory, rocket, and super-rocket frames,
respectively. The super-rockes frame moves to the right with respect to the rocket, and with such relative speed
that the event of reception, R, occurs to the left of the event of emission, B, as measured in the super-rocket
frame. The reflecting mirvor is fixed in the rocket, hence appears to move from left 10 right in the laboratory
and from right to left in the super-rocket.

FIGURE 3-6. Laborato lot of
the path of the light ﬂa.f'/:vj.’ 'II‘;e flash (o] [e] [o] E] IEI (o] B (o]
rises 3 meters while it moves to the
right 4 meters. Then it falls 3 meters as
it moves an additional 4 meters to the
r1ght. From the Pythagorean Theorem,
the rotal length of the flash path equals
5 meters plus 5 meters or 10 meters.
Therefore 10 meters of light-travel
time is the separation in time between
emission event E and reception event R
as measured in the laboratory frame.
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us that each slanted leg of the trip has length 5 meters:
(3 meters)? + (4 meters)? = (5 meters)?

Thus the total length of the trip equals 10 meters, definitely longer than the length of
the round trip, 6 meters, as observed in the rocket frame. Moreover, the light can cover
that slanted and greater distance only at the standard rate of 1 meter of distance in 1
meter of light-travel time. Therefore there is no escape from saying that the time of
reception as recorded in the laboratory frame equals 10 meters. Thus there is a great
variance between what is recorded in the two frames (Figure 3-5, Laboratory plot and
Rocket plot): separation in time and in space between the emission E of a pulse of light
and its reception R after reflection.

In spite of the difference in space separation between events E and R and the
difference in time lapse between these events as measured in laboratory and rocket
frames, there exists a measure of their separation that has the same value for both
observers. This is the interval calculated from the difference of squares of time and
space separations (Table 3-1). For both observers the interval has the value 6 meters.
The interval is an invariant between free-float frames.

Two central results are to be seen here, one of variance, the other of invariance. We
discover first that typically there is not and cannot be an absolute time difference
between two events. The difference in time depends on our choice of the free-float
frame, which inertial frame we use to record events. There is no such thing as a simple
concept of universal and absolute separation in time.

Second, despite variance between the laboratory frame and the rocket frame in the
values recorded for time and space separations individually, the difference between the
squares of those separations is identical, that is, invariant with respect to choice of
reference frame. The difference of squares obtained in this way defines the square of
the interval. The invariant interval itself has the value 6 meters in this example.

-
CTARIE 3.1
TABLEZ 1D
RECKONING THE SPACETIME INTERVAL FROM
ROCKET AND LABORATORY MEASUREMENTS
Rocket Laboratory
measurements measurements
Time from emission 6 meters < DIFFERENT! — 10 meters
of the flash to its reception
Distance from the point of
emission of the flash to 0 meters < DIFFERENT! — 8 meters

its point of reception

Square of time 36 (meters)? 100 (meters)?

Square distance and

subtract — 0 (meters)?
36 (meters)?

This is the square of what 6 meters

measurement? + *

SAME SPACETIME
INTERVAL

— 64 (meters)?
36 (meters)?

6 meters

Result of subtraction
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3.8 INVARIANCE OF THE INTERVAL FOR
ALL FREE-FLOAT FRAMES

The interval between two events has the same value for a// possible relative speeds of
overlapping free-float frames. As an example of this claim, consider a third free-float
frame moving at a different speed with respect to the laboratory frame—a speed
different from that of the rocket frame.

We now measure the same events of emission and reception from a “‘super-rocket
frame” moving faster than the rocket (but not faster than light!) along the line
between events E and R (Figure 3-5, Super-rocket plot). For convenience we arrange
that the reference clock of this frame also coincides with reference clocks of the other
two frames at event E.

Events E and R occur at the same place in the rocket frame. Between these two
events the super-rocket moves to the right with respect to the rocket. As a result, the
supet-rocket observer records event R as occutring to the /eft of the emission event.
How far to the left? That depends on the relative speed of the super-rocket frame.

The super-rocket is not super-size; rather it has super-speed. We adjust this
super-speed so that the reception occurs 20 meters to the left of the emission for the
super-rocket observer. Then the flash of light that rises vertically in the rocket must
travel the same 3 meters upward in the super-rocket but also 10 meters to the left as it
slants toward the mirror. Hence the distance it travels to the mirror in the super-rocket
frame is the length of a hypotenuse, 10.44 meters:

(3 meters)? + (10 meters)? = 9 meters? + 100 meters? = 109 meters?
= (10.44 meters)?

It must travel another 10.44 meters as it slants downward and leftward to the event of
reception, The total distance traveled equals 20.88 meters. It follows that the total
time lapse between E and R equals 20.88 meters of light-travel time for the super-
rocket observer,

The speed of the super-rocket is very high. As a result the space separation between
emission and reception is very great. But then the time separation is also very great.
Moreover, the magnitude of the time separation is perfectly tailored to the size of the
space separation. In consequence, the particular quantity equal to the difference of
their squares has the value (6 meters)?, no matter how great the space separation and
time separation individually may be. For the super-rocket frame:

(20.88 meters)? — (20 meters)? = 436 meters? — 400 meters? = 36 meters®
= (6 meters)?

In spite of the difference in space separation observed in the three frames (0 meters
for the rocket, 8 meters for the laboratory, 20 meters for the super-rocket) and the
difference in time separation (6 meters for the rocket, 10 meters for the laboratory,
20,88 meters for the super-rocket), the interval between the two events has the same
value for all three observers:

In general: (time separation)? — (space separation)? = (interval)?
Rocket frame: (6 meters)? — (0 meters)? = (6 meters)?
Laboratory frame: (10 meters)? — (8 meters)? = (6 meters)?

Super-rocket frame: (20.88 meters)? — (20 meters)? = (6 meters)?

71

Super-rocket: Same interval
between events
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repected). Labora-
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flash

The laboratory observer clocks the time between the flash and its reception as 10
meters, in total disagreement with the 6 meters of timelike interval he figures between
those two events. The observer in the super-rocket frame marks an even greater
discrepancy, 20.88 meters of her time versus the 6 meters of timelike interval. Only
for the rocket observer does clock time agree with interval. Why? Because only she sees
reception at the same place as emission.
) ) The invariance of the interval can be seen at a glance in Figure 3-6. The hypotenuse
invarianl::g?:zzzv‘:fr'srz:;‘ﬂrgﬁm of the first right triangle has a length equal to half the time separation between E and
R. Its base has a length equal to half the space separation. To say that (time
separation)? — (space separation)? has a standard value, and consequently to state that
(half the time separation)? — (half the space separation)? has a standard value, is
simply to say that the altitude of this right triangle has a fixed magnitude (3 meters in
the diagram) for rocket and all super-rocket frames, no matter how fast they move.
And this altitude has a length equal to half the interval between these two events.

SAMPLE PROBLEM 3-2 :
THE K* MESON (5

A beam of (unstable) K* mesons, traveling at a  first counter records 1000 pulses (1000 passing
speed of v = 0.868, passes through two counters 9  particles); the second records 250 counts (250
meters apart. The particles suffer negligible loss of ~ passing particles). This decrease arises almost en-
speed and energy in passing through the counters  tirely from decay of particles in flight. Determine
but give electrical pulses that can be counted. The  the half-life of the K* meson in its own rest frame.

SOLUTION

Unstable particles of different kinds decay at different rates. By definition, the half-life of
unstable particles of a particular species measures the particle wristwatch time during
which—on the average— half of the particles decay. Half of the remaining particles
decay in an additional time lapse equal to the same half-life, and so forth. In this case, one
quarter of the Kt particles remain after passage from counter to counter. Therefore the
particles that survive experience the passage of two half-lives between counter and
counter. We make the interval berween those two passages, those two events, the center
of our attention, because it has the same value in the laboratory frame where we do our
measuring as it does in the free-float frame of the representative particle.
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The keystore of the argument establishing the invariance of the interval between
two events for all free-float frames? The Principle of Relativity, according to which
there is no difference in the laws of physics between one free-float frame and another.
This principle showed here in two very different ways. First, it said that distances at
right angles to the direction of relative motion are recorded as of equal magnitude in
the laboratory frame and the rocket frame (Section 3.6). Otherwise one frame could be
distinguished from the other as the one with the shorter perpendicular distances.

Second, the Principle of Relativity demanded that the speed of light be the same in
the laboratory frame as in the rocket frame. The speed being the same, the fact that the
light-travel path in the laboratory frame (the hypotenuse of two triangles) is longer
than the simple round-trip path in the rocker frame (the altitudes of these two
triangles: up 3 meters and down again) directly implies a longer time in the laboratory
frame than in the rocket frame.

In brief, one elementary triangle in Figure 3-6 displays four great ideas that underlie
all of special relativity: invariance of perpendicular distance, invariance of the speed of
light, dependence of space and time separations upon the frame of reference, and
invariance of the interval. e~

Basis of invariance of interval:
Principle of Relativity

3.9 SUMMARY

same laws for all; invariant interval for all

The Principle of Relativity says that the laws of physics are the same in every
inertial (free-float) reference frame (Section 3.1). This simple principle has important
consequences. Specifically:

(separation )2 ( sepamf:ion)2 ( separation )3 ( separation )2
(interval)? = in lab - in lab =| inmoving- | — in moving-
time position particle time particle position
zero separation \ 2
9 meters of distance 2 9 meters \2 in space (in
= | 0.868 meters of distance | — (of distance) = (2 half-lives)? — | particle frame)
per meter of time between those
two events

_( 10.368 meters \? _ 9meters)2= T
o (of light-travel time) (of distance @ halitives)

A litde arithmetic tells us that two half-lives total 5.15 meters of light-travel time.
Consequently the K* half-life itself is 2.57 meters of time or (2.57 meters) /(3.00 X 108
meters/second) = 8.5 X 107 second or 8.5 nanoseconds.




74  CHAPTER 3 SAME LAWS FOR ALL

1. Two events that lie along the direction of relative motion between two frames
cannot be simultaneous as measured in both frames (relativity of simulta-
neity). (Section 3.4)

2. An object in high-speed motion is measured to be shorter along its direction of
motion than its proper length, measured in its rest frame (Lorentz con-
traction). (Section 3.5)

3. The dimensions of moving objects transverse to their direction of relative
motion are measured to be the same, whatever the relative speed (invariance
of transverse distances). (Section 3.6)

4. Two events with separation only transverse to the direction of relative motion
and simultaneous in either frame are simultaneous in both. (Section 3.6)

BOX 3-3 -ft—
FASTER THAN LIGHT?

We always want to go faster. Faster than what? Faster than anything has
gone before. What s our greatest possible speed, according to the theory of
relativity? The speed of light in a vacuum! How do we know that this is the
greatest possible speed that we can travel? Many lines of evidence reach this
conclusion. Rocket speed greater than the speed of light would lead to the
destruction of the essential relation between cause and effect, a result ex-
plored in Special Topic: Lorentz Transformation (especially Box L-1) and in
Chapter 6. In particular, we could find a frame in which a faster-than-light
object arrives before it startsl Moreover, in particle accelerators built over
several decades we have spent hundreds of millions of dollars effectively
trying to accelerate electrons and protons to the greatest possible speed —
which by experiment never exceeds light speed.

The conclusion that no thing can move faster than light arises also from the
invariance of the interval. To see this, let a rocket emit two flashes of light a
time t' apart as measured in the rocket frame. (Use a prime to distinguish
rocket measurements from laboratory measurements.) In the rocket frame
the two emissions occur at the same place: the separation x’ between them
equals zero. Let t and x be the corresponding separations in time and space
as measured in the laboratory frame. Then the invariance of the interval tells
us that the three quantities t', t, and x are related by the equation

()2 — (X2 =(t')2— (0P = — x2
whence
(P =1—x2 (3-1)

In the laboratory frame the rocket is moving with some speed; give this
speed the symbol v. The distance x between emissions is just the distance that
the rocket moves in time t in the laboratory frame. The relation between
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5. The spacetime interval between two events is invariant—it has the same
value in laboratory and rocket frames (Sections 3.7 and 3.8):

Laboratory = Laboratory
(interv al)2=( time )2_ ( space )2

separation separation

Rocket Rocket
_ time > [ space 2
separation separation

6. Inany free-float frame, no object moves with a speed greater than the speed of
light (Box 3-3). -

distance, time, and speed is
x=vt (3-2)
Substitute this into equation (3-1) to obtain (')2= — (vi)2=#[1 —v?], or
t'=1t(1—v2)12 (3-3)

Now, v is the speed of the rocket. How large can that speed be? Equation
(3-3) makes sense for any rocket speed less than the speed of light, or when v
has a value less than one.

Suppose we try to force the rocket to move faster than the speed of light. If we
should succeed, v would have a value greater than one. Then v2 also would
have a value greater than one. But in this case the expression 1 — v2 would
have a negative value and its square root would have no physical meaning.
In a formal mathematical sense, the rocket time +' would be an imaginary
number for the case of rocket speed greater than the speed of light. But
clocks do not read imaginary time; they read real time —three hours, for
example. Therefore a rocket speed greater than the speed of light leads to
an impossible consequence.

Equation (3-3) does not forbid a rocket to go as close to the speed of light as
we wish, as long as this speed remains less than the speed of light. For v very
close to the speed of light, equation (3-3) tells us that the rocket time can be
very much smaller than the laboratory time. Now suppose that emission of
the first flash occurs when the rocket passes Earth on its outward trip to a
distant star. Let emission of the second flash occur as the rocket arrives at that
distant star. No matter how long the laboratory time t between these two
events, we can find a rocket speed, v, such that the rocket time t' is as small as
we wish. This means that in principle we can go to any remote star in as short a
rocket time as we want. In brief, although our speed is limited to less than the
speed of light, the distance we can travel in a lifetime has no limitation. We
can go anywhere! This result is explored further in Chapter 4.
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DOES A MOVING CLOCK REALLY
“RUN SLOW™'?

You keep saying, “‘The time between clock-ticks is shorter as MEASURED in the
rest frame of the clock than as MEASURED in a frame in which the clock is
moving."’ | am interested in reality, not someone’s measurements. Tell me what
really happens!

What is reality? You will have your own opinion and speculations. Here we
pose two related scientific questions whose answers may help you in forming
your opinion.

Are differences in clock rates really verified by experiment?

Different values of the time between two events as observed in different
frames? Absolutely! Energetic particles slam into solid targets in accelerators
all over the world, spraying forward newly created particles, some of which
decay in very short times as measured in their rest frames. But these *'short-
lived" particles survive much longer in the laboratory frame as they streak
from target to detector. In consequence, the detector receives a much larger
fraction of the undecayed fast-moving particles than would be predicted
from their decay times measured at rest. This result has been tested thou-
sands of times with many different kinds of particles. Such experiments
carried out over decades lead to dependable, consistent, repeatable re-
sults. As far as we can tell, they are correct, true, and reliable and cannot
effectively be denied. If that is what you personally mean by ‘‘real,” then
these results are ‘‘what really happens.”’

Does something about a clock really change when it moves, resulting in
the observed change in tick rate?

Absolutely not! Here is why: Whether a free-float clock is at rest or in motion
in the frame of the observer is controlled by the observer. You want the clock
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to be at rest? Move along with it Now do you want the clock to move? Simply
change your own velocity! This is true even when you and the clock are
separated by the diameter of the solar system. The magnitude of the clock’s
steady velocity is entirely under your control. Therefore the time between its
ticks as measured in your frame is determined by your actions. How can your

change of motion affect the inner mechanism of a distant clock? It cannot and
does not.

Every time you change your motion on Earth— and even when you sit down,
letting the direction of your velocity change as Earth rotates—you change
the rate at which the planets revolve around Sun, as measured in your frame.
(You also change the shape of planetary orbits, contracting them along the
direction of your motion relative to Sun.) Do you think this change on your
velocity really affects the workings of the ‘“clock’ we call the solar system? If
so, what about a person who sits down on the other side of Earth? That
person moves in the opposite direction around the center of Earth, so the
results are different from yours. Are each of you having a different effect on
the solar system? And are there still different effects — different solar-system
clocks — for observers who could in principle be scattered on other planets?

We conclude that free-float motion does not affect the structure or operation
of clocks (or rods). If this is what you mean by reality, then there are really no
such changes due to uniform motion.

Is there some unity behind these conflicting measurements of time and space?
Yes! The interval: the proper time (wristwatch time) between ticks of a clock as
measured in a frame in which ticks occur at the same place, in which the clock
is at rest. Proper time can also be calculated by all free-float observers,
whatever their state of motion, and all agree on its value. Behind the confus-
ing clutter of conflicting measurements stands the simple, consistent, power-
ful view provided by spacetime.
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RELATIVITY AND SWIMMING

CHAPTER 3 EXERCISES

PRACTICE

3-1 relativity and swimming

The idea here is to illustrate how remarkable is the
invariance of the speed of light (light speed same in all
free-float frames) by contrasting it with the case of a
swimmer making her way through water.

Light goes through space at 3 X 108 meters/sec-
ond, and the swimmer goes through the water at 1
meter/second. ‘‘But how can there otherwise be any
difference?”” one at first asks oneself.

For a light flash to go down the length of a 30-
meter spaceship and back again takes

time = (distance)/(speed)
= 2 X (30 meters)/(3 X 108 meters/second)
=2 X 1077 second

as measured in the spaceship, regardless of whether
the ship is stationary at the spaceport or is zooming
past it at high speed.

Check how very different the story is for the swim-
mer plowing along at 1 meter/second with respect to
the water.

a How long does it take her to swim down the
length of a 30-meter pool and back again?

b How long does it take her to swim from float A
to floac B and back again when the two floats, A and
B, ate still 30 meters apart, but now are being towed
through a lake at 1/3 meter/second? Discussion:
When the swimmer is swimming in the same direc-
tion in which the floats are being towed, what is her
speed relative to the floats? And how great is the
distance she has to travel expressed in the “‘frame of
reference”’ of the floats? So how long does it take to
travel thac leg of her trip? Then consider the same
three questions for the return trip.

¢ Is it true that the total dme from A to B and
back again is independent of the reference system
(“‘stationary”’ pool ends vs. moving floats)?

d Express in the cleanest, clearest, sharpest one-
sentence formulation you can the difference between
what happens for the swimmer and what happens for
a light flash.

When Albert Einstein was a boy of 16, he mulled
over the following puzzler: A runner looks at herself
in a mirror that she holds at arm’s length in front of

her. If she runs with nearly the speed of light, will she
be able to see herself in the mirror? Analyze this
question using the Principle of Relativity.

3-3 construction of clocks

For the measurement of time, we have made no dis-
tinction among spring clocks, quartz crystal clocks,
biological clocks (aging), atomic clocks, radioactive
docks, and a clock in which the ticking element is a
pulse of light bouncing back and forth between two
mirrors (Figure 1-3). Let all these clocks be adjusted
by the laboratory observer to run at the same rate
when at rest in the laboratory. Now let the clocks all
be accelerated gently to a high speed in a rocket,
which then turns off its engines. Make a simple but
powerful argument that the free-float rocket observer
will also measure these different clocks all to run at
the same rate as one another. Does it follow that the
(common) clock rate of these clocks measured by the
rocket observer is the same as their (common) rate
measured by the laboratory observer as they pass by in
the rocket?

3-4 the Principle of Relativity

Two overlapping free-float frames are in uniform
relative motion. On the following list, mark with a
“yes'" the quantities that must zecessarily be the same
as measured in the two frames. Mark with a 'no’’ the
quantities that are ot necessarily the same as mea-
sured in the two frames.

a dme it takes for light to go one meter of dis-
tance in a vacuum
spacetime interval between two events
kinetic energy of an electron
value of the mass of the electron
value of the magnetic field at a given point
distance between two events
structure of the DNA molecule
time rate of change of momentum of a neutron

S o Q0T

3-5 many unpowered rockets

In the laboratory frame, event 1 occurs at x = 0
light-years, + = 0 years. Event 2 occurs at x = 6
light-years, #= 10 years. In all rocket frames, event 1
also occurs at the position 0 light-years and the time 0
years. The y- and z-coordinates of both events are zero
in both frames.

a In rocket frame A, event 2 occurs at time ¢’ =
14 years. At what position x” will event 2 occur in this
frame?



b Inrocker frame B, event 2 occurs at position x”
=5 light-years. At what time " will event 2 occur in
this frame?

¢ How fast must rocket frame Cmove if events 1
and 2 occur at the same place in this rocket frame?

d What is the time between events 1 and 2 in
rocket frame C of part ¢?

3-6 down with relativity!

Mtr. Van Dam is an intelligent and reasonable man
with a knowledge of high school physics. He has the
following objections to the theory of reladvity. An-
swer each of Mr. Van Dam'’s objections decisively —
without ctiticizing him. If you wish, you may present
a single connected account of how and why one is
driven to relativity, in which these objections are all
answered.

a “Observer A says that B's clock goes slow, and
observer B says that A’s clock goes slow. This is a
logical contradiction. Therefore relativity should be
abandoned."

b “Observer A says that B's meter sticks are
contracted along their direction of relative motion,
and observer B says that A’s meter sticks are con-
tracted. This is a logical contradiction. Therefore rela-
tivity should be abandoned.”

¢ “Relativity does not even have a unique way to
define space and time coordinates for the instanta-
neous position of an object. Laboratory and rocket
observers typically record different coordinates for this
position and time. Therefore anything relativity says
about the velocity of the object (and hence about its
motion) is without meaning."”

EXERCISE 3-7
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d “‘Relativity postulates that light travels with a
standard speed regardless of the free-float frame from
which its progress is measured. This postulate is cer-
tainly wrong. Anybody with common sense knows
that travel at high speed in the direction of a receding
light pulse will decrease the speed with which the
pulse recedes. Hence a flash of light cannot have the
same speed for observers in relative motion. With this
disproof of the basic postulate, all of relativity col-
lapses.”

e “‘There isn't a single experimental test of the
results of special relativity.”

f “Reladvity offers no way to describe an event
without coordinates—and no way to speak about
coordinates without referring to one or another par-
ticular reference frame. However, physical events
have an existence independent of all choice of coordi-
nates and all choice of reference frame. Hence
relativity — with its coordinates and reference frames
—cannot provide a valid description of these
events.”

g ‘“Relativity is preoccupied with how we observe
things, not what is rea//y happening. Hence it is not a
scientific theory, since science deals with reality.”

PROBLEMS

3-7 space war

Two rockets of equal rest length are passing “*head
on" at relativistic speeds, as shown in the figure (left).
Observer ¢ has a gun in the tail of her rocket pointing
perpendicular to the direction of relative motion

,~Bullet
‘uA‘ i

EXERCISE 3-7. Left: Two rocket ships passing at bigh speed. Center: In the frame of o one expects a bullet
[fired when a coincides witha’ to miss the other ship. Right: In the frame of o' one expects a bullet fired when

a coincides with a to hit the other ship.
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(center). She fires the gun when points ¢ and 4’
coincide. In her frame the other rocket ship is Lorentz
contracted. Therefore o expects her bullet to miss the
other rocket. But in the frame of the other observer o’
it is the rocket ship of o that is measured to be Lorentz
contracted (right). Therefore when points 2 and 4’
coincide, observer ¢’ should observe a hit.

Does the bullet actually hit or miss? Pinpoint the
looseness of the language used to state the problem
and the error in one figure. Show that your argument
is consistent with the results of the Train Paradox
(Section 3.4).

3-8 Cerenkov radiation

No particle has been observed to travel faster than the
speed of light in a vacuum. However particles have
been observed that travel in a material medium faster
than the speed of light in that medium. When a
charged particle moves through a medium faster than
light moves in that medium, it radiates coherent light
in a cone whose axis lies along the path of the particle.
(Note the rough similarity to waves created by a
motorboat speeding across calm water and the more
exact similarity to the “‘cone of sonic boom’ created
by a supersonic aircraft.) This is called Cerenkov radi-
ation (Russian Cis pronounced as ‘“‘ch”). Let » be the
speed of the particle in the medium and v, be the
speed of light in the medium.

a From this information use the first figure to
show that the half-angle ¢, of the light cone is given
by the expression

cos (;b = Vyighe/V

b Consider the plastic with the trade name Lu-
cite, for which v, = 2/3. What is the minimum
velocity that a charged particle can have if it is to
produce Cerenkov radiation in Lucite? What is the
maximum angle @ at which Cerenkov radiation can
be produced in Lucite? Measurement of the angle
provides a good way to measure the velocity of the
particle.

¢ In water the speed of light is approximately
Vyghe — 0.75. Answer the questions of part b for the
case of water. See the second figure for an application
of Cerenkov radiation in water.

3-9 aberration of starlight

A star lies in a direction generally perpendicular to
Earth’s direction of motion around Sun. Because of
Earth’s motion, the star appears to an Earth observer
to lie in a slightly different direction than it would

SPACE WAR
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EXERCISE 3-8, first figure. Calculation of Cerenkov angle .

EXERCISE 3-8, second figure. Use of Cerenkov radiation for
indirect detection of neutrinos in the Deep Underwater Muon and
Neutrino Detector (DUMAND) 30 kilometers off Keahole Point on
the island of Hawaii. Neutrinos have no electric charge and their
mass, if any, has so far escaped detection (Box 8-1). Neutrinos
interact extremely weakly with matter, passing through Earth with
almost no collisions. Indeed, the DUMAND detector array selects
[for analysis only neutrinos that come upward through Earth. In this
way Earth itself acts as a shield to eliminate all other cosmic-ray
particles.

What are possible sources for these neutrinos? Theory predicts the
emission of very high-energy (greater than 1072 electron-volt) neu-
trinos from matter plunging toward a black hole. Black holes may be
the energy sources for extra-bright galactic nuclei and for quasars
—small, distant, enigmatic objects shining with the light of
bundreds of galaxies (Section 9.8). Information about conditions
deep within these astronomical structuves may be carvied by neu-
trinos as they pierce Earth and travel upward through the DU-
MAND detector array.

In a rare event, a neutrino moving through the ocean slams into
one of the quarks that make up a proton or a neutron in, say, an
oxygen nucleus in the water, creating a burst of particles. All of
these particles ave quickly absorbed by the surrounding water except
a stable negatively charged muon, 207 times the mass of the electron
(thus sometimes called a ‘‘fat electron”). This muon streaks through
the water in the same divection as the neutrino that created it and at
a speed greater than that of light in water, thus emitting Cerenkov
radiation. The Cerenkov radiation is detected by photomultiplier
tubes in an array anchored to the ocean floor.

Photomultipliers arve strung along 9 vertical cables, 8 cables
spaced around a circle 100 meters in diameter on the ocean floor, the
ninth cable rising from the center of the circle. Each cable is 335
meters long and holds 24 glass spheres positioned 10 meters apart on
the top 230 meters of its length. There are no detectors on the bottom
110 meters, in order to avoid any cloud of sediments from the bottom.
Above the bottom, the water is 5o clear and modern photodetectors so
sensitive that Cerenkov radiation can be detected from a muon thas
passes within 40 meters of a detector.

Photomultipliers in the glass spheres detect Cerenkov radiation
[from the passing muons, transmitting this signal through under-
water optical fibers to computers on the nearby isiand of Hawaii.
The computers select for examination only those events in which (1)
several optical sensors detect bursts that ave (2) within 40 meters or
50 of @ straight line, (3) spaced in time to show that the particle is
moving at essentially the speed of light in a vacuum, and (4) from a
particle moving upward through the water. A system of sonar bea-
cons and hydrophones tracks the locations of the photomultipliers as
the strings sway with the slow ocean currents. As a result, the
direction of motion of the original neutrino can be recorded to an
accuracy of one degree.

The DUMAND facility is designed to create a new sky map of
neutrino sources to supplement our knowledge of the heavens, so far
obtained primarily from the electromagnetic spectrum (radio, infra-
ved, optical, ultraviolet, X-ray, gamma ray).
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distance moved by sun
in one meter of light-

time

v
distance moved distance moved
by photon in by photon in
one meter of one meter of
light-travel light-travel
time time

Y
SUN FRAME EARTH FRAME

(In this frame, Earth moves
to right with speed vg_, )

EXERCISE 3-9. Aberration of starlight. Not to scale.

appear to an observer at rest relative to Sun. This
effect is called aberration. Using the diagram, find
this apparent difference of direction.

a Find a trigonometric expression for the aberra-
tion angle i shown in the figure.

b Evaluate your expression using the speed of
Earth around Sun, g, cony = 30 kilometers /second.
Find the answer in radians and in seconds of arc. (One
degree equals 60 minutes of arc; one minute equals
60 seconds of arc.) This change in apparent position
can be detected with sensitive equipment.

¢ The nonreladvistic answer to this problem —
the answer using nonrelativistic physics —is tan §/ =
Vo (in meters/meter). Do you think that the exper-
imental difference between relativistic and nonrela-
tivistic answers for stellar aberration observed from
Earth can be the basis of a crucial experiment to decide
between the correctness of the two theories?

Discussion: Of course we cannot climb off Earth
and view the star from the Sun frame. But Earth
reverses direction every six months (with respect to
what?), so light from a “‘transverse star’ viewed in,
say, July will appear to be shifted through twice the
aberration angle calculated in part b compared with
the light from the same star in January. New ques-
tion: Since the background of stars behind the one
under observation also shifts due to aberration, how
can the effect be measured ar all?

d A rocket in orbit around Earth suddenly
changes its velocity from a very small fraction of the
speed of light to »= 0.5 with respect to Sun, moving
in the same direction as Earth is moving around Sun.
In what direction will the rocket astronaut now see the
star of parts a and b? '
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3-10 the expanding universe

a A giant bomb explodes in otherwise empty
space. What is the nature of the motion of one frag-
ment relative to another? And how can this relative
motion be detected? Discussion: Imagine each frag-
ment equipped with a beacon that gives off flashes of
light at regular, known intervals AT of time as mea-
sured in its own frame of reference (proper time!).
Knowing this interval between flashes, what method
of detection can an observer on one fragment employ
to determine the velocity »— relative to her— of any
other fragment? Assume that she uses, in making this
determination, (1) the known proper time AT be-
tween flashes and (2) the time Az, puon between the
arrival of consecutive flashes at her position. (This is
not equal to the time Az in her frame between the
emission of the two flashes from the receding emitter;
see the figure.) Derive a formula for » in terms of
proper time lapse AT and Atiepnon. How will the
measured recession velocity depend on the distance
from one’s own fragment to the fragment at which
one is looking? Hint: In any given time in any given
frame, fragments evidently travel distances in that
frame from the point of explosion that are in direct
proportion to their velocities in that frame.

b How can observation of the light from stars be
used to verify that the universe is expanding? Dis-
cussion: Atoms in hot stars give off light of different
frequencies characteristic of these atoms (‘‘spectral
lines”). The observed period of the light in each spec-
tral line from starlight can be measured on Earth.
From the pattern of spectral lines the kind of atom
emitting the light can be identified. The same kind of
atom can then be excited in the laboratory to emit
light while at rest and the proper period of the light in
any spectral line can be measured. Use the results of

Receptor

Receding
s emitter

Time

Distance
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part a to describe how the observed period of light in
one spectral line from starlight can be compared to the
proper period of light in the same spectral line from
atoms at rest in the laboratory to give the velocity of
recession of the star that emits the light. This observed
change in period due to the velocity of the source is
called the Doppler shift. (For a more detailed treat-
ment of Doppler shift, see the exercises for Chapters 5
and 8.) If the universe began in a gigantic explosion,
how must the observed velocities of recession of dif-
ferent stars at different distances compare with one
another? Slowing down during expansion — by grav-
itational attraction or otherwise—is to be neglected
here but is considered in more complete treatments.
¢ The brightest steadily shining objects in the
heavens are called quasars, which stands for “‘quasi-
stellar objects.”” A single quasar emits more than 100
times the light of our entire galaxy. One possible
source of quasar energy is the gravitational energy
released as material falls into a black hole (Section
9.8). Because they are so bright, quasars can be ob-
served at great distances. As of 1991, the greatest
observed quasar red shift Asyepion/AT has the value
5.9. According to the theory of this exercise, what is
the velocity of recession of this quasar, as a fraction of
the speed of light?
3-11 law of addition of
velocities

In a spacebus a bullet shoots forward with speed 3 /4
that of light as measured by travelers in the bus. The
spacebus moves forward with speed 3 /4 light speed
as measured by Earth observers. How fast does the
bullet move as measured by Earth observers: 3 /4 +
3/4=6/4= 1.5 times the speed of light? No! Why
not? Because (1) special relativity predicts that noth-

l\ \ Viight = 1
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EXERCISE 3-10. Calculation of the time tp,pion between arrival at observer of consecutive flashes from
receding emitter. Light moves one meter of distance in one meter of time, so lines showing motion of light are

tilted at £45° from the vertical.
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ing can travel faster than light, and (2) hundreds of
millions of dollars have been spent accelerating parti-
cles (“‘bullets”) to the fastest possible speed without
anyone detecting a single particle that moves faster
than light in a vacuum. Then where is the flaw in our
addition of velocities? And what is the correct law of
addition of velocities? These questions are answered in
this exercise.

a First use Earth observers to record the the mo-
tions of the spacebus (length L measured in the Earth
frame, speed ) and the streaking bullet (speed
Vputer)- The bullet starts at the back of the bus. To give
it some competition, let a light flash (speed = 1) race
the bullet from the back of the bus toward the front.
The light flash wins, of course, reaching the front of
the bus in time #¢ya0q- And 2 para 1S also equal to the
distance that the light travels in this time. Show that
this distance (measured in the Earth frame) equals the
length of the bus plus the distance the bus travels in
the same time:

N _ L
Yorward = L b Vret Horwasd OF orward = P m
el

b In order to to rub in its advantage over the
bullet, the light flash reflects from the front of the bus
and moves backward until, after an additional time
Foacwaras 1t tejoins the forward-plodding bullet. This
meeting takes place next to the seat occupied by Fred,
who sits a distance fL behind the front of the bus,
where f is a fraction of the bus length L. Show that
for this leg of the trip the Earth-measured distance
toadwara traveled by the light flash can also be ex-
pressed as

Poaceward = fL ™ Vel Poacward or

fL (2)
1+ vy

4 backward

¢ The light flash has moved forward and then
backward with respect to Earth. What is the zet
forward distance covered by the light flash at the
instant it rejoins the bullet? Equate this with the for-
ward distance moved by the bullet (at speed 2,y,,) to
obtain the equation

Uputtee Frorward T Phackward) = Pporward  Phackward
or
(1 + Vhuiee) Phackward — (1 — Vputted) Yporwara  (3)

d What are we after? We want a relation be-
tween the bullet speed ., as measured in the Earth
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frame and the bullet speed, call it 2/, (with a
prime), as measured in the spacebus frame. The times
given in parts a, b, and ¢ are of no use to this end.
Worse, we already know that times between events
are typically different as measured in the spacebus
frame than times between the same events measured
in the Earth frame. So get rid of these times! More-
over, the Lorentz-contracted length L of the spacebus
itself as measured in the Earth frame will be different
from its rest length measured in the bus frame (Sec-
tion 3.5). So get rid of L as well. Equations (1), (2),
and (3) can be treated as three equations in the three
unknowns Zgrward> Zbackwaras a0d L. Substitute equa-
tions for the times (1) and (2) into equation (3).
Lucky us: The symbol L cancels out of the result.
Show that this result can be written

F= (A~ ) A+ 20)

T U F ) (L — o) “

e Now repeat the development of parts a
through d for the spacebus frame, with respect to
which the spacebus has its rest length L’ and the
bullet has speed ¢y . (both with primes). Show that
the result is:

— (1 - v/bullct)
f A+ v per)

Discussion: Instead of working hard, work
smart! Why not use the old equations (1) through (4)
for the spacebus frame? Because there is no relative
velocity 7,4 in the spacebus frame; the spacebus is at
rest in its own frame! No problem: Set v, = 0 in
equation (4), replace 2y by #'puee 20d 0btain equa-
tion (5) directly from equation (4). If this is too big a
step, carry out the derivation from the beginning in
the spacebus frame.

f Do the two fractions f in equations (4) and (5)
have the same value? In equation (4) the number f
locates Fred’s seat in the bus as a fraction of the total
length of the bus in the Earth frame. In equation (5)
the number flocates Fred’s seat in the bus as a fraction
of the total length of the bus in the bus frame. But this
fraction must be the same: Fred cannot be halfway
back in the Earth frame and, say, three quarters of the
way back in the spacebus frame. Equate the two
expressions for f given in equations (4) and (5) and
solve for #,, to obtain the Law of Addition of
Velocities:

7
“ _ Y buller + Vrel "
bullec —
1+ v ptee %
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g Explore some consequences of the Law of Ad-
dition of Velocities.

(1) An express bus on Earth moves at 108
kilometers/hour (approximately 67 miles/
hour or 30 meters per second). A bullet moves
forward with speed 600 meters/second with
respect to the bus. What are the values of v,
and ¢’y in meters/meter? What is the value
of their product in the denominator of equa-
tion (6)? Does this product of speeds increase
the value of the denominator significantly over
the value unity? Therefore what approximate
form does equation (6) take for everyday
speeds? Is this the form you would expect from
your experience?

(2) Analyze the example that began this exercise:
Speed of bullet with respect to spacebus
v puter = 3/4; speed of spacebus with respect
to Earth v = 3/4. What is the speed of the
bullet measured by Earth observers?

(3) Why stop with bullets that saunter along at
less than the speed of light? Let the bullet itself
be a flash of light. Then the bullet speed as
measured in the bus is ¢/, = 1. For 74 =
3/4, with what speed does this light flash
move as measured in the Earth frame? Is this
what you expect from the Principle of Relativ-
ity?

(4) Suppose a light flash is launched from the
front of the bus directed toward the back
(¢ putlee = — 1). What is the velocity of this
light flash measured in the Earth frame? Is this
what you expect from the Principle of Relativ-
ity?

Reference: N. David Mermin, American_Journal of Physics, Volume
51, pages 1130-1131 (1983).

3-12 Michelson—Morley
experiment

a An airplane moves with air speed ¢ (not the
speed of light) from point A to point B on Earth. A
stiff wind of speed » is blowing from B toward A. (In
this exercise only, the symbol v stands for velocity in
conventional units, for example meters/second.)
Show that the time for a round trip from A to B and
back to A under these circumstances is greater by a
factor 1/(1 — #2/¢?) than the corresponding round
trip time in still air. Paradox: The wind helps on one
leg of the flight as well as hinders on the other. Why,
therefore, is the round-trip time not the same.in the
presence of wind as in still air? Give a simple physical
reason for this difference. What happens when the
wind speed is nearly equal to the speed of the airplane?

MICHELSON - MORLEY EXPERIMENT

b The same airplane now makes a round trip
between A and C. The distance between A and C is
the same as the distance from A to B, but the line from
A to Cis perpendicular to the line from A to B, so that
in moving between A and C the plane flies across the
wind. Show that the round-trip time between A and
C under these circumstances is greater by a factor
1/(1 — 22/c*)'/? than the corresponding round-trip
time in still air.

¢ Two airplanes with the same air speed ¢ start
from A at the same time. One travels from A to Band
back to A, flying first against and then with the wind
(wind speed ). The other travels from A to C and
back to A, flying across the wind. Which one will
arrive home first, and what will be the difference in
their arrival times? Using the first two terms of the
binomial theorem,

A+z=1+nz for 2] << 1
show that if v << ¢, then an approximate expression
for this time difference is Az = (L/2¢)(v/c)?, where L
is the round-trip distance between A and B (and
between A and C).

d The South Pole Air Station is the supply depot
for research huts on a circle of 300-kilometer radius
centered on the air station. Every Monday many sup-
ply planes start simultaneously from the station and
fly radially in all directions at the same altitude. Each
plane drops supplies and mail to one of the research
huts and flies directly home. A Fussbudget with a
stopwatch stands on the hill overlooking the air sta-
tion. She notices that the planes do not all return at the
same time. This discrepancy perplexes her because she
knows from careful measurement that (1) the dis-
tance from the air station to every research hut is the
same, (2) every plane flies with the same air speed as
every other plane— 300 kilometers/hour—and (3)
every plane travels in a straight line over the ground
from station to hut and back. The Fussbudget finally
decides that the discrepancy is due to the wind at the
high altitude at which the planes fly. With her stop-
watch she measures the time from the return of the
first plane to the return of the last plane to be 4
seconds. What is the wind speed at the altitude where
the planes fly? What can the Fussbudget say about
the direction of this wind?

e In their famous experiment Michelson and
Morley attempted to detect the so-called ether drift
—the motion of Earth through the “‘ether,” with
respect to which light was supposed to have the ve-
locity ¢. They compared the round-trip times for light
to travel equal distances parallel and perpendicular to
the direction of motion of Earth around Sun. They
reflected the light back and forth between nearly
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parallel mirrors. (This would correspond to part c if
each airplane made repeated round trips.) By this
means they were able to use a total round-trip length
of 22 meters for each path. If the “‘ether” is at rest
with respect to Sun, and if Earth moves at 30 X 103
meters/second in its path around Sun, what is the
approximate difference in time of return between
light flashes that are emitted simultaneously and
travel along the two perpendicular paths? Even with
the instruments of today, the difference predicted by
the ether-drift hypothesis would be too small to mea-
sure directly, and the following method was used
instead.

f The original Michelson—Morley interferome-
ter is diagrammed in the figure. Nearly monochro-
matic light (light of a single frequency) enters through
the lens at #. Some of the light is reflected by the
half-silvered mirror at 4 and the rest of the light
continues toward 4. Both beams are reflected back
and forth until they reach mirrors e and ¢, respectively,
where each beam is reflected back on itself and re-
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traces its path to mirror 4. At mirror 4 parts of each
beam combine to enter telescope f together. The
transparent piece of glass at ¢, of the same dimensions
as the half-silvered mirror 4, is inserted so that both
beams pass the same number of times (three times)
through this thickness of glass on their way to tele-
scope f. Suppose that the perpendicular path lengths
are exactly equal and the instrument is at rest with
respect to the ether. Then monochromatic light from
the two paths that leave mirror 4 in some relative
phase will return to mirror 4 in the same phase. Under
these circumstances the waves entering telescope fwill
add crest to crest and the image in this telescope will
be bright. On the other hand, if one of the beams has
been delayed a time corresponding to one half period
of the light, then it will arrive at mirror 4 one half
period later and the waves entering the telescope will
cancel (crest to trough), so the image in the telescope
will be dark. If one beam is retarded a time corre-
sponding to one whole period, the telescope image
will be bright, and so forth. What time corresponds to

EXERCISE 3-12. Michelson—Morley interferometer mounted on a rotating marble slab.
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one period of the light? Michelson and Morley used
sodium light of wavelength 589 nanometers (one
nanometer is equal to 1072 meter). Use the equations
fA=rcand f=1/T that relate frequency £, period T,
wavelength A, and speed ¢ of an electromagnetic
wave. Show that one period of sodium light corre-
sponds to about 2 X 107 seconds.

Now there is no way to “turn ofF’ the alleged ether
drift, adjust the apparatus, and then turn the alleged
ether drift on again. Instead of this, Michelson and
Morley floated their interferometer in a pool of mer-
cury and rotated it slowly about its center like a
phonograph record while observing the image in the
telescope (see the figure). In this way if light is delayed
on either path when the instrument is oriented in a
certain direction, light on the other path will be de-
layed by the same amount of time when the instru-
ment has rotated 90 degrees. Hence the total change
in delay time between the two paths observed as the
interferometer rotates should be twice the difference
calculated using the expression derived in part c. By
refinements of this method Michelson and Morley
were able to show that the time change between the
two paths as the instrument rotated corresponded to
less than one one-hundredth of the shift from one
dark image in the telescope to the next dark image.
Show that this result implies that the motion of the
ether at the surface of Earth—if it exists at all—is
less than one sixth of the speed of Earth in its orbit. In
order to eliminate the possibility that the ether was
flowing past Sun at the same rate as Earth was moving
its orbit, they repeated the experiment at intervals of
three months, always with negative results.

g Discussion question: Does the Michelson—
Mortley experiment, by itself, disprove the theory that
light is propagated through an ether? Can the ether
theory be modified to agree with the results of this
experiment? How? What further experiment can be
used to test the modified theory?

Reference: A. A. Michelson and E. W. Morley, American Journal of
Science, Volume 134, pages 333 -345 (1887).

3-13 the Kennedy-—Thorndike
experiment

Note: Part d of this exercise uses elementary calculus.

The Michelson — Morley experiment was designed
to detect any motion of Earth relative to a hypotheti-
cal fluid — the ether—a medium in which light was
supposed to move with characteristic speed ¢. No
such relative motion of earth and ether was detected.
Partly as a result of this experiment the concept of
ether has since been discarded. In the modern view,
light requires no medium for its transmission. What
significance does the negative result of the

THE KENNEDY - THORNDIKE EXPERIMENT

Michelson—Morley experiment have for us who do
not believe in the ether theory of light propagation?
Simply this: (1) The round-trip speed of light mea-
sured on earth is the same in every direction — the
speed of light is isotropic. (2) The speed of light is
isotropic not only when Earth moves in one direction
around Sun in, say, January (call Earth with this
motion the ‘“‘laboratory frame’’), but also when Earth
moves in the opposite direction around Sun six
months later, in July (call Earth with this motion the
“rocket frame’’). (3) The generalization of this result
to any pair of inertial frames in relative motion is
contained in the statement, The round-trip speed of
light is isotropic both in the laboratory frame and in
the rocket frame. This result leaves an important
question unanswered: Does the round-trip speed of
light—which is isotropic in both laboratory and
rocket frames—also have the same numerical value
in laboratory and rocket frames? The assumption that
this speed has the same numerical value in both
frames played a central role in demonstrating the
invariance of the interval (Section 3.7). But is this
assumption valid?

a An experiment to test the assumption of the
equality of the round-trip speed of light in two inertial
frames in relative motion was conducted in 1932 by
Roy J. Kennedy and Edward M. Thorndike. The
experiment uses an interferometer with arms of un-
equal length (see the figure). Assume that one arm of
the interferometer is A/ longer than the other arm.
Show that a flash of light entering the apparatus will
take a time 2A//c longer to complete the round trip
along the longer arm than along the shorter arm. The
difference in length A/ used by Kennedy and Thorn-
dike was approximately 16 centimeters. What is the
approximate difference in time for the round trip of a
light flash along the alternative paths?

b Instead of a pulse of light, Kennedy and
Thorndike used continuous monochromatic light of
period T = 1.820 X 107" seconds (A = 546.1
nanometers = 546.1 X 10~ meters) from a mercury
source. Light that traverses the longer arm of the
interferometer will return approximately how many
periods # later than light that traverses the shorter
arm? If in the actual experiment the number of pe-
riods is an integer, the reunited light from the two
arms will add (crest-to-crest) and the field of view
seen through the telescope will be bright. In contrast,
if in the actual experiment the number of periods is a
half-integer, the reunited light from the two arms will
cancel (crest-to-trough) and the field of view of the
telescope will be dark.

¢ Earth continues on its path around Sun. Six
months later Earth has reversed the direction of its
velocity relative to the fixed stars. In this new frame of
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EXERCISE 3-13. Schematic diagram of apparatus used for the
Kennedy— Thorndike experiment. Parts of the interferometer have
been labeled with letters corresponding to those used in describing
the Michelson— Morley interferometer (Exercise 3-12). The experi-
menters went to great lengths to insure the optical and mechanical
stability of their apparatus. The interferometer is mounted on a
plate of quartz, which changes dimension very little when tempera-
ture changes. The interferometer is enclosed in a vacuum jacket so
that changes in atmospheric pressure will not alter the effective
optical path length of the interferometer arms (slightly different
speed of light at different atmospheric pressure). The inner vacuum

reference will the round-trip speed of light have the
same numerical value ¢ as in the original frame of
reference? One can rewrite the answer to part b for the
original frame of reference in the form

= Q/n)AYT)

where A/ s the difference in length between the two
interferometer arms, 7T is the time for one period of
the atomic light source, and # is the number of periods
that elapse between the return of the light on the
shorter path and the return of the light on the longer
path. Suppose that as Earth orbits Sun no shift is
observed in the telescope field of view from, say, light
toward dark. This means that » is observed to be
constant. What would this hypothetical result tell
about the numerical value ¢ of the speed of light?

THE KENNEDY - THORNDIKE EXPERIMENT
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Inner vacuum jacket

Quartz plate mounting
for interferometer

Outer water jacket (water
temperature constant to +£0.001°C)

Jacket is surrounded by an outer water jacket in which the water is
kept at a temperature that varies less than & 0.001 degrees Celsius.
The entire apparatus shown in the figure is enclosed in a small
darkroom (not shown) maintained at a temperature constant within
a few hundredths of a degree. The small darkroom is in turn enclosed
in a larger darkroom whose temperature is constant within a few
tenths of a degree. The overall size of the apparatus can be judged
from the fact that the difference in length of the two arms of the
interferometer (length eb compared with length eb) is 16
centimeters.

Point out the standards of distance and time used in
determining this result, as they appear in the equa-
tion. Quartz has the greatest stability of dimension of
any known material. Atomic time standards have
proved to be the most dependable earth-bound time-
keeping mechanisms.

d Inorder to catry out the experiment outlined in
the preceding paragraphs, Kennedy and Thorndike
would have had to keep their interferometer operat-
ing perfectly for half a year while continuously ob-
serving the field of view through the telescope. Unin-
terrupted operation for so long a time was not
feasible. The actual durations of their observations
varied from eight days to a month. There were several
such periods of observation at three-month time sep-
arations. From the data obtained in these periods,
Kennedy and Thorndike were able to estimate that
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over a single six-month observation the number of
periods 7 of relative delay would vary by less than the
fraction 3/1000 of one period. Take the differential
of the equation in part c to find the largest fractional
change dc/c of the round-trip speed of light between
the two frames consistent with this estimated change
in z (frame 1— the “laboratory” frame —and frame
2 —the “‘rocket”” frame — being in the present anal-
ysis Earth itself at two different times of year, with a
relative velocity twice the speed of Earth in its orbit:
2 X 30 kilometers/second).

Historical note: At the time of the Michelson—
Morley experiment in 1887, no one was ready for the
idea that physics— including the speed of light—is
the same in every inertial frame of reference. Accord-
ing to today’s standard Einstein interpretation it
seems obvious that both the Michelson—Morley and
the Kennedy—-Thorndike experiments should give
null results. However, when Kennedy and Thorndike
made their measurements in 1932, two alternatives
to the Einstein theory were open to consideration
(designated here as theory A and theory B). Both A
and B assumed the old idea of an absolute space, or
“ether,”” in which light has the speed ¢. Both A and B
explained the zero fringe shift in the Michelson—
Motley experiment by saying that all matter that
moves at a velocity v (expressed as a fraction of light-
speed) relative to ‘‘absolute space” undergoes a
shrinkage of its space dimensions in the direction of
motion to a new length equal to (1 — #?)1/2 times the
old length (*‘Lorentz-FitzGerald contraction hypoth-
esis”’). The two theories differed as to the effect of
““motion through absolute space’” on the running rate
of a clock. Theory A said, No effect. Theory B said
that a standard seconds clock moving through abso-
lute space at velocity v has a time between ticks of
(1 — 2?)1/2 seconds. In theory B the ratio Al/T'in the
equation in part b will not be affected by the velocity
of the clock, and the Kennedy—Thorndike experi-
ment will give a null result, as observed (‘‘compli-
cated explanation for simple effect”). In theory A the
ratio A//T in the equation will be multiplied by the
factor (1 — #,%)"/2 at a time of year when the “velocity
of Earth relative to absolute space” is #; and multi-
plied by (1 — #,2)!/2 at a time of year when this
velocity is »,. Thus the fringes should shift from one
time of year (¥; = Vg T Vsua) t0 another time of
year (¥, = Uppi — Ysun) Unless by accident Sun
happened to have ‘‘zero velocity relative to absolute
space”’ —an accident judged so unlikely as not to
provide an acceptable explanation of the observed
null effect. Thus the Kennedy—-Thorndike experi-
ment ruled out theory A (length contraction alone)
but allowed theory B (length contraction plus time
contraction)—and also allowed the much simpler

THINGS THAT MOVE FASTER THAN LIGHT

Einstein theory of equivalence of all inertial reference
frames.

The “sensitivity”” of the Kennedy — Thorndike ex-
periment depends on the theory under consideration.
In the context of theory A the observations set an
upper limit of about 15 kilometers/second to the
“speed of Sun through absolute space’”” (sensitivity
reported in the Kennedy—Thorndike paper). In the
context of Einstein’s theory the observations say that
the round-trip speed of light has the same numerical
magnitude — within an error of about 3 meters/
second — in inertial frames of reference having a rela-
tive velocity of 60 kilometers/second.

Reference: R. J. Kennedy and E. M. Thorndike, Physical Review,
Volume 42, pages 400-418 (1932).

3-14 things that move faster
than light

Can “‘things” or ““messages” move faster than light?
Does relativity really say “No” to this possibility?
Explore these questions further using the following
examples.

a The Scissors Paradox. A very long straight
rod, inclined at an angle 6 to the x-axis, moves down-
ward with uniform speed v,.4 as shown in the figure.
Find the speed v, of the point of intersection A of the
lower edge of the stick with the x-axis. Can this speed
be greater than the speed of light? If so, for what
values of the angle 6 and .4 does this occur? Can the
motion of intersection point A be used to transmit a
message faster than light from someone at the origin
to someone far out on the x-axis?

b Transmission of a Hammer Pulse. Sup-
pose the same rod is initially at rest in the laboratory
with the point of intersection initially at the origin.
The region of the rod centered at the origin is struck
sharply with the downward blow of a hammer. The
point of intersection moves to the right. Can this
motion of the point of intersection be used to transmit
a message faster than the speed of light?

¢ Searchlight Messenger? A very powerful
searchlight is rotated rapidly in such a way that its
beam sweeps out a flat plane. Observers A and B are
at rest on the plane and each the same distance from
the searchlight but not near each other. How far from
the searchlight must A and B be in order that the
searchlight beam will sweep from A to B faster than a
light signal could travel from A to B? Before they
took their positions, the two observers were given the
following instruction:

To A: “When you see the searchlight beam, fire a bullet
at B.”

To B: “When you see the searchlight beam, duck be-
cause A has fired a bullet at you.”
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EXERCISE 3-14. Can the point of intersection A move with a speed v, greater than the speed of light?

Under these circumstances, has a warning message
traveled from A to B with a speed faster than that of
lighe?

d Oscilloscope Writing Speed. The manu-
facturer of an oscilloscope claims a writing speed (the
speed with which the bright spot moves across the
screen) in excess of the speed of light. Is this possible?

3-15 four times the speed of
light?

We look westward across the United States and see
the rocket approaching us at four times the speed of
light.

How can this be, since nothing moves faster
than light?

= We did not say the rocket moves faster
than light; we said only that we see it
moving faster than light.

i s

Here is what happens: The rocket streaks under the
Golden Gate Bridge in San Francisco, emitting a flash
of light that illuminates the rocket, the bridge, and
the surroundings. Ac time At later the rocker threads
the Gateway Arch in St. Louis that commemorates
the starting point for covered wagons. The arch and
the Mississippi riverfront are flooded by a second flash
of light. The top figure is a visual summary of mea-

surements from our continent-spanning latticework
of clocks taken at this moment.

Now the rocket continues toward us as we stand in
New York City. The center figure summarizes data
taken as the first flash is about to enter our eye. Flash
1 shows us the rocket passing under the Golden Gate
Bridge. An instant later flash 2 shows us the rocket
passing through the Gateway Arch.

a Answer the following questions using symbols
from the first two figures. The images carried by the
two flashes show the rocket how far apart in space?
What is the time lapse between our reception of these
two images? Therefore, what is the apparent speed of
the approaching rocker we see? For what speed v of
the rocket does the apparent speed of approach equal
four times the speed of light? For what rocket speed
do we see the approaching rocket to be moving at 99
times the speed of light?

b Our friend in San Francisco is deeply disap-
pointed. Looking eastward, she sees the retreating
rocket traveling at less than half the speed of light
(bottom figure). She wails, “Which one of us is
wrong?”’ “‘Neither one.”" we reply. ““No matter how
high the speed » of the rocket, you will never see it
moving directly away from you at a speed greater than
half the speed of light.”

Use the bottom figure to derive an expression for
the apparent speed of recession of the rocket. When
we in New York see the rocket approaching at four
times the speed of light, with what speed does our San
Francisco friend see it moving away from her? When
we see a faster rocket approaching at 99 times the
speed of light, what speed of recession does she be-
hold? '
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SUPERLUMINAL EXPANSION OF QUASAR 3(273?

SAN FRANCISCO ST. LOUIS NEW YORK
emit EmI}:
025 flash 1 |

VAt (1I-vAf V
/ adU
794
ROCKET AT ST. LOUIS
flash 2 flash 1
emit emit
flash flash

2
———————— At ————————>e B _(1zvat }

ROCKET HEADED EAST
flash 2
emit emit
flash flash
2 3
q < At o At ———>E .
ROCKET AT NEW YORK

EXERCISE 3-15. Top: Rocket headed east, shown at the instant it
passes under the Gateway Arch in St. Louis and emits flash 2. The
rocket is chasing flash 1, emitted earlier as it passed under the
Golden Gate Bridge in San Francisco. Center: The two image-
carrying flashes are close together, so they enter the eye in rapid
succession. This gives the viewer the visual impression that the
rocket moved from San Francisco to St. Louis in a very short time.

Bottom: Rocket headed east, shown at the instant it approaches the
Empire State Building in New York City and emits flash 3. When
the rocket moves away from the viewer, the distance of rocket travel
is added to the separation between flashes. This increases the ap-
parent time between flashes, giving the viewer the impression that
the rocket moved from St. Louis to New York at less than one half
light-speed.

3-16 superluminal expansion
of quasar 3€273?

The most powerful sources of energy we know or
conceive or see in all the universe are so-called quasi-
stellar objects, or quasars, starlike sources of light
located billions of light-years away. Despite being far

smaller than any galaxy, the typical quasar manages
to put out more than 100 times as much energy as our
own Milky Way, with its hundred billion stars. Qua-
sars, unsurpassed in brilliance and remoteness, we
count today as lighthouses of the heavens.

One of the major problems associated with quasars
is that some are composed of two or more components



EXERCISE 3-16 SUPERLUMINAL EXPANSION OF QUASAR 3(273? 91
quasar quasar
E . vAtcos 6
i flash * knot
| v
| L |
é ; knot
g g * 2nd ligh
! | stlight Y o
; E flash * vAtsin 8
Y Y
to Earth to Earth

EXERCISE 3-16, first figure. Lef?: Bright “‘knot” of plasma ejected from a quasar at high speed v emits a
first flash of light toward Earth. Right: The knot emits a second light flash toward Earth a time At later.
This time At is measured locally near the knot using the Earth-linked latticework of rods and clocks (bar!

bar!).

that appear to be separating from each other with
relative velocity greater than the speed of light (*‘su-
perluminal”’ velocity). One theory that helps explain
this effect pictures the quasar as a core that ejects a jet
of plasma at relativistic speed. Disturbances or insta-
bilities in such a jet appear as discrete “‘knots” of
plasma. The motion and light emission from a knot
may account for its apparent greater-than-light speed,
as shown using the first figure.

a The first figure shows two Earth-directed light
flashes emitted from the streaking knot. The time
between emissions is A# as measured locally near the
knot using the Earth-linked latticework of rods and
clocks. Of course the clock readings on this portion of
the Earth-linked latticework are not available to us on
Earth; therefore we cannot measure Az directly.
Rather, we see the time separation between the atriv-
als of the two flashes at Earth. From the figure, show
that this Earth-seen time separation A, is given by
the expression

At,., = A1 — v cos 6)

b Wehave another disability in viewing the knot
from Earth. We do not see the motion of the knot
toward us, only the apparent motion of the knot
across our field of view. Find an expression for this
transverse motion (call it Ax,,) between emissions of
the two light flashes in terms of Az

¢ Now calculate the speed ¢%, of the rightward
motion of the knot as seen on Earth. Show that the
result is

vsin 0

Apeen _
Aty 1—wvcosf

1/:=

seen

d What is the value of %, when the knot is
emitted in the direction exactly toward Earth? when it
is emitted perpendicular to this direction? Find an
expression that gives the range of angles @ for which
V5., is greater than the speed of light. For 8 = 45
degrees, what is the range of knot speeds » such that
Vi is greater than the speed of light?

e Ifyou know calculus, find an expression for the
angle 6, at which 2%, has its maximum value for a
given knot speed ». Show that this angle satisfies the
equation cos 0., = v. Whether or not you derive this
result, use it to show that the maximum apparent
transverse speed is seen as

v
(1 — 212

seen, max

f What is this maximum transverse speed seen
on Earth when » = 0.99?

g The second figure shows the pattern of radio
emission from the quasar 3C273. The decreased pe-
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- 1978.24 1
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1978.92

1980.52
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BEAM 9 maﬂ 1
E |

EXERCISE 3-16, second figure. Contour lines of radio emission
from the quasar 3C273 showing a bright “‘knot” of plasma appar-
ently moving away from it at a speed greater than the speed of light.
The time of each image is given as calendar year and decimal
fraction. Horizontal scale divisions are in units of 2 milli arc-se-
conds. (1 milli arc-second = 1073/3600 degree = 4.85 X 10~°
radian)

CONTRACTION OR ROTATION?

riod of radiation from this source (Exercise 3-10)
shows that it is approximately 2.6 X 10° light-years
from Earth. A secondary soutce is apparently moving
away from the central quasar. Take your own mea-
surements on the figure. Combine this with data from
the figure caption to show that the apparent speed of
separation is greater than 9 times the speed of light.
Note: As of 1990, apparent greater-than-lighe-
speed (‘‘superluminal’’) motion has been observed in
approximately 25 different sources.
References: Analysis and first figure adapted from Denise C. Ga-
buzda, American Journal of Physics, Volume 55, pages 214-215
(1987). Second figure and data taken from T. J. Pearson, S. C.
Unwin, M. H. Cohen, R. P. Linfield, A. C. S. Readhead, G. A.

Seielstad, R. S. Simon, and R. C. Walker, Nazxre, Volume 290,
pages 365-368 (2 April 1981).

3-17 contraction or rotation?

A cube at rest in the rocket frame has an edge of
length 1 meter in that frame. In the laboratory frame
the cube is Lorentz contracted in the direction of
motion, as shown in the figure. Determine this Lor-
entz contraction, for example, from locations of four
clocks at rest and synchronized in the laboratory lat-
tice with which the four corners of the cube, E, F, G,
H, coincide when all four clocks read the same time.
This latticework measurement eliminates time lags in
the travel of light from different corners of the cube.

Now for a different observing procedure! Stand in
the laboratory frame and look at the cube with one eye
as the cube passes overhead. What one sees at any
time is light that enters the eye at that time, even if it
left the different corners of the cube at different times.
Hence, what one sees visually may not be the same as
what one observes using a latticework of clocks. If the
cube is viewed from the bottom then the distance GO
is equal to the distance HO, so light that leaves G and
H simultaneously will arrive at O simultaneously.
Hence, when one sees the cube to be overhead one will
see the Lorentz contraction of the bottom edge.

a Light from E that arrives at O simultaneously
with light from G will have to leave E earlier than
light from G left G. How much earlier? How far has
the cube moved in this time? What is the value of the
distance x in the right top figure?

b Suppose the eye interprets the projection in the
figures as a rotation of a cube that is not Lorentz
contracted. Find an expression for the angle of appar-
ent rotation ¢ of this uncontracted cube. Interpret
this expression for the two limiting cases of cube speed
in the laboratory frame: v —> 0 and v — 1.

¢ Discussion question: Is the word ‘“‘really”
an appropriate word in the following quotations?
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Location of cube
derived from
lattice clocks

m
0]
oL

1
© HT X —J\“ — V)2

(] - Vz)nz_/

Assume that
} this distance

is much greater
than 1 meter

To
observer's
eye
o, y
Position of "
observer's eye (1 —v2)'2

EXERCISE 3-17. Lef?: Position of eye of visual observer watching cube pass overbead. Right top: What the

visual observer sees as she looks up from below. Right bottom: How the visual observer can interpret the

projection of the second figure.

(1) An observer using the rocket latticework of What can one rightfully say—in a sentence or
clocks says, ‘“The stationary cube is really nei-  two— to make each observer think it reasonable that
ther rotated nor contracted.” the other observers should come to different conclu-

(2) Someone riding in the rocket who looks at the  sions?
stationary cube agrees, ‘“The cube is really nei- d The analysis of parts b and ¢ assumes that the
ther rotated nor contracted.” visual observer looks with one eye and has no depth

(3) An observer using the laboratory latticework  perception. How will the cube passing overhead be
of clocks says, ‘“The passing cube is really Lor-  perceived by the viewer with accurate depth percep-
entz contracted but not rotated.” tion?

(4) Someone standing in the laboratory frame Reference: For a more complete treatment of this topic, see Edwin F.
looking at the passing cube says, “The cube is Taylor, Introductory Mechanics (John Wiley and Sons, New York,
really rotated but not Lorentz contracted.” 1963), pages 346—360.
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SPECIAL TOPIC

LORENTZ TRANSFORMATION

L.1 LORENTZ TRANSFORMATION:
USEFUL OR NOT?

related events or lonely events?

Events, and che intervals berween events, define the layour of the physical world. No
laccicework of clocks there! Only events and the relation berween event and event as
expressed in the interval. That's spacetime physics, lean and spare, as it offers itself to
us to meet the needs of industry, science, and understanding.

There's another way to express the same information and use it for the same
purposes: Set up a free-float latticework of recording clocks, or the essenrial rudiments
of such a latticework. The space and time coordinates of that Lorentz frame map each
event as a lonesome individual, with no mention of any connection, any spacetime
interval, to any other event.

This lactice-based method for doing spacetime physics has the advantage that it can
be mechanized and applied to event after event, wholesale. These regimented space
and time coordinates then acquire full usefulness only when we can translate them
from the clock-lattice frame used by one analyst to the dock-lattice frame used by
another,

This scheme of translacion has acquired the name “Lorentz transformation.” Its
usefulness depends on the user. Some never need it because they deal always with
intervals. Others use it frequently because it regiments records and standardizes
analysis. For their needs we insert this Special Topic on the Lorentz transformation.
The reader may wish to read it now, or skip it alcogether, or defer it until after Chaprer
4, 5, ot 6. The later the better, in our opinion. =~
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Events and intervals only:
Spacetime lean and spare

Or isolated events described
using latticework

Lorentz transformation:
Translate event description
from lattice to lattice
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Velocities do not add

Events define velocities

SPECIAL TOPIC LORENTZ TRANSFORMATION

L.2 FASTER THAN LIGHT?

a reason to examine the Lorentz transformation
No object travels faster than light.

So YOU say, but watch ME: I travel in a rocket that you observe to move at 4/5 light speed. Out
the front of my rocket 1 fire a bullet that 1 observe to fly forward at 4/5 light speed. Then you
measure this bullet to streak forward at 4/5 + 4/5 = 8/5 = 1.6 light speed, which is greater
than the speed of light. There!

No!

Why not? Is it not true that 4/5 + 4/5 = 1.6?

As a mathematical abstraction: always true. As a description of the world: only
sometimes true! Example 1: Add 4/5 liter of alcohol to 4 /5 liter of water. The resule?
Less than 8/5 = 1.6 liter of liquid! Why? Molecules of water interpenetrate molecules
of alcohol to yield a combined volume less that the sum of the separate volumes.
Example 2: Add the speed you measure for the bullet (4/5) to the speed I measure for
your rocket (4/5). The resule? The speed I measure for the bullet is 40/41 =0.9756.
This remains less than the speed of light.

Why? And where did you get that number 40/41 for the bullet speed you measure?

I got the number from the Lorentz transformation, the subject of this Special Topic.
The Lorentz transformation embodies a central fearure of relacivity: Space and time
separations typically do not have the same values as observed in different frames.
Space and time separations between whar?

Between events.

What events are we talking about here?

Event 1: You fire the bullet out the front of your rocket. Event 2: The bullet strikes a
target ahead of you.

What do these events have to do with speed? We are arguing about speed!

Let the bullet hic the rarget four meters in front of you, as measured in your rocket.
Then the space separation between event 1 and event 2 is 4 meters. Suppose the time
of flight is 5 meters as measured by your clocks, the time separation between the two
events. Then your bullet speed measurement is (4 meters of distance) /(5 meters of
time) = 4/5, as you said.

And whar do YOU measure for the space and time separations in your laboratory frame?

For that we need the Lorentz coordinate transformation equations.
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Phooey! 1 know how to reckon spacetime separations in different frames. We have been doing it for
several chapters! From measurements in one frame we figure the spacetime interval, which has the
same value in all frames. End of story.

No, not the end of the stoty, but at least its beginning. True, the invariant interval has
the same value as derived from measurements in every frame. That allows you to
predict the time between firing and impact as measured by the passenger riding on the
bullet—and measured directly by the bullet passenger alone.

Predict how?

You know your space separation x” = 4 meters (primes for rocket measurements), and
your time separation, £ = 5 meters. You know the space separation for the bullet
rider, x”” = 0 (double primes for bullet measurements), since she is present at both the
firing and the impact. From this you can use invatiance of the interval to determine the
wristwatch time between these events for the bullet rider:

@2 = ("2 =) — ()
or
)2 — (0)2 = (5 meters)? — (4 meters)? = (3 meters)?

so that # = 3 meters. This is the proper time, agreed on by all observers but measured
directly only on the wristwatch of the bullet rider.

Fine. Can't we use the same procedure to determine the space and time separations between these
events in your laboratory frame, and thus the bullet speed for you?

Unfortunately not. We do reckon the same value for the interval. Use unprimed
symbols for laboratory measurements. Then #2 — x2 = (3 meters)?. That, however, is
not sufficient to determine x or # separately. Therefore we cannot yet find their ratio
x/¢, which determines the bullet’s speed in our frame.

S0 how can we reckon these x and t separations in your laboratory frame, theveby allowing us to
predict the bullet speed you measure?

Use the Lorentz transformation. This transformation reports that our laboratory space
separation between firing and impact is x = 40/3 meters and the time separation is
slightly greater: + = 41/3 meters. Then bullet speed in my laboratory frame is
predicted to be v = x/t = 40/41 = 0.9756. The resules of our analysis in three
reference frames are laid out in Table L-1.

Is the Lorentz transformation generally useful, beyond the specific task of reckoning speeds as
measured in different frames?

Oh yes! Generally, we insert into the Lorentz transformation the coordinates x’, #’ of an
event determined in the rocket frame. The Lorentz transformation then grinds and
whirs, finally spitting out the coordinates x, # of the same event measured in the
laboratory frame. Following are the Lorentz transformation equations. Here v, is the
relative velocity between rocket and laboratory frames. For our convenience we lay the
positive x-axis along the direction of motion of the rocket as observed in the laboratory
frame and choose a common reference event for the zero of time and space for both
frames.
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Interval: Only a start in
reckoning spacetime separations
in different frames

Need more to compare velocities
in different frames

Compare velocities using
Lorentz transformation
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Lorentz transformation previewed

Lorentz transformation: Useful
but not fundamental

Two foundations of
Lorentz transformation

SPECIAL TOPIC LORENTZ TRANSFORMATION

CTARIE LIS
TABLELT>

HOW FAST THE BULLET?

Bullet fired Bullet hits Speed of bullet
(coordinates (coordinates (computed from
of this event) of this event) frame coordinates)
Rocket frame x =0 x = 4 meters as measured
(moves at 7,4 = 4/5 =0 ¢ =5 meters in rocket frame:
as measured in laboratory) v =4/5=0.8
Bullet frame =0 =0 as measured
(moves at v/ = 4/5 = t” = 3 meters in bullet frame:
as measured in rocket) (from invariance V=0
of the interval)
Laboratory frame x=0 x = 40/3 meters as measured
t=0 t = 41/3 meters in laboratory frame:
(from Lorentz v=40/41 = 0.9756
transformation)
Aty
(1 —ov2)12
Vg X + 1
(1= sz)¥2

y=y and 2=z

Check for yourself that for the impact event of bullet with target (rocket coordi-
nates: ' = 4 meters, ¥’ = 5 meters; rocket speed in laboratory frame: v, = 4/5) one
obtains laboratory coordinates x = 40/3 meters and ¢ = 41 /3 meters. Hence v = x/¢
= 40/41 = 0.9756.

You say the Lorentz transformation is general. If it is so important, then why is this a special topic
rather than a regular chapter?

The Lorentz transformation is powerful; it brings the technical ability to transform
coordinates from frame to frame. It helps us predict how to add velocities, as outlined
here. It describes the Doppler shift for light (see the exercises for this chapter). On the
other hand, the Lorentz transformation is not fundamental; it does not expose deep
new features of spacetime. But no matter! Physics has to get on with the world’s work.
One uses the method of describing separation best suited to the job at hand. On some
occasions the useful fact to give about a luxury yacht is the 50-meter distance between
bow and stern, a distance independent of the direction in which the yacht is headed.
On another occasion it may be much more important to know that the bow is 30
meters east of the stern and 40 meters north of it as observed by its captain, who uses
North-Star north.

What does the Lorentz transformation vest on? On what foundations is it based?

On two foundations: (1) The equations must be linear. That is, space and time
coordinates enter the equations to the first power, not squared or cubed. This resules
from the requirement that you may choose any event as the zero of space and time.
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(2) The spacetime interval between two events must have the same value when
computed from laboratory coordinate separations as when reckoned from rocket
coordinate separations.

Allright, I'll veserve judgment on the validity of what you claim, but show me the derivation itself.

Read on! =~

L.3 FIRST STEPS

Recall that the coordinates y and z transverse to the direction of relative motion
between rocket and laboratory have the same values in both frames (Section 3.6):

- =

7=y
z=y (t-1)

where primes denote rocket coordinates. A second step makes use of the difference in
observed clock rates when the clock is at rest or in motion (Section 1.3 and Box 3-3).
Think of a sparkplug at rest at the origin of a rocket frame that moves with speed v,
relative to the laboratory. The sparkplug emits a spark at time #" as measured in the
rocket frame. The sparkplug is at the rocket origin, so the spark occurs ac x” = 0.
Where and when (x and #) does this spark occur in the laboratory? That depends on
how fast, 7,4, the rocket moves with respect to the laboratory. The spark must occur at
the location of the sparkplug, whose position in the laboratory frame is given by

X = Ut
Now the invariance of the interval gives us a relation between ¢ and ¢',
FR=WPR= P = (=g =R =i =9}
from which

Y =1(l— )\

or

tf

§ e [when x' =0] (L-2)
(1 = p2)'2

The awkward expression 1/(1 — »2,)!/2 occurs often in what follows. For simplic-
ity, this expression 1s given the symbol Greek lower-case gamma: .

1

(1 —v2)2

¥

Because it gives the ratio of observed clock rates, y is sometimes called the time
stretch factor (Section 5.8). Strictly speaking, we should use the symbol ¥, since
the value of y is determined by #,,. For simplicity, however, we omit the subscript in
the hope that this will cause no confusion. With this substitution, equation (L-2)
becomes

=9y [when x'=0] (L-3)
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Lorentz transformation:
Linear equations

Arbitrary event as reference event?
Then Lorentz transformation
must be linear.

SPECIAL TOPIC LORENTZ TRANSFORMATION

Substitute this into the equation x = v, t above to find laboratory position in terms of
rocket measurements:

x=uv [when x'=0] (L-4)

Equations (L-1), (L-3), and (L-4) give the first answer to the question, ““If we know
the space and time coordinates of an event in one free-float frame, whar are its space
and time coordinates in some other overlapping free-float frame?”” These equations are
limited, however, since they apply only to a particular situation: one in which both
events occur at the same place (x” = 0) in the rocket. =~

L.4 FORM OF THE LORENTZ
TRANSFORMATION

What general form does the Lorentz transformation have? It has che form chat
mathematicians call a linear transformation. This means that laboratory coordi-
nates x and ¢ are related to linear (first) power of rocket coordinates x” and #* by
equations of the form

t= Bx" + D¢t
x=Gx' + HY (1-5)

where our task is to find expressions for the coefficients B, D, G, and H that do not
depend on eicher the laboratory or the rocket coordinates of a particular event, though
they do depend on the relative speed 7.

Why must these transformarions be linear? Because we are free to choose any event
as our reference event, the common origin x = y =z =t = in all reference frames. Let
our rocket sparkplug emic the flashes at #” = 1 and 2 and 3 meters. These are equally
spaced in rocket time. According to equation (L-3) these three events occur at
laboratory times 7 = 1y and 2y and 3) meters of time. These are equally spaced in
laboratory time. Moving the reference event to the first of these events still leaves them
equally spaced in time for both observers: #” =0 and 1 and 2 meters in the rocket and #
= ( and 1y and 2y in the laboratory.

In contrast, suppose that equation (L-3) were not linear, reading instead # = K¢'?,
where K is some constant. Rocket times = 1 and 2 and 3 meters result in laboratory
times # = 1K and 4K and 9K meters. These are not equally spaced in time for the
laboratory observer. Moving the reference event to the first event would result in
rocket times # = 0 and 1 and 2 meters as before, but in this case laboratory times =0
and 1K and 4K meters, with a completely different spacing. But the choice of reference
event is arbitrary: Any event is as qualified to be reference event as any other. A clock
that runs steadily as observed in one frame must run steadily in the other, independent
of the choice of reference event. We conclude that the relation berween #and # must be
a linear one. A similar argument requires that events equally separated in space in the
rocket must also be equally separated in space as measured in the laboratory. Hence
the Lorentz transformation must be linear in both space and time coordinates. <=~



L.5 COMPLETING THE DERIVATION

Equations (L-3) and (L-4) provide coefficients D and H called for in equation (L-5):

t= Bx' + p
x=Gx' + vyt (1-6)

About the two constants B and G we know nothing, for an elementary reason. All
events so far considered occured at point x” = 0 in the rocket. Therefore the two
coefficients B and G could have any finite values whatever without affecting the
numerical results of the calculation, To determine B and G we turn our attention from
an x” = 0 event to a more general event, one that occurs at a point with arbitrary rocket
coordinates x” and #’. Then we demand that the spacetime interval have the same
numerical value in laboratory and rocket frames for any event whatever:

12— 2= {2 — x?
Substitute expressions for ¢ and x from equation (L-6):
(Bx' + pt'? —(Gx' + gyt = t'2 — x?
On the left side, muldiply out the squares. This leads to the rather cambersome result
B? x’2 + 2Byx’t + y2'2 — G2 — 2Guyx't — vt =12 — x"?

Group together coefficients of #'2, coefficients of x"2, and coefficients of the cross-term
x’t’ to obtain

YL — v2)F2 + 20B — v4G) 'Y — (G* — B2 =r2—x2 N

Now, ¢’ and x” can each take on any value whatsoever, since they represent the
coordinates of an arbitrary event. Under these circumstances, it is impossible to satisfy
equation (L-7) with a single choice of values of Band G unless they are chosen in a very
special way. The quantities Band G must first be such as to make the coefficient of x”#”
on the left side of equation (L-7) vanish as it does on the right:

29(B — 1,4G) =0
But y can never equal zero. The value of y = 1/(1 — #2,)'/? equals unity when 7,4, =0

and is greater than this for any other values of 7,,. Hence the left side of this equation
can be zero only if

(B—24G)=0 or B=y,G (L-8)

Second, B and G must be such as to make the coefficient of x"2 equal on the left and
right of equation (L-7); hence

G~ =1 -9
Substitute B from equation (L-8) into equation (L-9):

G — (1 G =1 or G¥(l1—vy)=1
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The Lorentz transformation
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Divide through by (1 — #2,) and take the square root of both sides:

1
(1 —v2'?

But the right side is just the definition of the time stretch factor P, so that
G=y
Substitute this into equation (L-8) to find B:
B=u_y
These results plus equations (L-1) and (L-6) yield the Lorentz transformation equa-

tions:

t =gy + 9y

x=yx" + o,y (L-10a)
y=y
z=2

or, substituting for the value of gamma, y = 1/(1 — v2)"2

vaux’ + 7
(1—92)'2
' T 4
x=—

(l J— vlzd)lfz

y=y and z=z2

(L-10b)

!

In summary, the Lorentz transformation equations rest fundamentally on the
required linearity of the transformation and on the invariance of the spacetime
interval. Invariance of the interval was used twice in the derivation. First, we examined
a pair of events both of which occur at a the same fixed location in the rocket, so that
rocket time between these events— proper time, wristwatch time — equals the space-
time interval between them (Section L.3). Second, we demanded that the interval also
be invariant between every possible event and the reference event (the present section).

-

L.6 INVERSE LORENTZ
TRANSFORMATION

from laboratory event coordinates, reckon
rocket coordinates

Equations (L-10) provide laboratory coordinates of an event when one knows the
rocket coordinates of the same event. But suppose that one already knows the
laboratory coordinates of the event and wishes to predict the coordinates of the event
measured by the rocket observer. Whar equations should be used for this purpose?

An algebraic manipulation of equations (L-10) provides the answer. The first two
of these equations can be thought of as two equations in the two unknowns x” and #’.
Solve for these unknowns in terms of the now-knowns x and 7. To do this, multiply
both sides of the second equation by 7, and subtract corresponding sides of the
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resulting second equation from the first. Terms in x” cancel to yield

tf
t—vgx =7y — oyt =y(1 =)’ = % ¢ = ;

Here we have used the definition 2 = 1/(1 — v2,). The equation for ¢’ can then be
written

¥V =—yuyx+p

A similar procedure leads to the equation for x”. Multiply the first of equations (L-10)
by 2,4 and subtract corresponding sides of the first equation from the second — try it!
The y and z components are respectively equal in both frames, as before. Then the
inverse Lorentz transformation equations become

VY =—yuyx+

X =Y =yt (t-11a)
y=y

=z

Or, substituting again for gamma, y = 1/(1 — »2)V%

(1 — v2)'2
X~ Uy 4

x'= (L-11b)

(1—ovQ)\2
 —

Y=y ad 2=z

Equations (L-11) transform coordinates of an event known in the laboratory frame to
coordinates in the rocket frame,

A simple but powerful argument from symmetry leads to the same resule. The symmetry
argument is based on the relative velocity between laboratory and rocket frames. With
respect to the laboratory, the rocket by convention moves with known speed in the
positive x-direction. With respect to the rocker, the laboratory moves with the same speed
but in the opposite direction, the negative x-direction. This convention about positive and
negative directions—not a law of physics!—is the only difference between laboratory
and rocket frames that can be observed from either frame. Lorentz transformation
equations must reflece this single difference. In consequence, the “inverse” (laboratory-
to-rocket) transformation can be obtained from the "“direct” (rocket-to-laboratory)
transformation by changing the sign of relative velocity, ¢y, in the equatons and
interchanging laboratory and rocket labels (primed and unprimed coordinates). Carrying
out this operation on the Lorentz transformation equations (L-10) yields the inverse
transformation equations (L-11). s~

L.7 ADDITION OF VELOCITIES

add light velocity to light velocity: get light
velocity!

The Lorentz transformation permits us to answer decisively the apparent contradiction
to special relativity outlined in Section L.2, namely the apparent addition of velocities
to yield a resultant velocity greater than that of light.
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Long derivation of inverse
Lorentz transformation

Inverse Lorentz transformation

Short derivation of inverse
Lorentz transformation
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. - I travel 1n a rocket that you observe to move at 4[5 light speed. Out the front of my rocket 1 fire a
Return to velocity “dd'g“ bullet that I observe to fly forward at 4/5 light speed. Then you measure this bullet to streak
paradox o ward at 4/5+4/5 = 8/5 = 1.6 light speed, which is greater than the speed of light. There!

SAMPLE PROBLEM L-1
TRANSFORMING OVER AND BACK (&7

A rocket moves with speed 7,4 =0.866 (soy=2) 10 meters, y’ = 7 meters, 2’ = 3 meters, and ¢/ =
along the x-direction in the laboratory. In the 20 meters of light-travel time with respect to the
rocket frame an event occurs at coordinates x’ =  reference event.

a. What are the coordinates of the event as observed in the laboratory?

b. Transform the laboratory coordinates back to the rocket frame to verify that the
resulting coordinates are those given above.

SOLUTION

a. Wealready know from Section 3.6 —as well as from the Lorentz transformation,
equation (L-10)— that coordinates transverse to direction of relative motion are
equal in laboratory and in rocker. Therefore we know immediately that

y =1y =7 meters
z =2z = 3 meters

The x and # coordinates of the event as observed in the laboratory make use of the
firsc two equations (L-10):

= v,d?x' + ]’!' = (0.866)(2)(10 meters) + (2)(20 meters)
= 17.32 + 40 = 57.32 meters

and

x=px + vq P’ = 2(10 meters) + (0.866)(2)(20 meters)
= 20 + 34.64 = 54.64 meters

So the coordinates of the event in the laboratory are # = 57.32 meters, x = 54.64
meters, y = 7 meters, and z = 3 meters.

b. Use equation (L-11) ro transform back from laboratory to rocket coordinates.

t = —vqyx + yt = —(0.866)(2)(54.64 meters) + (2)(57.32 meters)
= —94.64 + 114.64 = 20.00 meters

and

X = Px — vy Pt = 2(54.64 meters) — (0.866)(2)(57.32 meters)
= 109.28 — 99.28 = 10.00 meters

as given in the original statement of the problem.
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To analyze this experiment, convert statements about the bullet to statements about
events, since event coordinates are what the Lorentz transformation transforms. Event
1 is the firing of the gun, event 2 the arrival of the bullet at the target. The Lorentz
transformation equations can give locations x,, #; and x,, #, of these events in the
laboratory frame from their known locations x”,, #/; and x”, , #/, in the rocket frame. In
particular:

X, = chz: + vyt
— /7
X, = Px% + 22V

Subtract corresponding sides of these two equations:
G, = x) =P (&, — &) o P, — 1)

We are interested in the differences between the coordinates of the two emissions.
Indicate these differences with the Greek uppercase delta, A, for example Ax. Then
this x-equation and the corresponding #-equation become

Ax = YAx" + v yAY
Ar =y yAx" + yAY (L-12)

The subscript “‘rel” distinguishes relative speed between laboratory and rocket frames
from other speeds, such as particle speeds in one frame or the other.

Bullet speed in any frame is simply space separation between two events on its
trajectory measured in that frame divided by time between them, observed in the same
frame. In the special case chosen, only the x-coordinate needs to be considered, since
the bullet moves along the direction of relative motion. Divide the two sides of the first
equation (L-12) by the corresponding sides of the second equation to obtain labora-
tory speed:

Ax _ YAX + v YAt

At v PAX + YAY

Then the time stretch factor Y cancels from the numerator and denominator on the
right. Divide every term in numerator and denominator on the right by A#’.

Ax _ (AX'/AY) + vy
Ar oy (Ax'/AY) + 1

Now, Ax’/A¢’ is just distance covered per unit time by the particle as observed in
the rocket, its speed —call it ¢/, with a prime. And Ax/A¢ is particle speed in the
laboratory — call it simply ». Then (reversing order of terms in the denominator to
give the result its usual form) the equation becomes

v+ oy

1}:_——
/
1+ 2y,

(L-13)

This is called the Law of Addition of Velocities in one dimension. A better name is
the Law of Combination of Velocities, since velocities do not “‘add’” in the usual
sense. Using the Law of Combination of Velocities, we can predict bullet speed in the
laboratory. The bullet travels at 2 = 4/5 with respect to the rocket and the rocket
moves at v, = 4/5 with respect to the laboratory. Therefore, speed v of the bullet

(continued on page 110)
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Incremental event separations
define velocities

Law of Addition of Velocities
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SAMPLE PROBLEM L-2
‘“‘ET TU, SPACETIME!"’

LORENTZ TRANSFORMATION

Julius Caesar was murdered on March 15 in the
year 44 B.C. at the age of 55 approximately 2000
years ago. Is there some way we can use the laws of
relativity to save his life?

Let Caesar’s death be the reference event, la-
beled 0: x,= 0, #,= 0. Event A is you reading this
exercise. In the Earth frame the coordinates of
event A are x, = 0 light-years, 7, = 2000 years.
Simultaneous with event A in your frame, Starship

« firecracker: event B. The Enterprise moves along
a straight line in space that connects it with Earth.
Andromeda is 2 million light-years distant in our
frame. Compared with this distance, you can ne-
glect the orbit of Earth around Sun. Therefore, in
our frame, event B has the coordinates x5 = 2 X
106 light-years, £z = 2000 years. Take Caesar’s
murder to be the reference event for the Enterprise
too (x, =0, ¢’ =0).

Enterprise cruising the Andromeda galaxy sets off

a. How fast must the Enterprise be going in the Earth frame in order that Caesar’s
murder is happening NOW (that is, #5” = 0) in the Enterprise rest frame? Under
these circumstance is the Enterprise moving toward or away from Earth?

b. Ifyou are acquainted with the spacetime diagram (Chapter 5), draw a spacetime
diagram for the Earth frame that displays event O (Caesar’s death), event A (you
reading this exercise), event B (firecracker exploding in Andromeda), your line of
NOW simultaneity, the position of the Enterprise, the worldline of the Enter-
prise, and the Enterprise NOW line of simultaneity. The spacetime diagram need
not be drawn to scale.

c. In the Enterprise frame, what are the x and 7 coordinates of the firecracker

explosion?
d. Can the Enterprise firecracker explosion warn Caesar, thus changing the course of
Earth history? Justify your answer.
SOLUTION

a. From the statement of the problem,

xg = 2 X 106 light-years
tg = 2000 years

x/=0 x,=0

¢/ =0 14 = 2000 years
We want the speed 2, of the Enterprise such that 25" = 0. The first two Lorentz
transformation equations (L-10) with z5" = 0 become

— r
Ip = VU PXp
p— !
Xg = Yxp

We do not yet know the value of x5”. Solve for 7, by dividing the two sides of the
first equation by the respective sides of the second equation. The unknown x5
drops out (along with 9), and we are left with 2, in terms of the known quantities
tg and xg:

This is the desired speed 2, between Earth and Enterprise frames. This veloaty is
a positive quantity, so the Enterprise moves in the positive x-direction, namely
away from Earth.
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Surprised to see a speed given as the ratio of a time separation to a space
separation: 7g/xg? Then realize that xz and 75 are not displacements of any
particle. Nothing can travel the distance xg in the time #g, as discussed in d. The
goal here is to find a frame in which Caesar’s death and the firecracker explosion
are simultaneous. For this limited purpose the rocket speed v, = #5/xp is correct.

Why is the relative velocity v, so small compared with the speed of light?
Because of the latge denominator xp in the equation that leads to this value.
Consider the string of Earth clocks stretching toward Andromeda when all Earth
clocks read zero time (Caesar’s death). Enterprise clocks read (from equations
L-11 with #= 0) as follows: #' = — v, Vx. This is an example of the relativity of
simultaneity (Section 3-4). The farther the x-distance from Earth, the earlier will
Enterprise clock read. With x = 2 million light-years, the relative speed v,y does
not have to be large to carry Enterprise time back 2000 years for Earth.

Enterprise sets ment of
in Andromeda.  worldline

You read this exercise. /
1 AL Earth line of simultaneity I
fime [ e B
| Comendech e : h;;ohn'n“‘“’“mw
o i

Earth spacetime diagram, showing events 0, A, and B. Not to scale.

¢. We need the value of gamma, y, for the inverse Lorentz transformation equation
(L-11). This value is very close to unity, and from it come 75’ and x5’

N 1 B 1 4108
BT A L R S s
ty = — v Pxgt Yip=pP—10"2 X 2 X 105+ 2 X 103
=p—2 X 10*+ 2 X 10%) = 0 years
xg = Pxg — vqPtp = P2 X 105 — 1073 X 2 X 103) = 2(1 — 1079) 10¢
= 2(1 + E)u — 1079106 = 2(1 " il w_u) 106
2 2 2
=~ 1.999999 X 10° light-years.

7

We chose the relative velocity so that the time of the firecracker explosion as
observed in the rocket is the same as the time of Caesar’s death, namely 5" = 0.
The x-coordinate of this explosion is not much different in the two frames because
their relative velocity is so small.

d. There exists a frame — the rest frame of the Enterprise — in which Caesar's death
and the firecracker explosion occur at the same time. In this frame a signal
connecting the two events would have to travel at infinite speed. But this is
impossible. Therefore the Enterprise cannot warn Caesar; his death is final. Sorry.
(Note: In the language of Chapter 6, the relation between the two events is
spacelike, and spacelike events cannot have a cause—effect relationship.)
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A material object traveling faster than light? Nol If one
did, we could violate the normal order of cause and
effect in a million testable ways, totally contrary to all
experience. Here we investigate one example, making
use of Lorentz transformation equations.

The Peace Treaty of Shalimar was signed four years
before the Great Betrayal. So pivotal an event was the
Great Betrayal that it was taken as zero of space and
time.

By the Treaty of Shalimar, the murderous Klingons
agreed to stop attacking Federation outposts in return
for access to the Federation Technical Database. Fed-
eration negotiators left immediately after signing the
Shalimar Treaty in a ship moving at 0.6 light speed.

J photons and debris

Great

Klingon (“laboratory”) spacetime diagram. The Klingon worldline is
the vertical time axis. The Treaty of Shalimay is followed four years later by
the Great Betrayal (event 0) at which Klingons launch the Super, which moves
at three times light speed. Traveling from left to right, the Super passes one
Federation colony (event 1) and then another (event 2). Finally the Super
destroys the retreating ship of Federation negotiators (event 3).

LORENTZ TRANSFORMATION

WHY NO THING TRAVELS FASTER THAN LIGHT

Within four years the Klingons used the Federation
Technical Database to develop a faster-than-light pro-
jectile, the slaughtering Super. On that dark day of
Great Betrayal (reference event 0), the Klingons
launched the Super at three times light speed toward
the retreating Federation ship.

Two Federation space colonies lay between the Klin-
gons and the point of impact of the Super with the Fed-
eration ship. A lonely lookout at the first colony wit-
nessed with awe the blinding passage of the Super
(event 1). Later many citizens of the second colony
gaped as the Super demolished one of their communi-
cation structures (event 2) and zoomed on. Both colo-
nies desperately sent warnings toward the Federation
ship, but to no avail since the Super outran the radio
signals.

Finally, at event 3, the Super overtook and destroyed
the Federation ship. All Federation negotiators were
lost in a terrible flash of light and scattering of debris. A
long dark period of renewed warfare began.

But wait! Look again at events of the Great Betrayal, this
time from the point of view of the Federation rocket
ship. Where and when does the Great Betrayal occur in
this frame? The Great Betrayal is the **hinge of history,"’
the reference event, the zero of space and time coordi-
nates for all laboratory and rocket frames.

Where and when does the Super explode (event 3) in
this rocket frame? In the Klingon “laboratory’ frame,
event 3 has coordinates x3 = 3 light-years and t; = 1
year. Use the inverse Lorentz transformation equations
to find the location of event 3 in the rocket frame of the
Federation negotiators. Calculate the time stretch fac-
tor y using speed of the Federation rocket, v,,; = 0.6,
with respect to the Klingon frame:

_ 1 _ 1 _ 1
T =" [1—(0.622 [1—0.36]'"2

Y

= —=—=1.25
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T Great
/ Betrayal photons and
} 0 } t debris : 1
i, X
Super
1 3
Federation
| negotiators
Klingons
i Shalimar

“Rocket” spacetime diagram of departing Federation negotiators. In
this frame their destruction comes first (event 3), followed by the passage of the
Super from right to left past Federation colonies in reverse order (event 2
followed by event 1). Finally, the Super enters the Klingon launcher without
doing further damage (event 0). The Great Betrayal has become the Great
Confusion of Cause and Effect.

Substitute these values into equations (L-11) to reckon
the rocket coordinates of event 3:

fls = T Viel)X3 + Yfa
= —(0.6)(1.25)(3 years) + (1.25)(1 year)
=—2.25years + 1.25 years = —1 year
X'3 = VX3 ~ Veailts
= (1.25)(3 years) — (0.6)(1.25)(1 year)
= 3.75 years — 0.75 year = 3 years

Event 3 is plotted in the rocket diagram and the world-
line of the Super drawn by connecting event 3 with the
launching of the Super at event 0. Notice that this
worldline slopes downward to the right. More about
the significance of this in a minute.

In a similar manner find the rocket coordinates of the
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treaty signing at Shalimar (subscript Sh), which has lab-

oratory coordinates xg, = 0 and ty, = —4 years:
t'sh =~ VealVXsh T Vsp
= —(0.6)(1.25)(0 years) + (1.25)(— 4 years)
= —5 years

X'sh = PXsh — VreiVtsh
= (1.25)(0 years) — (0.6)(1.25)(— 4 years)
=+3 years

In the Federation (rocket) spacetime diagram, the
worldline of Federation negotiators extends from
treaty signing at Shalimar vertically to explosion of the
Super (event 3). The worldline of the Klingons extends
from Shalimar diagonally through the launch of the
Super at event 0.

In the Federation spacetime diagram, the worldline for
the Super tilts downward to the right. In this frame
deaths of Federation negotiators (event 3) occur at a
time '3 = minus 1 year, that is, before the treacherous
Klingons launch the Super at the event of Great Be-
trayal (reference event 0). From the diagram one would
say that the Super moves with three times light speed
from Federation ship toward the Klingons. This seems to
be verified by the fact that in this frame the Super
passes Federation colonies in reverse order, event 2
followed by event 1, going in the opposite direction.
Yet Federation negotiators have created no such terri-
ble weapon and in fact are destroyed by it at the mo-
ment they are supposed to launch it, as proved by the
flying photons and debris. More: Klingons suffer no
damage from the mighty impact of the slaughtering
Super (event 0). Rather, in this frame it enters their
launching cannon mild as a lamb.

What have we here? A confusion of cause and effect, a
confusion that cannot be straightened out as long as we
assume that the Super— or any other material object
—travels faster than light in a vacuum.

Why does no signal and no object travel faster than
light in a vacuum? Because if either signal or object did
so, the entire network of cause and effect would be
destroyed, and science as we know it would not be
possible.
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relative to the laboratory comes from the expression

Velocity addition paradox = 45+4/5 _  8/5 _ 85 _4
resolved 1+ @4/5)4/5) 1+16/25 41725 41

Thus the bullet moves in the laboratory at a speed less than light speed.

As a limiting case, suppose that the “‘bullet”” shot out from the front of the rocket is,
in fact, a pulse of light. Guess: What is the speed of this light pulse in the laboratory?
Here is the calculated answer. Light moves with respect to the rocket at speed ¢/ = 1
while the rocket continues along at a speed 2,4 = 4/5 with respect to the laboratory.
The light then moves with respect to the laboratory at speed v:

Light speed is invariant, == 1+4/5 _9/5
as expected. 1+ (1)@/5)  9/5

So light moves with the same speed in both frames, as required by the Principle of
Relativity. Question: Is this true also when a light pulse is shot out of the rear of the
rocket? e

SAMPLE PROBLEM L-3
THE FIRING MESON

A K° (pronounced "'K-naught”) meson atrestina  respect to which the K° meson travels at a speed of
rocket frame decays into &+ (“pi plus”) meson 2,4 = 0.9. What is the greatest speed that one of
and a 7~ (“pi minus”) meson, each having a  the 7T mesons can have with respect to the labora-
speed of v = 0.85 with respect to the rocket. Now  tory? What is the least speed?

consider this decay as observed in a laboratory with

SOLUTION

Let the speeding K°-meson move in the positive x-direction in the laboratory. In the
rocket frame, daughter 71-mesons come off in opposite directions. Their common line of
motion can, however, be oriented arbitrarily in this frame. The maximum speed of a
daughter 77-meson in the laboratory results when it is emitted in the forward x-direction.
For such a meson, the law of addition of velocities gives

_Vtea 085+09 _ 173
1+(0.85)0.9) 1.765

= 0.9915

v

max )+ oy

Thus adding a speed of 0.85 to a speed of 0.9 does not yield a resulting speed greater than
1, light speed.

The slowest laboratory speed for a daughter meson occurs when it is emitted in the
negative x-direction in the rocket frame. In this case the velocity of the daughter meson is
negative and the law of addition of velocities becomes a law of subtraction of velocities:

_—V 4o,  —08+09 _ 005

fme o v, 1—(0.85(09) 0.235

=0.2128

Although the minimum-speed meson moves to the left in the rocket, it moves to the right
in the laboratory because of the very great speed of the original K°-meson in the
laboratory.
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1.8 SUMMARY

Given the space and time coordinates of an event with respect to the reference event in
one free-float frame, the Lorentz coordinate transformation equations tell us
the coordinates of the same event in an overlapping free-float frame in relative motion
with respect to the first. The equations that transform rocket coordinates (primed
coordinates) to laboratory coordinates (unprimed coordinates) have the form

_ v H
(1 — )2
= P Y
A—ei )7

y=y and z=1z2

t

(L-10b)

s
where v, stands for relative speed of the two frames (rocket moving in the positive

x-direction in the laboratory). The inverse Lorentz transformation equations
transform laboratory coordinates to rocket coordinates:

i —yax+¢
(]_”fa)m
;. X" Uqgt
X —w (L-11b)

Y=y ad =z

in which v, is treated as a positive quantity. In both these sets of equations, coordi-
nates of events are measured with respect to a reference event. It is really only the
difference in coordinates between events that matter, for example x, — x, = Ax for any
two events 1 and 2, not the coordinates themselves. This is important in deriving the
Law of Addition of Velocities.

The Law of Addition of Velocities or Law of Combination of Velocities in
one dimension follows from the Lorentz transformation equations. This law tells us the
velocity v of a particle in the laboratory frame if we know its velocity ¢ with respect to
the rocket and relative speed v,y between rocket and laboratory,

e
P -1
1+v’9m‘| (L-13)

-

REFERENCE

Sample Problem L-3, The Firing Meson, was adapted from A. P. French, Special
Relativiry (W.W. Norton, New York, 1968), page 159.
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A SUPER-SPEED SUPER?

SPECIAL TOPIC EXERCISES

PRACTICE

L-1 a super-speed super?

Take two more steps in the parable of the Great
Betrayal (Box L-1).

a Find the speed of a new rocket frame moving
relative to the Klingon frame such that the Super
travels at 6 times the speed of light in this new frame.
Hint: Examine the coordinates x” and #’ of event 3 in
the new frame. The ratio of these two, x’/¢’, is the
speed of the Super in this frame. We know the coor-
dinates of event 3 in the Klingon frame. There-
fore . . .

b Find the speed of yet another rocker frame,
relative to the Klingon frame, such that the Super
travels with infinite speed in this frame. Hint: What
does infinite speed imply about the time #” between
events 0 and 3 in this new frame?

L-2 a bad clock

Note: This exercise uses spacetime diagrams, intro-
duced in Chapter 5.

A pulse of light is reflected back and forth between
mirrors A and B separated by 2 meters of distance in
the x-direction in the Earth frame, as shown in the
figure (left). A swindler tells us that this device con-
stitutes a clock that “ticks” every time the pulse
arrives at either mirror.

The swindler claims that events 1 through 6 are
sequential ‘‘ticks”” of this clock (center). However, we
notice that the ticking of the dock is uneven in a
rocket frame moving with speed v, in the Earth
frame (right). For example, there is less time between
events 0 and 1 than between events 1 and 2 as mea-
sured in the rocket frame.

a What is the physical basis for the “bad” be-
havior of this clock? Use the Lorentz transformation

4
3
time 2 B
A 1
—)‘-: 2 meters }4—
0
mirror A | | #—— mirror B — space ——= —— space ——»
light
| pulse EARTH FRAME ROCKET FRAME

EXERCISE L-2. Lef?: Horizontal light-pulse clock as observed in the Earth frame. Center: Spacetime diagram showing worldlines of mirrors
A and B and the “uniformly ticking"’ light pulse as observed in the Earth frame. Right: Time lapses between sequential ticks of the light-pulse

clock are not uniform as observed in the rocket frame.
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equations to account for the uneven ticking of this
clock in the rocket frame.

b Use some of the same events O through 4 to
define a “‘good’” clock that ticks evenly in both the
laboratory frame and the rocket frame. From the
spacetime diagrams, show qualitatively that your
good clock “‘runs slow’” as observed from the rocket
frame — as it must, since the clock is in motion with
respect to the rocket frame.

¢ Explain why the clock of Figure 1-3 in the text
isa “‘good”” clock.

L-3 the Galilean transformation

a Use everyday, nonrelativistic Newtonian ar-
guments to derive transformation equations between
reference frames moving at low relative velocities.
Show that the result is
'conv Lsec (Newtonian: v,,,, << ¢c) (1)
sec — Fsec (Newtonian: v,,, <<¢c)  (2)
where 7, is time measured in seconds and v, is
speed in conventional units (meters/second for exam-
ple). List the assumptions you make in your deriva-
tion.

b Convert equations (1) and (2) to measure time
¢ in meters and unitless measure of relative velocity,
Vet = Veon/ . Show the results are:

/

X =X " Vgt (Newtonian: v<<1)  (3)

Y= (Newtonian: v<<1)  (4)
Do the new units make these equations correct at
high relative velocity between frames?
¢ Use the first two terms in the binomial expan-
sion to find a low-velocity approximation for y in the
Lorentz transformation.

pm ==z
(= o272 o 2

Show that this expression differs from unity by less
than one percent provided v is less than 1/7. A sports
car can accelerate uniformly from rest to 60 miles/
hour (about 27 meters/second) in 7 seconds.
Roughly how many days would it take for the sports
car to reach v = 1/7 at the same constant accelera-
tion?

d Set y = 1in the Lorentz transformation equa-
tions. Show that the resulting “‘low-velocity Lorentz
transformation” is

LIMITS OF NEWTONIAN MECHANICS
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[—

X =X T U (Lorentz: v<<1)  (5)

4

' =—vux+1t {Lorentz: v<<1)  {6)

What is the difference between the time transfor-
mations for the ‘“Newtonian low-velocity limit” of
equation (4) and the “‘Lorentz low-velocity limit’” of
equation (6)? How can they both be correct? The term
—v,% does not depend on any time lapse, but only on
the separation x of the event from the laboratory
origin. This term is due to the difference of synchroni-
zation of clocks in the two frames.

e In each of the following cases a laboratory
clock (measuring #) at a distance x from the origin as
measured in the laboratory frame is compared with a
passing rocket clock (measuring #’). Say whether or
not the time difference # — # = v,x can be detected
using wristwatches (accuracy of 107! second = 3 X
107 meters of light-travel time) and using modern
electronic clocks (accuracy of 1072 second = 0.3
meter of time).

(1} Sports car traveling at 100 kilometers/hour
(roughly 30 meters/second) located 1000
kilometers down the road from the origin as
measured in the Earth frame.

(2) Moon probe traveling at 30,000 kilometers/
hour passing Moon, 3.8 X 10> kilometers
from the origin on Earth as measured in the
Earth frame.

(3) Distance from origin on Earth at which space
probe traveling at 30,000 kilometers/hour
leads to detectable time difference between
rocket wristwatch and adjacent Earth-linked
latticework clock. Compare with Earth—Sun
distance of 1.5 X 10! meters.

f Summarize in a sentence or two the conditions
under which the regular Galilean transformation
equations (3) and (4) will lead to correct predictions.

L-4 limits of Newfonian
mechanics

Use the particle speed v, = 1/7 (Exercise L-3) as an
approximate maximum limit for the validity of
Newtonian mechanics. Determine whether or not
Newtonian mechanics is adequate to analyze motion
in each of the following cases, following the example.

Example: Satellite circling Earth at 30,000
kilometers/hour = 18,000 miles/hour. Answer:
Light moves at a speed 7,,, = (3 X 10° kilometers/
second) X (3600 seconds/hour) = 1.08 X 10°
kilometers/hour. Therefore the speed of the satellite
in meters/meter is v = v, /c = 2.8 X 107, This
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is much less than v, = 1/7, so the Newtonian de-
scription of satellite motion is adequate.

a Earth circling Sun at an orbital speed of 30
kilometers /second.

b Electron circling a proton in the orbit of small-
est radius in a hydrogen atom. Discussion: The
classical speed of the electron in the inner orbit of an
atom of atomic number Z, where Z is the number of
protons in the nucleus, is given, for low velocities, by
the expression v = Z/137. For hydrogen, Z = 1.

¢ Electron in the inner orbit of the gold atom, for
which Z = 79.

d  Electron after acceleration from rest through a
voltage of 5000 volts in a black-and-white television
picture tube. Discussion: We say that this electron
has a kinetic energy of 5000 electron-volts. One elec-
tron-volt is equal to 1.6 X 1072 joule. Try using the
Newtonian expression for kinetic energy.

e Electron after acceleration from rest through a
voltage of 25,000 volts in a color television picture
tube.

f A proton or neutron moving with a kinetic
energy of 10 MeV (million electron-volts) in a nu-
cleus.

PROBLEMS

A sparkplug at rest in the rocket emits light with a
frequency f” pulses or waves per second. What is the
frequency fof this light as observed in the laboratory?
Let this train of waves (or pulses) of light travel in the
positive x-direction with speed ¢, so that in the course
of one meter of light-travel time, f/¢ of these pulses
pass the origin of the laboratory frame. It is under-
stood that the zeroth or ““fiducial’’ crest or pulse passes
the origin at the zero of time —and that the origin of
the rocket frame passes the origin of the laboratory
frame at this same time.

a Show that the x-coordinate of the zth pulse or
wave crest is related to the time of observation ¢ (in
meters) by the equation

n=(f/c)@ — x)

b The same argument, applied in the rocket
frame, leads to the relation

n=(f"/o)¢" — x’)

Express this rocket formula in laboratory coordi-
nates x and ¢ using the Lorentz transformation.
Equate the resulting expression for f” to the labora-

DOPPLER SHIFT

tory formula for fin terms of x and # to derive the
simple formula for fin terms of /” and v, , the relative
speed of laboratory and rocket frames.

+ o\
f=(—i_;l) f

¢ Now observe a wave moving along the nega-
tive x-direction from the same source at rest in the
rocket frame. Show that the frequency of the wave
observed in the laboratory frame is

— 1= v 1/2/
f_(l‘l-z/,,,) /

d Astronomers define the redshift z of light
from a receding astronomical object by the formula

[wave moves in
positive x-direction]

[wave moves in
negative x-direction]

JSemic — Jfobs

Jobs

Here £, is the frequency of the light measured in
the frame in which the emitter is at rest and V,, the
frequency observed in another frame in which the
emitter moves directly away from the observer.

The most distant quasar reported as of 1991 has a
redshift z = 4.897. With what fraction of the speed
of light is this quasar receding from us?

Reference: D. P. Schneider, M Schmidt, and J E. Gunn, Astronomi-
cal Journal, Volume 102, pages 837-840 (1991)

z=

L-6 transformation of angles

a A meter stick lies at rest in the rocket frame
and makes an angle ¢’ with the x’-axis. Laboratory
observers measure the x- and y-projections of the stick
as it streaks past. What values do they measure for
these projections, compared with the x’- and y’-pro-
jections measured by rocket observers? Therefore
what angle ¢ does the same meter stick make with
the x-axis of the laboratory frame? What is the length
of the “meter stick” as obsetved in the laboratory
frame?

b Make the courageous assumption that the di-
rections of electric-field lines around a point charge
transform in the same way as the directions of meter
sticks that lie along these lines. (Electric field lines
around a point charge are assumed to be infinite in
length, so the length transformation of part a does not
apply.) Draw qualitatively the electric-field lines due
to an isolated positive point charge at rest in the rocket
frame as observed in (1) the rocket frame and (2) the
laboratory frame. What conclusions follow concern-
ing the time variation of electric forces on nearby
charges at rest in the laboratory frame?



EXERCISE L-10

L-7 transformation of y-velocity

A particle moves with uniform speed v, = Ay’ /A¢’
along the y’-axis of the rocket frame. Transform Ay’
and A#’ to laboratory displacements Ax, Ay, and Az
using the Lorentz transformation equations. Show
that the x-component and the y-component of the
velocity of this particle in the laboratory frame are
given by the expressions

=,

v rel

x

v, = v,/(1 — vf'/?

L-8 transformation of velocity
direction

A particle moves with velocity #” in the x”y” plane of
the rocket frame in a direction that makes an angle ¢’
with the x’-axis. Find the angle ¢b that thar velocity
vector of this particle makes with the x-axis of the
laboratory frame. (Hint: Transform space and time
displacements rather than velocities.) Why does this
angle differ from that found in Exercise L-6 on trans-
formation of angles? Contrast the two results when
the relative velocity between the rocket and laboratory
frames is very great.

L-9 the headlight effect

A flash of light is emitted at an angle ¢’ with respect
to the x’-axis of the rocket frame.

a Show that the angle ¢ the direction of motion
of this flash makes with respect to the x-axis of the
laboratory frame is given by the equation

b= cos @' + vy
s 1+ v,y cos ¢

i

— J—x

LABORATORY FRAME

EXERCISE L-10. Left: Meter stick moving transverse to its length as observed in the laboratory frame.

Right: Meter stick as observed in rocket frame.
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b Show that your answer to Exercise L-8 gives
the same result when the velocity »” is given the value
unity.

¢ A particle at rest in the rocket frame emits light
uniformly in all directions. Consider the 50 percent of
this light that goes into the forward hemisphere in the
rocket frame. Show that in the laboratory frame this
light is concentrated in a narrow forward cone of
half-angle ¢b, whose axis lies along the direction of
motion of the particle. The half-angle ¢, is the solu-
tion to the following equation:

cos b, = vy

This result is called the headlight effect.

L-10 the tilted meter stick
Note: This exercise uses the results of Exercise L-7.

A meter stick lying parallel to the x-axis moves in
the y-direction in the laboratory frame with speed v,
as shown in the figure (left).

a In the rocket frame the stick is tilted upward in
the positive x’-direction as shown in the figure
(right). Explain why this is, first without using equa-
tions.

b Let the center of the meter stick pass the point
x=y=x" =y =0attimes =t = 0. Calculate
the angle ¢b” at which the meter stick is inclined to the
x’-axis as observed in the rocket frame. Discussion:
Where and when does the right end of the meter stick
cross the x-axis as observed in the laboratory frame?
Where and when does this event of right-end crossing
occur as measured in the rocket frame? What is the
direction and magnitude of the velocity of the meter
stick in the rocket frame (Exercise L-7)? Therefore
where is the right end of the meter stick at #* =0,
when the center is at the origin? Therefore . . .

ROCKET FRAME
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L-11 the rising manhole
Note: This exercise uses the results of Exercise L-10.

A meter stick lies along the x-axis of the laboratory
frame and approaches the origin with velocity v,4. A
very thin plate parallel to the xz laboratory plane
moves upward in the y-direction with speed v, as
shown in the figure. The plate has a circular hole with
a diameter of one meter centered on the y-axis. The
center of the meter stick arrives at the laboratory
origin at the same time in the laboratory frame as the
rising plate arrives at the plane y = 0. Since the meter
stick is Lorentz-contracted in the laboratory frame it
will easily pass through the hole in the rising plate.
Therefore there will be no collision between meter
stick and plate as each continues its motion. However,
someone who objects to this conclusion can make the
following argument: “‘In the rocket frame in which
the meter stick is at rest the meter stick is not con-
tracted, while in this frame the hole in the plate is
Lorentz-contracted. Hence the full-length meter stick
cannot possibly pass through the contracted hole in
the plate. Therefore there must be a collision between
the meter stick and che plate.” Resolve this paradox
using your answer to Exercise L-10. Answer unequiv-
ocally the question, Will there be a collision between
the meter stick and the plate?

Reference: R Shaw, American Journal of Physics, Volume 30, page
72 (1962).

L-12 paradox of the
skateboard and the grid

A girl on a skateboard moves very fast, so fast that the
relativistic length contraction makes the skateboard
very short. On the sidewalk she has to pass over a grid.
A man standing at the grid fully expects the fast short
skateboard to fall through the holes in the grid. Yet to
the fast girl her skateboard has its usual length and it
is the grid that has the relativistic contraction. To her

EXERCISE L-11. Wi/l the “‘meter stick” pass
through the “‘one-meter-diameter” hole with-
out collision?

THE RISING MANHOLE

the holes in the grid are much narrower than to the
stationary man, and she certainly does not expect her
skateboard to fall through them. Which person is
correct? The answer hinges on the relativity of rigidity.

Idealize the problem as a one-meter rod sliding
lengthwise over a flat table. In its path is a hole one
meter wide. If the Lorentz contraction factor is ten,
then in the table (laboratory) frame the rod is 10
centimeters long and will easily drop into the one-
meter-wide hole. Assume that in the laboratory frame
the meter stick moves fast enough so that it remains
essentially horizontal as it descends into the hole (no
“tipping”’ in the laboratory frame). Write an equa-
ton in the laboratory frame for the moton of the
bottom edge of the meter stick assuming that 7 =
t" = 0 at the instant that the back end of the meter
stick leaves the edge of the hole. For small vertical
velocities the rod will fall with the usual acceleration
£. Note that in the laboratory frame we have assumed
that every point along the length of the meter stick
begins to fall simultaneously.

In the meter stick (rocket) frame the rod is one
meter long whereas the hole is Lorentz-contracted toa
10-centimeter width so that the rod cannot possibly
fit into the hole. Moreover, in the rocket frame differ-
ent parts along the length of the meter stick begin to
drop ac different times, due to the relativity of simul-
taneity. Transform the laboratory equations into the
rocket frame. Show that the front and back of the rod
will begin to descend at different times in this frame.
The rod will “droop’” over the edge of the hole in the
rocket frame— that is, it will not be rigid. Will the
rod ultimately descend into the hole in both frames? Is
the rod really rigid or nonrigid during the experiment?
Is it possible to derive any physical characteristics of
the rod (for example its flexibility or compressibility)
from the description of its motion provided by rela-
tivity?

Reference: W. Rindler, American Journal of Physics, Volume 29,
page 365-366 (1961).




EXERCISE L-13

L-13 paradox of the identically
accelerated twins

Note: This exercise uses spacetime diagrams, intro-
duced in Chapter 5.

Two identical twins, Dick and Jane, own identical
spaceships each containing the same amount of fuel.

Jane’s ship is initially positioned a distance to the right,

of Dick’s in the Earth frame. On their twentieth
birthday they blast off at the same instant in the Earth
frame and undergo identical accelerations to the right
as measured by Mom and Dad, who remain at home
on Earth. Mom and Dad further observe that the
twins run out of fuel at the same time and move
thereafter at the same speed ». Mom and Dad also
measure the distance between Dick and Jane to be the
same at the end of the trip as at the beginning.

Dick and Jane compare the ships’ logs of their
accelerations and find the entries to be identical.
However when both have stopped accelerating, Dick
and Jane, in their new rest frame, discover that Jane is
older than Dick! How can this be, since they have an
identical history of accelerations?

a Analyze a simpler trip, in which each spaceship
increases speed not continuously but by impulses, as
shown in the first spacetime diagram and the event
table. How far apart are Dick and Jane at the begin-
ning of their trip, as observed in the Earth frame?
How far apart are they at the end of their accelera-
tions? What is the final speed » (not the average
speed) of the two spaceships? How much does each
astronaut age along the worldline shown in the dia-
gram? (The answer is not the Earth time of 12 years.)

b  The second spacetime diagram shows the two
worldlines as recorded in a rocket frame moving with
the final velocity of the two astronauts. Copy the
figure. On your copy extend the worldlines of Dick
and Jane after each has stopped accelerating. Label
your figure to show that Jane stopped accelerating
before Dick as observed in this frame. Will Dick age
the same between events 0 and 3 in this frame as he
aged in the Earth frame? Will Jane age the same
between events 4 and 7 in this frame as she aged in the
Earth frame?

¢ Now use the Lorentz transformation to find
the space and time coordinates of one or two critical
events in this final rest frame of the twins in order to
answer the following questions

(1) How many years earlier than Dick did Jane
stop accelerating?

(2) What is Dick’s age at event 3? (not the rocket
time ¢ of this event!)

PARADOX OF THE IDENTICALLY ACCELERATED TWINS
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(38) What is Jane's age at event 7?

(4) What is Jane’s age at the same time (in this
frame) as event 3?

(5) What are the ages of Dick and Jane 20 years
after event 3, assuming that neither moves
again with respect to this frame?

(6) How far apart in space are Dick and Jane when
both have stopped accelerating?

(7) Compare this separation with their initial (and
final!) separation measured by Mom and Dad
in the Earth frame.

d Extend your results to the general case in which
Mom and Dad on Earth observe a period of identical
continuous accelerations of the two twins.

(1) At the two start-acceleration events (the two
events at which the twins start their rockets),
the twins are the same age as observed in the
Earth frame. Are they the same age at these
events as observed in every rocket frame?

(2) At the two stop-acceleration events (the two
events at which the rockets run out of fuel), are
the twins the same age as observed in the Earth
frame? Are they the same age at these events as
observed in every rocket frame?

(3) The two stop-acceleration events are simulta-
neous in the Earth frame. Are they simulta-
neous as observed in every rocket frame? (No!)
Whose stop-acceleration event occurs first as
observed in the final frame in which both twins
come to rest? (Recall the Train Paradox, Sec-
tion 3.4.)

(4) ““When Dick stops accelerating, Jane is older
than Dick.” Is this statement true according to
the astronauts in their final rest frame? Is the
statement true according to Mom and Dad in
the Earth frame?

Criticize the lack of -clarity (swindle?) of the
word when in the statement of the problem:
“However when both have stopped accelerat-
ing, Dick and Jane, in their new rest frame,
discover that Jane is older than Dick!”

(5

—

e Suppose that Dick and Jane both accelerate to
the left, so that Dick is in front of Jane, but their
history is otherwise the same. Describe the outcome of
this trip and compare it with the outcome of the
original trip.

f Suppose that Dick and Jane both accelerate in
a direction perpendicular to the direction of their
separation. Describe the outcome of this trip and
compare it with the outcome of the original trip.
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EXERCISE L-13

PARADOX OF THE IDENTICALLY ACCELERATED TWINS

Earth Frame Observations

Event Xx-position Time

number (light years) (years)
0 0 0
1 1 4
2 3 8
3 6 12
4 12 0
5 13 4
6 15 8
7 18 12

EARTH FRAME

Jane

ROCKET FRAME

EXERCISE L-13. Top: Worldlines of Dick and Jane as observed in the Earth frame of Mom and Dad.
Bottom: Worldlines of Dick and Jane as observed in the ‘‘final’’ rocket frame in which both Dick and Jane

come to rest after burnout.

Discussion: Einstein postulated that physics in a
uniform gravitational field is, locally and for small
particle speeds, the same as physics in an accelerated
frame of reference. In this exercise we have found that
two accelerated clocks separated along the direction of
acceleration do not remain in synchronism as observed
simultaneously in their common frame. Rather, the
forward clock reads a later time (“‘runs faster’’) than
the rearward clock as so observed. Conclusion from
Einstein’s postulate: Two clocks one above the other

in a uniform gravitational field do not remain in
synchronism; rather the higher clock reads a later time
(“‘runs faster’’) than the lower clock. General relativ-
ity also predicts this result, and experiment verifies it.
(Read about the patrol plane experiment in Section
4.10.)

Reference. S P Boughn, American Journal of Physics, Volume 57,
pages 791-793 (September 1989). Reference to general relativity
result: Wolfgang Rindler, Essential Relativity (Springer, New York,
1977), pages 17 and 117.



EXERCISE L-14

L-14 how do rods Lorentz-
contract?

Note: Calculus is used in the solution to this exercise;
so is the formula for Lorentz contraction from Section
5.8.

Laboratory observers measure the length of a mov-
ing rod lying along its direction of motion in the
laboratory frame. Then the rod speeds up a little.
Again laboratory observers measure its length, which
they find to be a little shorter than before. They call
this shortening of length Lorentz contraction. How
did this shortening of length come about? As happens
so often in relativity, the answer lies in the relativity of
simultaneity.

First, how much shortening takes place when the
rod changes from speed v to speed v + dv? Let L, be
the proper length of the rod when measured at rest. At
speed v its laboratory-measured length L will be
shorter than this by the Lorentz contraction factor
(Section 5.8):

L=(1—v)L,

a Using calculus, show that when the rod speeds
up from v to a slightly greater speed v + dv, the
change in length 4L is given by the expression

AL = — Lvdv
(1 — p2)2

The negative sign means that the change is a shorten-

ing of the rod. We want to explain this change in

length.

How is the rod to be accelerated from v to » + dv?
Fire a rocket attached to the rear of the rod? No. Why
not? Because the rocket pushes only against the rear of
the rod; this push is transmitted along the rod to the
front at the speed of a compression wave — very slow!
We want the front and back to change speed ‘“‘at the
same time"’ (exact meaning of this phrase to be deter-
mined later). How can this be done? Only by
prearrangement! Saw the rod into a thousand equal
pieces and tap each piece in the forward direction with
a mallet “‘at exactly 12 noon” as read off a set of
synchronized clocks. To simplify things for now, set
aside all but the front and back pieces of the rod. Now
tap the front and back pieces “‘at the same time.” The
change in length of the rod 4L is then the change in
distance between these two pieces as a result of the
tapping. So much for how to accelerate the “rod.”

Now the central question: What does it mean to
tap the front and back pieces of the rod ““at the same
time”’? To answer this question, ask another: What is
our final goal? Answer: To account for the Lorentz
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contraction of a fast-moving rod of proper length L, .
More: We want a careful inspector riding on the
fast-moving rod to certify that it has the same proper
length L, as it did when it was at rest in the laboratory
frame. To achieve this goal, the inspector insists that
the pair of accelerating taps be applied to the front
and back rod pieces at the same time iz the current rest
frame of the rod. Otherwise the distance between these
pieces would not remain the same in the frame of the
rod; the rod would change proper length. [ Notice that
in Exercise L-13 the taps occur at the same time in the
laboratory (Earth) frame. This leads to results differ-
ent from those of the present exercise.}

b You are the inspector riding along with the
front and back pieces of the rod. Consider the two
events of tapping the front and back pieces. How far
apart Ax’ are these events along the x-axis in your
(rocket) frame? How far apart A¢’ in time are these
events in your frame? Predict how far apart in time A¢
these events are as measured in the laboratory frame.
Use the Lorentz transformation equation (L-10):

Ar = v yAx’ + yAr

The relative velocity v, in equation (L-10) is just »,
the current speed of the rod. In the laboratory frame is
the tap on the rear piece earlier or later than the tap on
the front piece?

Your answer to part b predicts how much earlier
the laboratory observer measures the tap to occur on
the back piece than on the front piece of the rod. Let
the tap increase the speed of the back end by dv as
measured in the laboratory frame. Then during labo-
ratory time Az the back end is moving at a speed dv
faster than the front end. This relative motion will
shorten the distance between the back and front ends.
After time interval At the front end receives the iden-
tical tap, also speeds up by 4v, and once again moves
at the same speed as the back end.

¢ Show that the shortening dL predicted by this
analysis is

AL = —dvAt = —yAx"vdv = —vyL dv
_' Lvdv
(1 — p2)l2

which is identical to the result of part a, which we
wanted to explain. QED.

d Now start with the front and back pieces of the
rod at rest in the laboratory frame and a distance L,
apart. Tap them repeatedly and identically. As they
speed up, be sure these taps take place simultaneously
in the rocket frame in which the two ends are currently
at rest. (This requires you, the ride-along inspector, to
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resynchronize your rod-rest-frame clocks after each set
of front-and-back taps.) Make a logically rigorous
argument that after many taps, when the rod is mov-
ing at high speed relative to the laboratory, the length
of the rod measured in the laboratory can be reckoned
using the first equation given in this exercise.

e Now, by stages, put the rod back together.
The full thousand pieces of the rod, lined up but not
touching, are all tapped identically and at the same
time in the current rest frame of the rod. One set of
taps increases the rod’s speed from v to v + dv in the
laboratory frame. Describe the time sequence of these
thousand taps as observed in the laboratory frame. If
you have studied Chapter 6 or the equivalent, answer
the following questions: What kind of interval —
timelike, lightlike, or spacelike—separates any pair
of the thousand taps in this set? Can this pair of taps
be connected by a light flash? by a compression wave
moving along the rod when the pieces are glued back
together? Regarding the “logic of acceleration,” is
there any reason why we should 7oz glue these pieces
back together? Done!

f During the acceleration process is the reglued
rod rigid —unchanging in dimensions — as observed
in the rod frame? As observed in the laboratory frame?
Is the rigidity property of an object an invariant, the
same for all observers in uniform relative motion?
Show how an ideal rigid rod could be used to transmit
signals instantaneously from one place to another.
What do you conclude about the idea of a “rigid
body”” when applied to high-speed phenomena?
Reference: Edwin F Taylor and A. P French, American Journal of

Physics, Volume 51, pages 889—-893, especially the Appendix
(1983)

L-15 the place where both agree

Atany instant there is just one plane in which both the
laboratory and the rocket clocks agree.

a Byasymmetry argument, show that this plane
lies perpendicular to the direction of relative motion.
Using the Lorentz transformation equations, show
that velocity of this plane in the laboratory frame is
equal to

1
vy =— {1 = (1 —2v)"%
Veel

b Does the expression for v,—,, seem strange?
From our everyday experience we might expect that
by symmetry the “‘plane of equal time”” would move
in the laboratory at half the speed of the rocket. Verify
that indeed this is correct for the low relative velocities
of our everyday experience. Use the first two terms of

THE PLACE WHERE BOTH AGREE

the binomial expansion
(1+2)"=1+nzfor|z| << 1

to show that for low relative velocity, v,—, = v,4/2.

¢ Whatis v, for the extreme relativistic case in
which v, — 17 Show that in this case v,—, is com-
pletely different from v, /2.

d Suppose we want to go from the laboratory
frame to the rocket frame in two equal velocity jumps.
Try a first jump to the plane of equal laboratory and
rocket times. Now symmetry does work: Viewed
from this plane the laboratory and rocket frames
move apart with equal and opposite velocities, whose
magnitude is given by the equation in part a. A
second and equal velocity jump should then carry us
to the rocket frame at speed v, with respect to the
laboratory. Verify this directly by using the Law of
Addition of Velocities (Section L.7) to show that

V= + Vimy

'l/l.el -
14+ v,,0,o,

L-16 Fizeav experiment

Light moves more slowly through a transparent ma-
terial medium than through a vacuum. Let v equm
represent the reduced speed of light measured in the
frame of the medium. Idealize to a case in which this
reduced velocity is independent of the wavelength of
the light. Place the medium at rest in a rocket moving
at velocity v, to the right relative to the laboratory
frame, and let light travel through the medium, also
to the right. Use the Law of Addition of Velocities
(Section L.7) to find an expression for the velocity » of
the light in the laboratory frame. Use the first two
terms of the binomial expansion

(1+2)*=1+nzfor|z]| << 1

to show that for small relative velocity ,, between the
rocket and laboratory frames, the velocity v of the
light with respect to the laboratory frame is given
approximately by the expression

v= Vmedum + yrel(l - ymcdlumz)

This expression has been tested by Fizeau using
water flowing in opposite directions in the two arms of
an interferometer similar (but not identical) to the
interferometer used later by Michelson and Morley
(Exercise 3-12).

Reference: H. Fizeau, Comptes rendus, Volume 33, pages 349-355
(1851) A fascinating discussion (in French) of some central themes
in relativity theory — delivered more than fifty years before Einstein’s
first relativity paper



CHAPTER 1

TRIP TO CANOPUS

4.1 INVITATION TO CANOPUS

" » . i
is one lifetime enough?

Approximately ninety-nine light-years from Earth lies the star Canopus. The Space
Agency asks us to visit it, photograph it, and return home with our records

““But that's impossible,” we object. *“We have only a little over forty more years to
live. We can spare at most twenty years for the outward trip, and twenty years for the
recurn trip. Even if we could cravel at the speed of light, we would need ninety-nine
years merely to ger chere.”

We are greeted with a smile and a cheery, ““Think about our request a lictle longer,
won't you?"' s

4.2 STRIPPED-DOWN FREE-FLOAT
FRAME

Troubled thoughts fill us tonight. We dream about invariance of the spacetime
interval (Chapter 3). In our dream we find ourselves aboard the rocket used to
establish that result (Section 3.7). However, the numbers somehow have changed
from meters of distance and meters of light-travel time to light-years of distance and
years of time. Suddenly we see things in a new perspective. Three revelations crowd in
on us.
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Retain a single string of
Earth-linked clocks

Speed: Measure distance and time
in same frame

CHAPTER 4 TRIP TO CANOPUS

The flash of light that got reflected did its work—revelatdon number one—in
establishing the identity of the spacetime interval as measured in either of the two
frames. We can remember invariance of the interval and forget about the reflected
flash. Eliminating it, we eliminate mirror, photodetector and, most of all, those
upward-extended arrays of printout clocks in rocket and laboratory frames whose only
purpose was to track the light flash.

The economy goes further. For us aboard the rocket, one reliable calendar clock is
enough. As we start our trip from Earth in our dream, that clock by a happy
coincidence shows noon on the Fourth of July, 2000 A.D.—and so do clocks at the
Space Agency Center on Earth. We celebrate our start by setting off a firecracker.

Later by 6 years— for us—and with a long shipboard program of research and
study already completed, our rocket clock—still in our dreams—tells us it is again
noon on the Fourth of July and we set off a second firecracker. At that very instant,
thanks to the particular speed we had chosen for our rocket relative to Earth, we are
passing Lookout Station Number 8. Lonely lighthouse, it has in it little more than a
sentry person and a printout clock, one of a series that we have been passing on our
trip. They have been stationed out in space, fixed one light-year apart according to
Earth measurements. Each clock is calibrated and synchronized to the reference clock
on Earth using a reference flash as described in Section 2.6. The laboratory latticework
of Figure 2-6 has been reduced to a single rightward-stretching string of lookout
stations and their clocks. That we can thus simplify our vision of what is going on from
three space dimensions to one is our first revelation. we—

4.3 FASTER THAN LIGHT?

choose your frame. then measure velocif

Revelation number two strikes us as—still dreaming— we pass Lookout Station
Number 8, 8 light-years from Earth: What speed! We glance out of our window and
see the lookout station clock print out “Fourth of July 2010 A.D."” — 10 years later
than the Earth date of our departure. Our rocker clock reads 6 years. We are not
shocked by the discrepancy in times for, apart from the change in scale from meters of
light-travel time to years, the numbers are numbers we have seen before. Nor are we
astonished at the identity of the spacetime interval as evaluated in the two very
different frames. What amazes us is our speed. Have we actually covered a distance of
8 light-years from Earth in a time of 6 years? Can this mean we have traveled faster
than light?

We have often been told that no one and no object can go faster than light. Yet here
we are — in our dream — doing exactly that. Speed, yes, we suddenly say to ourselves,
but speed in which frame? Ha! What inconsistency! We took the distance covered, 8
light-years, in the Earth-linked laboratory frame, but the time to cover it, 6 years, in
the rocket frame!

At this point we recognize that we can talk about our speed in one reference frame or
our speed in the other frame, but we get nonsense when we mix together numbers
from two distinct reference frames. So we reform. First we pick for reference frame the
rocket. But then we get nothing very interesting, because we did not go anywhere with
respect to the rocket—we just stayed inside.

our speed
relative to

rocket frame

( distance we cover )
_ \with respect to rocket) _ (0 light-years) _

(time we take to cover) (6 years)
it in rocket frame




4.4 ALL OF SPACE IS OURS!

In contrast, our speed relative to the Earth-linked reference frame, the extended
laboratory, equals

g ( distance we cover )
our spee :  he
il gl vivlth respect to Earth/ _ (8 light-years) - 0.8 lighspesd
Farth frame ( time we take to ccwer) (10 years)
it in Earth frame

In other words we—and the rocket— travel, relative to Earth, at 80 percent of the
maximum possible speed, the speed of light. Revelation number two is our discovery
that speed in the abstract makes no sense, that speed has meaning only when referred
to a clearly stated frame of reference. Relative to such a frame we can approach
arbitrarily close to light speed but never reach it. e

4.4 ALL OF SPACE IS OURS!

T s 138 aalinnane o ppp———

Revelation number three strikes us as— dreaming on — we think more about passing
Earth-linked lookout stations. Moving at 80 percent of light speed, we travel 8
light-years in the Earth-linked frame in 6 years of our rocket time. Continuing at the
same rate will get us to Canopus in 74 years of our rocket time. Better than 99 years,
but not good enough.

Let's use—in imagination —a faster rocket! We suddenly remember the super-
rocket discussed in demonstrating the invariance of the spacetime interval (Section
3.8). Converting meters of distance and time to years, we realize that traveling in the
super-rocket would bring us to Earth-linked Lookout Station Number 20, 20 Earth-
frame light-years from Earth, in 6 years of our rocket time. When passing that station,
we can see thae station clock reads 20.88 years. Therefore in the Earth-linked frame
our super-rocket speed amounts to 20/20.88 = 0.958 light speed. Continuing at the
same speed would bring us to Canopus in 29.7 years of our rocket time. This is nearly
short enough to meet our goal of 20 years.

Revelation number three gives us a dizzying new sense of freedom. By going fast
enough we can get to Canopus in five minutes of our rocket time if we want! In fact, no
matter how far away an object lies, and no matter how short the time allotted to us,
nothing in principle stops us from covering the required distance in that time. We only
have to be quite careful in explaining this new-found freedom to our Space Agency
friends. Yes, we can go any distance the agency requires, however great, provided they
specify the distance in the Earth-linked reference frame. Yes, we can make it in any
nonzero time the agency specifies, however short, provided they agree to measure time
on the rocket clock we carry along with us.

To be sure, the Earth-linked system of lookout stations and printout clocks will
record us as traveling at less than the speed of light. Lookouts will ulimately complain
to the Space Agency how infernally long we take to make the trip. But when our Space
Agency friends quiz the lookouts a bit more, they will have to confess the truth: When
they look through our window as we shoot by station after station, they can see that our
clock reads much less than theirs, and in terms of our own rocket clock we are meeting
the promised time for the trip.

Our dream ends with sunlight streaming through the window. We lie there
savoring the three revelations: economy of description of two events in a reference
frame stripped down to one space dimension, speed defined always with respect to a
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specified reference frame and thus never exceeding light speed, and freedom to go
arbitrarily far in a lifedime. w=-

1,

4.5 FLIGHT PLAN

UK remosfe Gescenacnss

Wide awake now, we face yesterday's question: Shall we go to Canopus, 99 light-years
distant, as the Space Agency asks? Yes. And yes, we shall live to return and report.

We take paper and pencil and sketch our plan. The numbers have to be different
from those we dreamed about. Trial and error gives us the following plan: After a
preliminary run to get up to speed, we will zoom past Earth at 99/101=0.9802 light
speed. We will continue at that speed all the 99 light-years to Canopus. We will make
a loop around it and record in those few minutes, by high-speed camera, the features of
that strange star. We will then return at unaltered speed, flashing by our finish line
without any letup, and as we do so, we will toss out our bundle of records to colleagues
on Earth, Then we will slow down, turn, and descend quietly to Earth, our mission
completed.

The first long run takes 101 Earth years. We have already decided to travel at a
speed of 99/101, or 99 light-years of distance in 101 years of time. Going at that
speed for 101 Earth years, we will just cover the 99 light-years to Canopus. The return
trip will likewise take 101 Earth years. Thus we will deliver our records to Earth 202
Earth-clock years after the start of our trip.

Even briefer will be the account of our trip as it will be perceived in the free-float
rocket frame. Relative to the ship we will not go anywhere, either on the outbound or
on the return trip. But time will go on ticking away on our shipboard clock. Moreover
our biological clock, by which we age, and all other good clocks carried along will tick
away in concord with it. How much time will that rocket clock rack up on the
outbound trip? Twenty years. How do we know? We reach this answer in three steps.
First, we already know from records in the Earth-linked laboratory frame that the
spacetime interval — the proper time — between departure from Earth and arrival at
Canopus will equal 20 years:

Laboratory Laboratory
(interval)? = (time separation)? — (space separation)’
= (101 years)® — (99 years)?
= 10,201 years* — 9801 years?
= 400 years? = (20 years)®

Second, as the saying goes, “‘interval is interval is interval’’: The spacetime interval
is invariant between frames. The interval as registered in the rocket frame must
therefore also have this 20-year value. Third, in the rocket frame, separation between
the two events (departure from Earth and arrival at Canopus) lies all in the time
dimension, zero in the space dimension, since we do not leave the rocket. Therefore
separation in rocket time itself between these two events is the proper time and must
likewise be 20 years:

Rocket Rocket
(interval)? = (time separation)? — (space separation)?
= (time separation)? — (zero)?
= (rocket time)? = (proper time)?
= (20 years)?
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We boil down our flight plan to bare bones and take it to the Space Agency for
approval: Speed 99/101 = 0.9802 light speed; distance 99 light-years out, 99
light-years back; time of return to Earth 202 years after start; astronaut’s aging during
trip, 40 years. The responsible people greet the plan with enthusiasm. They thank us
for volunteering for a mission so unprecedented. They ask us to take our proposal
before the Board of Directors for final approval. We agree, not realizing what a
hornets' nest we are walking into.

The Board of Directors consists of people from various walks of life, set up by
Congress to assure that major projects have support of the public at large. The media
have reported widely on our proposal in the weeks before we meet with the board, and
many people with strong objections to relativity have written to voice their opinions. A
few have met with board members and talked to them at length. We are unaware of
this as we enter the paneled board room.

At the request of the chairman we summarize our plan. The majority appear to
welcome it. Several of their colleagues, however, object. e

4.6 TWIN PARADOX

“Your whole plan depends on relativity,” stresses James Fastlane, ‘‘but relativity is a
swindle. You can see for yourself that it is self-contradictory. It says that the laws of
physics are identical in all free-float frames. Very well, here’s your rocket frame and
here’s Earth frame. You tell me that identical clocks, started near Earth at identical
times, each in one of these free-float frames, will read very different time lapses. You
go away and return only 40 years older, while we and our descendants age 202 years.
But if there's any justice, if relativity makes any sense at all, it should be equally
possible to regard you as the stay-at-home. Relative to you, we speed away in the
opposite direction and return. Hence we should be younger than you when we meet
again. In contrast, you say you will be younger than we are. This is a flat contradiction.
Nothing could show more conclusively that neither result can be right. Aging is aging.
It is impossible to live long enough to cover a distance of 99 light-years twice— going
and coming. Forget the whole idea.”

“Jim,” we teply, “‘your description is the basis for the famous Twin Paradox, in
which one twin stays on Earth while the other takes the kind of round trip we have
been describing. Which ewin is older when they come together again? I would like to
leave this question for a minute and consider a similar trip across the United States.

“We all know, Jim, that every July you drive straight norch on Interstate Highway
35 from Laredo, Texas, on the Mexican border, to Duluth, Minnesota, near the
Canadian border. Your tires roll along a length of roadway equal to 2000 kilometers
and the odometer on your car shows it.

“I too drive from Laredo to Duluth, but last year I had to make a stop in Cincinnati,
Ohio, on the way. I drove northeast as straight as I could from Laredo to Cincinnadi,
1400 kilometers, and northwest as straight as I could from Cincinnati to Duluth,
another 1400 kilometers. Altogether, my tires rolled out 2800 kilometers. When we
left Laredo you could have said that my route was deviating from yours, and I could
have said with equal justice that yours was deviating from mine. The greac difference
between our travels is this, that my course has a shatp turn in it. That's why my
kilometerage is greater than yours in the ratio of 2800 to 2000.”

Fastlane interrupts: ““Are you telling me that the turn in the rocket trajectory at
Canopus explains the smaller aging of the rocket traveler? The turn in your trip to
Duluth made your travel distance longer, not shorter.”
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“Thar is the difference between path length in Euclidean space geometry and
wristwatch time in Lorentz spacetime geomeury,”” we reply. “'In Euclidean geometry
the shortest path length between two points is achieved by the traveler who does not
change direction. All indirect paths are longer than this minimum. In spacetime the
greatest aging between two events is experienced by the traveler who does not change
direction. For all travelers who change direction, the total proper time, the total
wristwatch time, the total aging is /ess than this maximum.

“The distinction between distance in Euclidean geometry and aging in spacetime
comes directly from the contrast between plus sign in the expression for distance
between two locations and minus sign in the expression for interval between two
events. In going to Duluth by way of Cincinnati I use the plus sign:

r—— northward \ 2 eastward \?
| _ | separation: separation:
((I:.fuefio “;.) Laredo to H Laredo to
T Cincinnati 1 Cincinnati

“Contrast this with motion in spacetime. In analyzing my trip to Canopus, I use the
minus sign:

proper time: \ ? rocket time: \ 2 Earth time: \ 2 Earth distance: \ 2
Earth to =1 Earthto = | Earthto = Earth to

Canopus Canopus Canopus Canopus

"“The contrast between a plus sign and a minus sign: This is the distinction between
distance covered during travel in space and time elapsed — aging — during travel in
spacetime.”’ =

4.7 LORENTZ CONTRACTION

go a shorter distance in a shorter time
As James Fastlane ponders this response, Dr. Joanne Short breaks in. ““The Twin
Paradox is not the only one you have to explain in order to convince us of the
correctness of your analysis. Look at the outward trip as observed by you yourself, the
rocket traveler. You reach Canopus after just 20 years of your time. Yet we know thar
Canopus lies 99 light-years distant. How can you possibly cover 99 light-years in 20
years?”’

“That is exactly what I dreamed about, Joanne!” we reply. ““First of all, it is
confusing to combine distances measured in one reference frame with time measured
in another reference frame. The 99-light-year distance to Canopus is measured with
respect to the Earth-linked frame, while the 20 years recorded on the ourward
traveler’s clock refers to the rocket frame. No wonder the result appears to imply a rate
of travel faster than lighc. Why not take what I paid for fuel for my car last week and
divide it by the number of gallons you bought today for yoxr car, to figure the cost of a
gallon of fuel? A crazy, mixed-up, wrong way to work out cost— but no crazier than
that way to figure speed!

“But your question about time brings up a similar question about distance: distance
between Earth and Canopus measured in the frame in which they are at rest does not
agree with the distance between them measured from a rocket that moves along the
line connecting them.
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“Any free-float frame is as good as any other for analyzing motion— that is the
Principle of Relativity! So think of the entire ourward trip in terms of rocket measure-
ments. At the starting gun (or firecracker) Earth is rushing past the rocket at speed
99/101. Twenty years later Canopus arrives at the rocket, Canopus also traveling at
that speed, 99/101 in that rocket frame. This means that for the rocket traveler the
Earth-Canopus distance is only about 20 light-years. In fact it is just the fraction
(99/101) of 20 light-years, so that at speed 99/101 this distance is covered in exactly
20 years.”

“Of course. We are dealing with Lorentz contraction,”” huffs Professor Bright,
who thinks any objection to relativity is a waste of time. He has no head for politics, so
does not appreciate how important it is for the public to accept the expenditures
proposed for this project.

He continues, “Think of a very long stick lying with one end at Earth, the other end
at Canopus. Each observer, with the help of colleagues, measures the position of the
two ends of this stick @ the same time in his or her frame. By this means the outward
rocket traveler measures a shorter length of the stick—a smaller Earth—Canopus
distance— than does an observer in the Earth-linked frame in which the stick lies at
rest.

“The factor by which the stick appears contracted in the rocket frame is just the
same as the ratio of rocket time to Earth time for the outward trip. This ratio is (20
years) /(101 years). Hence the rocket observer measures the Earth —Canopus distance
to be (99 light-years)(20/101) = 19.6 light-years—just a bit less than 20 light-
years, as you said.

“Everybody has a satisfactory picture: The astronaut can get to Canopus in 20 years
of rocket time because the astronaut’s measurements show Canopus to be slightly less
than 20 light-years distant. We on Earth agree thac the time lapse on the rocket clock is
20 years, but our ‘explanation’ rests on the invariance of the interval between the
events of departure from Earth and arrival at Canopus.” Professor Bright pounds the
table: ““Why are you giving this poor astronaut such a hard time, when relativity is so
utterly simple?”’ He is surprised by the outburst of laughter from other board
members and the audience in the room, -

4.8 TIME TRAVELER

vi

Laura Long has been thoughtfully following the argument. She comments, ““You
know, we have been discussing you as a space traveler. But you are a #ime traveler as
well. Do you realize that by traveling to Canopus and back at 99/101 of light speed,
you journey six generations forward in time: 202 years at 33 years per generation? So
you will be able to visit your great-great-great-great-great-grandchildren at a cost of
only 40 years of your life.”

“Yes, I did think of that,”” we reply. ““Time and space are not so different in this
respect. Just as we can travel to as great an Earth-linked distance as we want in as short
a rocket time as we want, so we can also travel as far forward into Earth’s future as we
wish.

“While I was trying various numbers in making up the proposed plan, I realized
that if we traveled not at 99/101 light speed but at 9999 /10,001 light speed, then a
round trip would take not 40 rocket years but only 3.96 rocket years and 198 Earth
years. Ten such round trips will age us 39.6 years and bring us back finally at an Earth
time about two thousand years in the future, or some year in the fortieth century. That
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is not six generations ahead, but sixty generations, an additional time equal to one
third of recorded history on Earch.”

“Why stop there?”’ pursues Laura Long excitedly. “Why not go even faster, make
more round trips, and learn the ultimate fate of Earth and its solar system —or even
the still more remote future of the Universe as a whole? Then you could report back to
us whether the Universe expands forever or ends in a crunch.”

“Sorry, but no report back to our century is possible,” smiles Professor Bright.
“There are differences between travel in time and travel in space. To begin with, we
can stand still on Earth if we choose and go nowhere in space with respect to that frame.
Concerning travel through time, however, we have no such choice! Even when we
stand stock still on Earth, we nevertheless travel gently but inevitably forward in time.
Time proceeds inexorably!

“Second, time travel is one way. You may be able to buy a round-trip ticket to
Canopus, but you can get only a one-way ticket to the fortieth century. You can’t go
backward in time. Time won't reverse.”

Turning to us he adds, “As for the fate of the solar system and the end of the
Universe, our descendants may meet you there as fellow observers, but we ourselves
will have to bid you a firm and final ‘good-bye’ as you leave us on any of the trips we
have been discussing. The French au revoir— until we meet again— will not do.”

-_

4.9 RELATIVITY OF SIMULTANEITY

we fturn around; ou ianging colleagues say
Earth’s clock fli ard

By this time James Fastlane has gotten his second wind. "'l am still stuck in this Twin
Paradox thing. The time for the outward trip is less as measured in the rocker frame
than as measured in the Earth frame. But if relativity is correct, every free-float frame is
equivalent. As you sit on the rocket, you feel yourself to be at rest, stationary,
motionless; you measure our Earth watch-station clocks to be zipping by you at high
velocity. Who cares about labels? For you these Earth clocks are in motion! Therefore
the time for the outward trip should be less as measured on the (‘moving’) Earth clock
than as measured on your (‘stationary’) rocket clock.”

We nod assent and he continues. “Nothing prevents us from supposing the
existence of a series of rocket lookout stations moving along in step with your rocket
and strung out at separations of one light-year as measured in your rocker frame, all
with clocks synchronized in your rocket frame and running at the same rate as your
rocket clock. Now, as Earth passes each of these rocket lookout stations in turn, won't
those stations read and record the times on the passing Earth clock to be less than their
own times? Otherwise how can relativity be correct?””

“Yes, your prediction is reasonable,” we reply.

“And on the return trip will not the same be true: Returning-rocket lookout
stations will measure and record time lapses on the passing Earth clock to be less than
on their own clocks?"

“That conclusion is inevitable if relativity is consistent.”

“Aha!” exclaims Mr. Fastlane, “Now I've got you! If Earth clock is measured by
rocket lookout stations to show smaller time lapses during the outward trip—and also
during the return trip—then obviously total Earth time must be less than rocket
round-trip time. But you claim just the opposite: that total rocket time is less than
Earth time. This is a fundamental contradiction. Your relativity is wrong!"* Folding his
arms he glowers at us.
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There is a long silence. Everyone looks at us except Professor Bright, who has his
head down. It is hard to think with all this attention. Yet our mind runs over the trip
again. Going out . . . coming back . . . tuming around . . . that’s it!

**All of us have been thinking the wrong way!”" we exclaim. **"We have been talking
as if there is only a single rocket frame. True, the same vehicle, with its traveler, goes
out and returns, True, a single clock makes the round trip with the traveler. But this
vehicle turns around — reverses its direction of travel —and that changes everything.

“Maybe it's simpler to think of two rockets, each moving without change of
velocity. We ride on the first rocket going out and on the second rocket coming back.
Fach of these two is really a rocket frame: each has its own long train of lookout stations
with recording clocks synchronized to its reference clock (Figure 4-1). The traveler can
be thought of as ‘jumping trains’ at Canopus— from outward-bound rocket frame to
inward-bound rocket frame— carrying the calendar clock.

“Now follow Mr. Fastlane's prescription to analyze the trip in the rocket frame, but
with this change: make this analysis using fwo rocket frames — one outward bound,
the other inward bound.

“Itis 20 years by ourward-rocket time when the traveler arrives at Canopus. That is
the reading on all lookout station clocks in that outward-rocket frame. One of those
lookout stations is passing Earth when this rocket time arrives. Its clock, synchronized
to the clock of the outward traveler at Canopus, also reads 20 years. What time does
that rocket lookout-station guard read on the passing Earth clock? For the rocket
observer Earth clock reads less time by the same factor that rocket clocks read less time
(20 years at arrival at Canopus) for Earth observers (who read 101 years on their own
clocks). This factor is 20/101. Hence for the outward-rocket observer the Earth clock
must read 20/101 times 20 years, or 3.96 years.”

“What!"” explodes Fastlane. ‘“‘According to your plan, the turnaround at Canopus
occurs at 101 years of Earth time. Now you say this time equals less than 4 years on
Earth clock.”

“No sir, I do not say that,” we reply, feeling confident at last. I did say that a7 zhe
same time as the outgoing rocket arrives at Canopus, Earth clock reads 3.96 years as
measured in that outgoing rocket frame. An equally true statement is that a the same
time as the outgoing rocker arrives at Canopus, Earth clock reads 101 years as
measured in the Earthbound frame. Apparently observers in different reference frames
in relative motion do not agree on what events occur az the same time when these events
occur far apart along the line of relative motion.”

Once again Professor Bright supplies the label. ““Yes, that is called relativity of
simultaneity. Events that occur at the same time —simultaneously —judged from

return-rocket lookout stations
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FIGURE 4-1. Schematic plot in the Earth-linked frame showing the oulgoing rocket and the
return rocket used in the round trip between Earth and Canopus, The two rockets meet at Canopus,
where the traveler jumps from outgoing rocket to return rocket. Each reference frame bas its own string of
lookout stations, at rvest and synchronized in that frame, shoun by small squares, triangles, and inverted
triangles. In this figure the outgoing and return rocket lines of motion are displaced vertically for purposes of
analysis; in veality, all motion lies along the single line between Earth and Canopus. The figure is not to
scale!
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one free-float frame but far apart along the line of relative motion do not occur
simultaneously as judged from another free-float frame.

“As an example of relativity of simultaneity, consider either chain of lookout
stations strung along the line of relative motion. If all clocks in the lookout stations of
one frame strike exactly at noon in that frame, these strikes are not simultaneous as
measured in another frame in relative motion with respect to the first. This is called
relative synchronization of clocks.

“Incidentally, most of the so-called ‘paradoxes’ of relativity, one of which we are
considering now, turn on misconceptions about telativity of simultaneity.”

Dr. Short breaks in. ““What about the returning rocket? What time on the Earth
clock will the returning rocket lookout station measure as the traveler starts back?”

““That shouldn’t be too difficult to figure out,”” we reply. “We know that the clock
on the returning rocket reads 40 years when we arrive home on Earth. And the Earth
clock reads 202 years on that return. Both of these readings occur at the same place
(Earth), so we do not need to worry about relativity of simultaneity of that reading.
And during the return trip Earth clock records less elapsed time than rocket clocks’ 20
years by the same factor, 20/101, or a total elapsed time of 20 X 20/101 = 3.96
years according to return rocket observations. Therefore at the earlier turnaround,
return rocket observers will see Earth clock reading 202 — 3.96 = 198.04 years.”

“Wait a minute!”” bellows Fastlane. “‘First you say that the rocket observer sees the
Earth clock reading 3.96 years at turnaround in the outward-bound frame. Now you
say that the rocket observer sees the Earth clock read 198.04 years at turnaround in the
inward-bound frame. Which one is right?”’

“Both are right,”” we reply. ““The two observations are made from two different
frames. Each of these frames has a duly synchronized system of lookout-station clocks,
as does the Earth-linked frame (Figure 4-1). The so-called Twin Paradox is resolved
by noticing that between the Earth-clock reading of 3.96 years, taken from the
outward rocket lookout station at tutnaround and the Earth-clock reading of 198.04
years, taken by the returning-rocket lookout station at turnaround, there is a difference
of 194.08 years.

“This ‘jump’ appears on no single clock but is the result of the traveler changing
frames at Canopus. Yet this jump, or difference, resolves the paradox: For the traveler,
the Earth clock reads small time lapses on the outward leg—and also small time
lapses on the return leg— but it jumps way ahead at turnaround. This jump accounts
for the large value of Earth-aging during the trip: 202 years. In contrast the traveler
ages only 40 years during the trip (Table 4-1).

““And notice that the traveler is unique in the experience of changing frames; only
the traveler suffers the terrible jolt of reversing direction of motion. In conttast, the

C_TABLE 4-1_>
OBSERVATIONS OF EVENTS ON CANOPUS TRIP

Earth-clock reading observed by

Time measured outgoing-rocket return-rocket
in Earth-linked ~ Time measured lookout stations lookout stations
Event frame by traveler passing Earth passing Earth
Depart Earth 0 years 0 years 0 years
Atrrive Canopus 101 years 20 years 20 years X 20/101
= 3.96 years
Depart Canopus 101 years 20 years 3.96 years 202 — 3.96
= 198.04 years

Arrive Earth 202 years 40 years 202 years
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Earth observer stays relaxed and comfortable in the same frame during the asoronaur’s
entire trip. Therefore there is no symmetry between rocket traveler and Earth dweller,
so no genuine contradiction in their differing time lapses, and the story of the twins is
not a paradox.

“In fact, the observer in each of the three frames— Earth-linked, ourward-rocket,
and inward-rocket—has a perfectly consistent and nonparadoxical interpretation of
the sequence of events. However, in accounting for disagreements between his or her
readings and those of observers in other free-float frames, each observer infers some
misbehavior of measuring devices in these other frames. Each observes less elapsed
time on clocks in the other frame than on his or her own clocks (time strecching or time
dilation). Each thinks that an object lying along the line of relative motion and at rest
in another frame is contracted (Lorentz contraction). Each thinks that lookout-station
clocks in other frames are not synchronized with one another (relative synchronization
of clocks). As a result, each cannot agree with other observers as to which events far
apart along the line of relative motion occur at the same time (relativity of simultane-
ioy).”

“Boy,”’ growls Fastlane, “'all these different reference frames sure do complicate the
story!”

“Exactly!”" we exclaim. ‘“These complications arise because observations from any
one frame are limited and parochial. All disagreements can be bypassed by talking
only in the invariant language of spacetime interval, proper time, wristwatch time.
The proper time from takeoff from Earth to arrival at Canopus equals 20 years,
petiod. The proper time from turnaround at Canopus to rearrival at Earth equals 20
years, period. The sum equals 40 years as experienced by the astronaut, period. On the
Earth clock, the proper time between departure and return is 202 years, period. End of
story. Observers in all free-float frames reckon proper times—spacetime intervals
between these events — using their differing space and time measurements. However,
once the data ate translated into the common language of proper time, every observer
agrees. Proper times provide a universal language independent of reference frame."

-
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Alfred Missouri has remained silent up to this point. Now he declares, * All chis theory
is too much for me. I won't believe a word you say unless you can show me an
experimental demonstration.”

We reply, ““Atomic clocks have been placed on commercial airliners' and carried
around Earth, some in an eastward direction, others in a westward direction. In each
case the airliner clocks were compared with reference clocks at the U.S. Naval
Observatory before and after their trips. These clocks disagreed. Results were consist-
ent with the velocity-related predictions of special relativity.

“This verification of special relativity has ewo minor difficulties and a major one.
Minor difficulties: (1) Each leg of a commercial airliner’s trip may be at a different
speed, not always accurately known and for which the time-stretching effect must be
separately calculated. Also, temperature and pressure effects on airborne clocks are
hard to control in a commercial airliner. (2) More fundamentally, Earth rotates,
carrying the reference Naval Observatory clocks eastward around the center of Earth.
Earth center can be regarded as the inertial point in free-float around Sun. With
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DO WE NEED GENERAL RELATIVITY? NO!

The group takes a break and mills around the conference room, chatting and
eating refreshments. Joanne Short approaches us juggling coffee, a donut,
and her notes.

“l didn't want to embarrass you in public,”” she says, *‘but isn’t your plan
faulty because of the turnaround? You can't be serious about leaping from
one high-speed rocket to another rocket going in the opposite direction. That
means certain death! Be realistic: You and your rocket will have to slow down
over some time period, come to rest at Canopus, then speed up again, this
time headed back toward Earth. During this change of velocity you will be
thrown against the front of the rocket ship, as I'm thrown when | slam on my
car brakes. Release a test particle from rest and it will hurtle forward! Surely
you are not in an inertial (free-float) frame. Therefore you cannot use special
relativity in your analysis of this time period. What does that do to your
description of the ‘jump ahead’ of Earth clocks as you slow down and speed
up again? Don't you need general relativity to analyze events in accelerated
reference frames?"

“Oh yes, general relativity can describe events in the accelerated frame,"
we reply, ‘‘but so can special relativity if we take it in easy steps! | like to think
of a freight yard with trains moving at different speeds along parallel tracks.
Each train has its own string of recording clocks along its length, each string
synchronized in that particular train frame. Each adjacent train is moving at a
slightly different speed from the one next to it. Now we can change frames by
walking across the trains, stepping from the top of one freight car to the top of
the freight car rolling next to it at a slightly different speed.

“Let these trains become rocket trains in space. Each train then has an
observer passing Earth as we step on that train. Each observer, by prearran-
gement, reads the Earth clock at the same time that we step onto his train (‘at
the same time' as recorded in that frame). When you assemble all this data
later on, you find that the set of observers on the sequence of trains see the
Earth clock jumping forward in time much faster than would be expected. The
net result is similar to the single horrible jerk as you jump from the outgoing
rocket to the incoming rocket.

“Notice that it takes a whole set of clocks in different frames, all reading the
single Earth clock, to establish this result. So there is never any contradiction
between a single clock in one frame and a single clock in any other frame. In
this case special relativity can do the job just fine.”

The directors reassemble and Joanne Short, smiling, takes her place with
them.

respect to this center, one airborne clock moves even faster eastward than Earth’s
surface, while the other one — heading west with respect to the surface— with respect
to Earth’s center also moves eastward, but more slowly. Taking account of these
various relative velocities adds further complication to analysis of results.

“We overcome these two minor difficulties by having an airplane fly round and
round in circles in the vidnity of a single ground-based reference atomic clock.
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Then—to a high accuracy — only relative motion of these two clocks enters into the
special-relativity analysis.

“On November 22, 1975, a U.S. Navy P3C antisubmarine patrol plane flew back
and forth for 15 hours at an altitude of 25,000 to 35,000 feet (7600 to 10,700
meters) over Chesapeake Bay in an experiment arranged by Carroll Alley and collabo-
rators. The plane carried atomic clocks that were compared by laser pulse with
identical clocks on the ground. Traveling at an average speed of 270 knots (140
meters per second), the airborne clocks lost an average of 5.6 nanoseconds = 5.6 X
107 seconds due to velocity-related effects in the 15-hour flight. The expected
special-relativity difference in clock readings for this relative speed is 5.7 nanoseconds.
This result is remarkably accurate, considering the low relative velocity of the two
clocks: 4.7 X 1077 light speed.

““The major difhiculty with all of these experiments is this: A high-flying airplane is
significantly farther from Earth’s center than is the ground-based clock. Think of an
observer in a helicopter reading the clocks of passing airplanes and signaling these
readings for comparison to a ground-based clock directly below. These two clocks —
the helicopter clock and the Earthbound clock—are at rest with respect to one
another. Are they in the same inertial (free-float) frame? The answer is No.

“We know that a single inertial reference frame near Earth cannot extend far in a
vertical direction (Section 2.3). Even if the two clocks — helicopter and Earthbound
—were dropped in free fall, they could not both be in the same inertial frame.
Released from rest 30,000 feet one above the other, they would increase this relative
distance by 1 millimeter in only 0.3 second of free fall— too rapid a change to be
ignored. But the experiment went on not for 0.3 second but for 15 hours!

““Since the helicopter clock and Earthbound clock are not in the same inertial frame,
their behavior cannot be analyzed by special relativity. Instead we must use general
relativity — the theory of gravitation. General relativity predicts that during the
15-hour flight the higher-altitude clock in the Chesapeake Bay experiment will record
greater elapsed time by 52.8 nanoseconds due to the slightly reduced gravitational
field at altdtudes at which the plane flew. From this must be subtracted the 5.7
nanoseconds by which the airborne clock is predicted to record Jess elapsed time due to
effects of relative velocity. These velocity effects are predicted by both spedial relativity
and general relativity and were the only results quoted above. The overall predicted
result equals 52.8 — 5.7 = 47.1 nanoseconds net gain by the high-altitude clock
compared with the clock on the ground. Contrast this with the measured value of 47.2
nanoseconds.

“Hence for airplanes flying at conventional speeds and conventional altitudes,
tidal-gravitational effects on clocks can be greater than velocity-dependent effects to
which special relativity is limited. In fact, the Chesapeake Bay experiment was
conducted to verify the results of general relativity: The airplane pilot was instructed to
fly as slowly as possible to reduce velocity effects! The P3C patrol plane is likely to stall
below 200 knots, so a speed of 270 knots was chosen.

““In all these experiments the time-stretching effect is small because the speed of an
airplane is small compared to the speed of light, but atomic clocks are now so accurate
that these speed effects are routinely taken into account when such clocks are brought
together for direct comparison.”

Professor Bright chimes in. ““What the astronaut says is correct: We do not have
large clocks moving fast on Earth. On the other hand, we have a great many small
clocks moving very fast indeed. When particles collide in high-speed accelerators,
radioactive fragments emerge that decay into other particles after an average lifetime
that is well known when measured in the rest frame of the particle. When the
radioactive particle moves at high speed in the laboratory, its average lifetime is
significantly longer as measured on laboratory clocks than when the particle is at rest.
The amount of lengthening of this lifetime is easily calculated from the particle speed
in the same way the astronaut calculates time stretching on the way to and from
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CHAPTER 4 TRIP TO CANOPUS

Canopus. The time-stretch factor can be as great as 10 for some of these particles: the
fast-moving particles are measured to live 10 times longer, on average, than their
measured lifetime when at rest! The experimental results agree with these calculations
in all cases we have tried. Such time stretching is part of the everyday experience of
high-energy particle physicists.

“And for these increased-lifetime experiments there is no problem of principle in
making observations in an inertial, free-float frame. While they are decaying, particles
cover at most a few tens of meters of space. Think of the flight of each particle as a
separate expetiment. An individual experiment lasts as long as it takes one high-speed
particle to move through the apparatus—a few tens of meters of light-travel time.
Ten meters of light-travel time equals about 33 nanoseconds, or 33 X 107 seconds.

“Can we construct an inertial frame for such happenings? Two ball bearings
released from rest say 20 meters apart do not move together very far in 33 nanosec-
onds! Therefore these increased-lifetime experiments could be done, in principle, in
free-float frames. It follows that special relativity suffices to describe the behavior of
the ‘radioactive-decay clocks’ employed in these experiments. We do not need the
theory of gravitation provided by general relativity.

“Of course, in none of these high-speed particle expetiments do particles move
back and forth the way our astronaut friend proposes to do between Earth and
Canopus. Even that back-and-forth result has been verified for certain radioactive iron
nuclei vibrating with thermal agitation in a solid sample of iron. Atoms in a hotter
sample vibrate back and forth faster, on average, and thus stay younger, on average,
than atoms in a cooler sample. In this case the ‘tick of the clock’ carried by an iron atom
is the period of electromagnetic radiation (‘gamma ray’) given off when its nucleus
makes the transition from a radioactive state to one that is not radioactive. For detailed
reasons that we need not go into here, this particular ‘clock’ can be read with very high
accuracy. Beyond all such details, the experimental outcome is simply stated: Clocks
that take one or many round trips at higher speed record a smaller elapsed time than
clocks that take one or many round trips at lower speed.

“These various results— plus many others we have not described — combine to
give overwhelming experimental support for the predictions of the astronaut concern-
ing the proposed trip to Canopus.”

Dr. Bright sits back in his chair with a smile, obviously believing that he has
disposed of all objections single-handedly.

“Yes,” we conclude, ‘‘about the reality of the effect there is no question. Therefore
if you all approve, and the Space Agency provides that new and very fast rocket, we can
be on our way.”

The meeting votes approval and our little story ends. -
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CHAPTER 4 EXERCISES

Note: The following exercises ate related to the story
line of this chapter. Additional exercises may be se-
lected from Chapter 3 or the Special Topic on the
Lorentz Transformation following Chapter 3.

4-1 practical space travel

In 2200 A.D. the fastest available interstellar rocket
moves at v = 0.75 of the speed of light. James Ab-
bott is sent in this rocket at full speed to Sirius, the
Dog Star (the brightest star in the heavens as seen
from Earth), a distance D = 8.7 light-years as mea-
sured in the Earth frame. James stays there for a time
T = 7 years as recorded on his clock and then returns
to Earth with the same speed » = 0.75. Assume
Sirius is at rest relative to Earth. Let the departure
from Earth be the reference event (the zero of time
and space for all observers).

According to Earth-linked observers:

a At what time does the rocket arrive at Sirius?

b At what time does the rocket leave Sirius?

¢ At what time does the rocket arrive back at
Earch?

According to James's observations:

d At what time does he arrive at Sirius?

e At what time does he leave Sirius?

f At what time does he arrive back at Earth?

g As he moves toward Sirius, James is accompa-
nied by a string of oxzgoing lookout stations along his
direction of motion, each one with a clock synchro-
nized to his own. What is the spatial distance between
Earth and Sirius, according to observations made with
this outgoing string of lookout stations?

h  One of James’s outgoing lookout stations, call
it Q, passes Earth at the same time (in James’s outgo-
ing frame) that James reaches Sirius. What time does
Q’s clock read at this event of passing? What time
does the clock on Earth read at this same event?

i As he moves back toward Earth, James is ac-
companied by a string of incoming lookout stations
along his direction of motion, each one with a clock
synchronized to his own. One of these incoming look-
out stations, call it Z, passes Earth at the same time (in
James’s incoming frame) that James leaves Sirius to
return home. What time does Z’s clock read at this
event of passing? What time does the clock on Earth
read at this same event?

To really understand the contents of Chapter 4,
repeat this exercise many times with new values of v,
D, and T that you choose yourself.

4-2 one-way twin paradox?

A worried student writes, ‘I still cannot believe your
solution to the Twin Paradox. During the outward
trip to Canopus, each twin can regard the other as
moving away from him; so how can we say which
twin is younger? The answer is that the twin in the
rocket makes a turn, and in Lorentz spacetime geom-
etry, the greatest aging is experienced by the person
who does not turn. This argument is extremely unsat-
isfying. It forces me me to ask: What if the rocket
breaks down when I get to Canopus, so that I stop
there but cannot turn around? Does this mean that it
is no longer possible to say that I have aged less than
my Earthbound twin? But if not, then I would never
have gotten to Canopus alive.” Write a half-page
response to this student, answering the questions po-
litely and decisively.

4-3 a relativistic oscillator

In order to test the laws of relativity, an engineer
decides to construct an oscillator with a very light
oscillating bob that can move back and forth very fast.
The lightest bob known with a mass greater than zero
is the electron. The engineer uses a cubical metal box,
whose edge measures one meter, that is warmed
slightly so that a few electrons “‘boil off” from its
surfaces (see the figure). A vacuum pump removes air
from the box so that electrons may move freely inside
without colliding with air molecules. Across the mid-
dle of the box—and electrically insulated from it—
is a metal screen charged to a high positive voltage by
a power supply. A voltage-control knob on the power
supply can be turned to change the DC voltage V,
between box and screen. Let an electron boiled off
from the inner wall of the box have very small velocity
initially (assume that the initial velocity is zero). The
electron is attracted to the positive screen, increases
speed toward the screen, passes through a hole in the
screen, slows down as it moves away from the attract-
ing screen, stops just short of the opposite wall of the
box, is pulled back toward the screen; and in this way
oscillates back and forth between the walls of the box.

a Inhow shortatime T can the electron be made
to oscillate back and forth on one round trip between
the walls? The engineer who designed the equipment
claims that by turning the voltage control knob high
enough he can obtain as high a frequency of oscilla-
tion f = 1/T as desired. Is he right?

b For sufficiently low voltages the electron will
be nonrelativistic—and one can use Newtonian me-
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Power supply of (adjustable) high voltage

A RELATIVISTIC OSCILLATOR

High-voltage screen

Connect box to water pipe
with wire to avoid shock!_

EXERCISE 4-3. Relativistic oscillator with electron as oscillating bob.

chanics to analyze its motion. For this case the fre-
quency of oscillation of the electron is increased by
what factor when the voltage on the screen is doubled?
Discussion: At corresponding poines of the elec-
tron’s path before and after voltage doubling, how
does the Newtonian kinetic energy of the electron
compare in the two cases? How does its velocity com-
pate in the two cases?

¢ What is a definite formula for frequency fas a
function of voltage in the nonrelativistic case? Wait as
late as possible to substitute numbers for mass of
electron, charge of electron, and so forth.

d What is the frequency in the extreme relativis-
tic case in which over most of its course the electron is
moving . . . (rest of sentence suppressed!) . . . ?
Call this frequency fi., -

e On the same graph, plot two curves of the
dimensionless quantity f/f,., as functions of the di-
mensionless quantity ¢V, /(2mc?), where g is the
charge on the electron and # is its mass. First curve:
the nonrelativistic curve from part ¢ to be drawn

heavily in the region where it is reliable and indicated
by dashes elsewhere. Second curve: the extreme rela-
dvistic value from part d, also with dashed lines
where not reliable. From the resulting graph estimate
quantitatively the voltage of transition from the
nonrelativistic to the relativistic region. If possible
give a simple argument explaining why your result
does or does not make sense as regards order of mag-
nitude (that is, overlooking factors of 2, 7, etc.).

f Now think of the round-trip ““proper period”’
of oscillation 7 experienced by the electron and logged
by its recording wristwatch as it moves back and forth
across the box. At low electron speeds how does this
proper period compare with the laboratory period
recorded by the engineer? What happens at higher
electron speeds? At extreme relativistic speeds? How is
this reflected in the ““proper frequency” of oscillation
Jroeopee €Xperienced by the electron? On the graph of
part e draw a rough curve in a different color or
shading showing qualitatively the dimensionless
QUANLILY firoper /fonax @5 2 function of gV, /(2mc?).



CHAPTER 5

TREKKING

THROUGH SPACETIME

5.1 TIME? NO. SPACETIME MAP? YES.

no such thing as the vnigue time of an event!

Events are the sparkling grains of history. They define spacetime. Spacetime, yes.
Time, no.

“Time, no"'? How come? Time here in Tokyo, at this enthronement of the successor
of the Emperor Hirohito? Where is any meter to be seen that shows any such quality of
location as time? Meter to measure the temperature here and now? Yes, this thermom-
eter. Meter to measure armospheric pressure here and now? Yes, this baromerter. But
look as we will, nowhere can we see any meter that we can poke into the space
hereabouts to measure its “‘time.” The time of an event? Impossible! No such thing.
Time is not ‘‘meterable.”

Anything with which to compare time? Yes. Odometer reading, whether miles or
kilometers, on the dashboard of our car. There’s no such thing as the odometer reading
of Tokyo. Try every gadget one can, thrust it out into this Tokyo air, not one will
register anything with the slightest claim to be called the odometer reading of these
hereabouts, '

What about looking at the dashboards of the cars in this neighborhood? Not all of
them; that would be nonsense. Only the cars that were new, with odometer reading
zero, at the time of Hirohito’s own enthronement.

Now at last we are getting into a line of questioning that shows some prospect of
clearing up what we mean by “time.”” We ask our companion, ‘“What do all cthose
day-and-year-counting wristwatches now read that were set to zero at the time of that
earlier ceremony?”’

“Sixty-two years, two days,”’ is her first reply. But then we ask, ‘“Whart about that
team that zoomed out to the nearest eye-catching star, Alpha Centauri, and back with
almost the speed of light? Didn’t they get back ten years younger than we stay-at-
homes?”
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CHAPTER 5 TREKKING THROUGH SPACETIME

“Yes,” she agrees, “‘surely their wristwatches now read fifty-two years, not sixty-
two. So let me draw the lesson. There is no such thing as time. There is only totalized
interval of time, time as that interval is racked up between the enthronement of
Hirohito and the enthronement of of the new Emperor Akihito, between event A and
event B, on a wristwatch that has undergone its own individual history of travel from A
to B.”

““I agree. The concept of time does not apply to location in spacetime. It applies to
individual history of travel through spacetime.”

“How apt the comparison with odometer reading. Each dashboard shows, not the
kilometerage of Akihito, but the kilometers traveled by that particular car between the
one imperial ceremony and the other.”

Yes, it is nonsense to attribute a kilometer reading to Tokyo. However, it is not at
all nonsense to make a map showing where Tokyo lies relative to all the towns
roundabout, a map in which kilometers do appear, kilometers north and south,
kilometers east and west. Likewise the term “‘the time” of an event is totally without
meaning. However, that event— and every event near it— lends itself to display on a
spacetime diagram (Figure 5-1), with distance (the locator of latticework clock)
running in one direction, and in another direction time (the reading printed out by that
clock on the occasion of that event). Time as employed in this sense acquires meaning
only because it serves as a measure on a latticework-defined map. A different lattice-
work? A different set of clocks, different readings on those clocks, a different map—
but same events, same spacetime, same tools to measure the history-dependent
interval between event and event.

Only on such a spacetime plot does one see at a glance the layout of all nearby
events, and how one history of travel from event A to event B differs from another.

One problem in making our map: Spacetime has four dimensions— three space
dimensions plus time. We picture our event points most readily when they occupy a
two-dimensional domain and let themselves be dotted in on a two-dimensional page.
Therefore for the present we limit attention to time and one space dimension; to
events, whatever their timing, that occur on one line in space. All events that do not
occur on this line we ignore for now. The space location of each event on this line we
plot along a horizontal axis on the page. The lattice-clock time at which an event
occurs we plot along a vertical axis, from bottom to top of the page. Space and time
we measure in the same unit, for example meters of distance and meters of time — or
light-years of distance and years of time. We call the result a spacetime map or a
spacetime diagram. Each spacetime map represents data from a particular reference
frame, for example *“‘the laboratory frame.”” Figure 5-1 shows such a spacetime map.

Five sample event points appear on the laboratory spacetime map of Figure 5-1,
events labeled O, A, B, C, and D.

+ Event O is the reference event, the firing of the starting gun, which we take
to locate zero position in space and the zero of time. For our own convenience,
we place point O at the origin of the spacetime map and measure space and time
locations of all other events with respect to it.

FIGURE 5-1. Laboratory space-
time map, showing the reference
event O, other events A, B, C, and
D, a horizontal dashed line of si-
multaneity in time, and a verti-
---------------- cal dashed line of equal position

in space.
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same time__Dg
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5.2 SAME EVENTS; DIFFERENT FREE-FLOAT FRAMES

* Event B stands on the vertical time axis, directly above reference event 0.
Therefore event B occurs at a later time than event 0. Event B lies neither to the
right of the reference event nor to the left; its horizontal (space) location is zero.
Therefore it occurs at the same place as the reference event O in the laboratory
but later in time.

* Event A lies on the horizontal space axis, directly to the right of reference event
0. Therefore event A occurs at a different space location than event O. It is
neither above nor below event 0, its vertical (time) location is zero. Therefore it
occurs at the same time as reference event O as observed in the laboratory.

* Event C rests above and to the right of the reference event. Standing higher
than the reference event on the map, event C occurs later in time than 0 in this
frame. Since it lies to the right, event C occurs at a positive space location with
respect to event O in this frame.

*+ Event D reposes above and to the left of the reference event. It also occurs later
in time than reference event O but at a negative space location with respect to
event O as observed in the laboratory.

Scatter other event points on the spacetime map. Each event point can represent an
important happening. Then a single glance at the spacetime map gives us, in principle,
a global picture of «// significant events that have occurred along one line in space and
as far back in time as we wish to look. The spacetime map puts all this history at our
fingertips!

In exploring history, we may want to know which events occurred at the same time
as others in the laboratory free-float frame. Two events that occur at the same time
have the same vertical (time) location on the spacetime map. A horizontal line drawn
through one event point passes through all events simulcaneous with that event in the
given frame. In Figure 5-1, the dashed horizontal line shows that events B and D are
simultaneous as observed in the laboratory frame, although they occur at different
locations in space. Similarly, events O and A are simultaneous as observed in this
frame,

When we wish to “'retell history,”” we draw a sequence of horizontal lines above one
another on the spacetime map. We mimic the advance of time by stepping in
imagination from one horizontal line to the next horizontal line above it, noting which
events occur at each time.

Vertical lines on the spacetime map indicate which events occur at the same place
along the single line in space. Events A and C in Figure 5-1 occur at the same space
location as measured in the laboratory, but at different times as measured in this
frame. Similatly, events O and B occur at the same place as one another in the
laboratory. wes-

5.2 SAME EVENTS; DIFFERENT
FREE-FLOAT FRAMES

S

on rnelr spacerime

inferval between two events

Figure 5-1 demonstrates two great payoffs of the spacetime map: (1) It places space
and time on an equal footing, thus recognizing a basic symmetry of nature, (2) It
allows us to review at a single glance the whole history of events and motions that have
occurred along the given line in space.
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Same events, different frames:
Different spacetime maps

CHAPTER 5 TREKKING THROUGH SPACETIME

We want to take advantage of a third payoff of the spacetime map: Plot the same
events on two, three, or more spacetime maps based on two, three, or more different
free-float frames in uniform relative motion. Compare. In this way analyze the various
space and time relations among these events as measured in different frames. Why do
this? In order to find out what is different in the different frames and what remains the
same.

Figure 5-3 shows three spacetime maps — for laboratory, rocket, and super-rocket
free-float frames. The super-rocket moves faster than the rocket with respect to the
laboratory (but not faster than light!). On each of the three spacetime maps we plot the
same two events: the events of emission E and reception R of a light flash. These are the
two events analyzed in Chapter 3 to derive the expression for the spacetime interval. As
a reminder of the physical phenomena behind events E and R, refer to Figure 5-2.

The light flash is emitted (event E) from a sparkplug attached to the reference clock
of the first rocket. Take event E as the reference event, called event O in Figure 5-1. By
prearrangement the sparkplug fires at the instant when both the rocket reference clock
and the super-rocket reference clock pass the laboratory reference clock. All three
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FIGURE 5-2 (Figure 3-5 repeated). The flash path as recorded in three different frames, showing
event E, emission of the flash, and event R, its reception after reflection. Squares, circles, and
triangles represent the latticework of vecording clocks in laboratory, rocket, and super-rocket frames, respec-
tively. The super-rocket frame moves to the right with respect to the rocket, so that the event of reception, R,
occurs to the left of the event of emission, E, as measured in the super-rocket frame. The reflecting mirvor is
fixed in the rocket, hence appears to move from left to right in the laboratory and from right to left in the
super-rocket.
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laboratory time FIGURE 5-3. Spacetime maps for three
[frames, showing emission of the reference
A ash and its reception after reflection. The

£

byperbola drawn in each map satisfies the equa-
tion for the invariant interval (or proper time),
which has the same value in all three frames:
(interval)? = (time)? — (space)?.
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reference clocks are set to read zero at this reference event, whose event point is placed
at the origin of all three spacetime maps.

Now use the latticework of meter sticks and clocks in each free-float frame (clocks
pictured in Figure 5-2) to measure the position and time of every other event with
respect to the reference event. In particular, record the position and time of the
reception (event R) of the flash in each of the three frames.

The reception of the light ray (event R) occurs at different locations and at different
times as measured in the three frames. In the rocket the reception of the reflected flash
occurs back at the reference clock (the zero of position) and 6 meters of time later, as
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seen in Figure 5-2 and more directly in Figure 5-3 (center):

Rocket: (position of reception, event R) = 0
Rocket: (time of reception, event R) = 6 meters

Emission and reception occur at the same place in the rocket frame. Therefore the
rocket time, 6 meters, is just equal to the interval, or proper time, between these two
events:

Rocket Rocket
(proper time)? = < time of )2 _ < position of)2
prop reception reception
Rocket Rocket
: 2
= ( tme 0 f ) ~— (zero)? = (6 meters)?
reception

In the laboratory the reception event R occurs at a time greater than 6 meters, as can
be seen from the expression for interval:

Laboratory  Laboratory
. 2 . 5
( time of ) _ ( position of) — (6 meters)?

reception reception

In this equation the square of 6 meters results from subtracting a positive quantity
from the square of the laboratory time of reception. Therefore the laboratory time of
reception itself must be greater than 6 meters:

Laboratory: (position of reception, event R) = 8 meters
Laboratory: (time of reception, event R) = 10 meters

In the laboratory frame, reception appears to the right of the emission, as seen in Figure
5-2. Hence it is plotted to the right of the origin in the laboratory map (Figure 5-3,
top).

In the super-rocket frame, moving faster than the rocket with respect to the
laboratory, the event of reception appears to the left of the emission (Figure 5-2).
Therefore the space separation is called negative and plotted to the left of the origin in
the super-rocket map (Figure 5-3, bottom). The time separation in the super-rocket is
greater than 6 meters, by the same argument used for the time of reception in the
laboratory frame:

Super-rocket Super-rocket
. ) . )
( time of ) . ( position of) — (6 meters)?

reception reception

In this equation, the space separation is a negative quantity. Nevertheless its square isa
positive quantity. So the equation says that the square of 6 meters resules from
subtracting a positive quantity from the square of the super-rocket time of reception.
Therefore the super-rocket time separation must also be greater than 6 meters:

Super-rocket: (position of reception, event R) = — 20 meters
Super-rocket: (time of reception, event R) = 20.88 meters
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5.3 INVARIANT HYPERBOLA

Dufferent reception points marked R in different spacetime maps all refer to the same
event. What do these different separations of the same event from the reference event
have in common? They all satisfy invariance of the interval, reflected in the equation

(time separation)? — (space separation)? = (interval)? = constant

Constant? Constant with respect to what?

= With respect to free-float frame. Record different space and time measurements in
different frames, but figure out from them always the same interval.

O e

Curves drawn on the three maps conform to this equation. This kind of curve, in which
the difference of two squares equals a constant, is called a hyperbola. Somewhere on
this hyperbola is recorded the time and position of one and the same reception event as
measured in every possible rocket and super-rocket frame. Same reception event,
different frames, all summarized in one hyperbola, the invariant hyperbola.

Spacetime arrows in all three maps connect the same pair of events. They imply the
identical invariant interval. They embody the same spacetime reality. In a deep sense
these three arrows on the page represent the same arrow in spacetime. Spacetime maps
of different observers show different projections—different perspectives— of the
same arrow in spacetime,

The same arrow? The same magnitude for the spacetime arrow pictured in all three
maps of Figure 5-37 Then why do the three arrows have obviously different lengths in
the three maps?

-Z Because the paper picture of spacetime is a lie! The length of an arrow on a piece of
™ paper is Euclidean, related to the sum of squares of the space separations of the
endpoints in two perpendicular directions. Euclidean geometry works fine if what is
being represented is flat space, for example the map of a township. But Euclidean
geometry is the wrong geometry and betrays us when we try to lay out time along one
direction on the page. Instead we need to use Lorentz geometry of spacetime, In
Lorentz geometry, time must be combined with space through a difference of squares
to find the correct magnitude of the resulting spacetime vector — the interval. That
is why the arrows in the different spacetime maps of Figure 5-3 seem to be of
different lengths. The reality that these lengths represent, however—the value of
the interval between two events—is the same in all three spacetime maps. -

5.4 WORLDLINE

the moving parti
worldline — on

- i

cle traces out a line —its
pacetime diagram

We describe the world by listing events and showing how they relate to one another.
Until now we have focused on pairs of events and spacetime intervals between them.
Now we turn to a whole chain of events, events that track the passage of a particle
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through spacetime. Think of a speeding sparkplug that emits a spark every meter of
time read on its own wristwatch. Each spark is an event; the collection of spark events
forms a chain that threads through spacetime, like pearls. String the pearls together.
The thread connecting the pearl events, tracing out the path of a particle through
spacetime, has a wonderfully evocative name: worldline. The sparkplug travels
through spacetime trailing its worldline behind it.

The speeding spatkplug is only an example. Every particle has a worldline that
connects events along its spacetime path, events such as collisions or near-collisions
(close calls) with other particles.

Events — pearls in spacetime — exist independent of any reference frame we may
choose to describe them. A worldline strings these event pearls together. The world-
line, too, exists independent of any reference frame. A particle traverses spacetime —
follows a worldline — totally oblivious to our poor efforts to describe its motion using
one or another free-float frame. Yet we are accustomed to using a free-float frame and
its associated latticework of rods and clocks. One clock after another records its
encounter with the particle. The worldline of the particle connects this chain of
encounter events.

We can draw this worldline of a particle on the spacetime map for this reference
frame. Such worldlines are shown in Figure 5-5 and in later figures of this chapter.
Strictly speaking, the line drawn on the spacetime map is not the worldline itself. It is
an image of the worldline—a strand of ink printed on a piece of paper. When we use a
highway map, we often refer to a line drawn on the paper as “‘the highway.”” Yet is not
the highway itself, but an image. Ordinarily this causes no confusion; no one tries to
drive a car across a highway map! Similarly, we loosely refer to the line drawn on the
spacetime map as the worldline, even though the worldline in spacetime stands above
and beyond all our images of it.

The worldline is seen in no way more clearly than through example. Particle 1 starts
at the laboratory reference clock at zero time and moves to the right with constant
speed (Figure 5-4). As particle 1 zooms along a line of laboratory latticework of clocks,
each clock it encounters records the time at which the particle passes. Each clock record
shows where the clock is located and the time at which particle 1 coincides with the
clock. “Where and when'’ determines an event, the event of coincidence of particle
and recording clock. Afterwards the chief obsetver travels throughout the lattice of
clocks, collecting the records of these coincidence events. She plots these events as
points on her spacetime map. She then draws a line through event points in sequence
—the worldline of particle 1 (Figure 5-5).

Particle 1 moves with constant speed along a single direction in space. The distance
it covers is equal for each tick of the laboratory clocks. The worldline of particle 1
shows equal changes in space during equal lapses of time by being straight on the
spacetime map.

Particle 2 moves to the right faster than particle 1 and so covers a greater distance in
the same time lapse (Figure 5-4). Lattice clocks record their events of coincidence with
particle 2, and the observer collects these records and plots the worldline of particle 2
on the same spacetime map (worldline shown in Figure 5-5).

And so it goes: Particle 3 is a light flash and moves to the right in space (Figure 5-4)
with maximum speed: one meter of distance per meter of time. With horizontal and
vertical axes calibrated in meters, the light-flash worldline rises at an angle of 45
degrees (Figure 5-5).

Particle 4 does not move at all in laboratory space; it rests quietly next to the
laboratory reference clock. Like you sitting in your chair, it moves only along the time
dimension; in the laboratory spacetime map its worldline is vertical (Figure 5-5).

Particle 5 moves not to the right but to the left in space according to the laboratory
observer (Figure 5-4), so its worldline angles up and leftward in the laboratory
spacetime map (Figure 5-5).

Each of these particles moves with constant speed, so each traces out a straight
worldline. After 3 meters of time as measured in the laboratory frame, different
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particles have moved different distances from the starting point (Figure 5-4). In the
laboratory spacetime map their space positions after 3 meters of time lie along the
upper horizontal line of simultaneity, shown dashed in Figure 5-5.

Particle 4 is not the only object stationary in space. Every laboratory clock lies at rest
in the laboratory frame; it moves neither right nor left as time passes. Nevertheless
each laboratory clock moves forward in time, tracing out its own vertical worldline in
the laboratory spacetime map. The background vertical lines in Figure 5-5 are
worldlines of the row of laboratory clocks.

What is the difference between a “‘path in space” and a “‘worldline in spacetime’’?

Z The transcontinental airplane leaves a jet trail in still air. That trail is the plane’s path
™ in space. Take a picture of that trail and you have a space map of the motion. From
that space map alone you cannot tell how fast the jet is moving at this or that
different point on its path. The space map is an incomplete record of the motion.
The plane moves not only in space but also in time. Its beacon flashes. Plot those
emissions as events on a spacetime map. This spacetime map has not only a
horizontal space axis but also a vertical time axis. Now connect those event points
with a worldline. The worldline gives a complete description of the motion of the jet as
recorded in that frame. For example, from the worldline we can reckon the speed of
the plane at every event along its path.

Worldline gives spacetime map of the journey of the jet. Likewise a worldline
drawn on a spacetime map images the joutney of any particle through spacetime. A
worldline is not a physical path, not a trajectory, not a line in space. An object at rest
in your frame has, for you, no path at all through space; it stays always at one space
point. Yet this stationary particle traces out a “‘vertical” worldline in your spacetime
map (such as line 4 in Figure 5-5). A particle #/ways has a worldline in spacetime. As
you sit quietly in your chair reading this book, you glide through spacetime on your
own unique worldline. Every stationary object lying near you also traces out a
worldline, parallel to your own on your spacetime map.

Not all particles move with constant speed. When a particle changes speed with
respect to a free-float frame, we know why: A force acts on it. Think of a train moving
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FIGURE 5-4. Trajectories in space
(not in spacetime!) of particles 1
through 5 during 3 meters of time.
Each particle starts at the reference clock
(the square) at zero of time and moves
with a constant velocity.

FIGURE 5-5. Worldlines in space-
time of the particles shown in Fig-
ure 5-4, plotted for the laboratory
Jrame. Only the worldline for particle 1
includes a sample set of event points that
are connected to make up the worldline.

Path in space versus
worldline in spacetime
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on a straight stretch of track. A force applied by the locomotive speeds up all the cars.
Small speed: small distance covered in a given time lapse; worldline inclined slightly to
the vertical in the spacetime map. Great speed: great distance covered in an the same
stretch of time; worldline inclined at a greater angle to the vertical in the spacetime
map. Changing speed: changing distances covered in equal time periods; worldline that
changes inclination as it ascends on the spacetime map—a curved worldline!

Wait a minute! The train moves along a straight track. Yet you say 1ts worldline is
curved. Straight or curved? Make up your mind!

Straight in space does not necessarily mean straight in spacetime. Place your finger on
the straight edge of a table near you. Now move your finger rapidly back and forth
along this edge. Clearly this motion lies along a straight line. As your fingertip
changes speed and direction, however, it travels different spans of distance in equal
time periods. During a spell in which it is at rest on the table edge, your fingertip
traces out a vertical portion of its worldline on the spacetime map. When it moves
slowly to the right on the table, it traces out a worldline inclined slightly to the right
of vertical on the map. When it moves rapidly to the left, your fingertip leaves a
spacetime trail inclined significantly to the left on the map. Changing inclination of
the worldline from point to point results 1n a curved worldline. Your finger moves
straight in space but follows a curved worldline in spacetime!

Figure 5-6 shows a curved worldline, not for a locomotive, but for a particle
constrained to travel down the straight track of a linear accelerator. The particle starts
at the reference clock at the time of the reference event (O on the map). Initially the
particle moves slowly to the right along the track. As time passes —advancing upward
on the spacetime map — the particle speed increases to a large fraction of the speed of
light. Then the particle slows down again, comes to rest at event Z, with a vertical
tangent to its worldline at that event. Thereafter the particle accelerates to the left in
space until it arrives at event P.

What possible worldlines are available to the particle that has arrived at event P? A
material particle must move at less than the speed of light. In other words, it travels less
than one meter of distance in one meter of time. Its future worldline makes an “‘angle
with the vertical”” somewhere between plus 45 degrees and minus 45 degrees when
space and time are measured in the same units and plotted to the same scale along
horizontal and vertical axes on the graph. These limits of slope — which apply to every
point on a particle worldline—are shown as dashed lines emerging from event P in
Figure 5-6 (and also from event 0).

limits on worldline slope FIGURE 5-6. Curved laboratory
worldline of a particle that
changes speed as it moves along a
straight line in space. Some possible
worldlines available to the particle
after event P.
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The worldline gives a complete description of particle motion in spacetime. As
drawn in the spacetime map for any frame, the worldline tells position and velocity of
the particle at every event along its trail. In contrast, the trajectory or orbit or path
shape of a particle in space does not give a complete description of the motion. To
complete the description we need to know when the particle occupies each location on
that trajectory. A worldline in a spacetime map automatically displays all of this
information.

The spacetime map provides a tool for retrospective study of events that have
already taken place and have been reported to the free-float observer who plots them.
Once she plots these event points, this analyst can trace already plotted worldlines
backward in time. She can examine at a single glance event points that may have
occutred light-years apart in space. These fearures of the spacetime map do not violate
our experience that time moves only forward or that nothing moves faster than light.
Everything plotted on a spacetime map is history; it can be scanned rapidly back and
forth in the space dimension or the time dimension or both. The spacetime map
supplies a comprehensive tool for recognizing partterns of events and teasing out laws
of nature, but it is useless for influencing the events it represents. -

5.5 LENGTH ALONG A PATH

as shortest length between two
1 space

Distance is a central idea in all applications of Euclidean geometry. For instance, using
a flexible tape measure it is easy to quantify the total distance along a winding path
that starts at one point (point O in Figure 5-7) and ends at another point (point B).
Another way to measure distance along the curved path is to lay a series of short
straight sticks end to end along the path. Provided the straight sticks are short enough
to conform to the gently curving path, total distance along the path equals the sum of
lengths of the sticks.

The length of a short stick laid between any two nearby points on the path — for
instance, points 3 and 4 in Figure 5-7 — can also be calculated using the northward
separation and the eastward separation between the two ends of the stick as measured
by a surveyor.

(length)? = (northward separation)? + (eastward separation)?

Distance is invariant for surveyors. Therefore the length of this stick is the same when
calculated by any surveyor, even though the northward and eastward separations
between two ends of the stick have differenc values, respectively, for different survey-
ors. The length of another stick laid elsewhere along the path is also agreed on by all
surveyors despite their use of different northward directions. Therefore the sum of the
lengths of all short sticks laid along the path has the same value for all surveyors. This
sum equals the value of the total length of the path, on which all surveyors agree. And
this total length is just the length measured using the flexible tape.

It is possible to proceed from O to B along quite another path — for example along
straight line OB in Figure 5-7. The length of this alternative path is evidently different
from that of the original curved path. This feature of Euclidean geometry is so well
known as to occasion hardly any comment and certainly no surprise: In Euclidean
geometry a curved path between two specified points is longer than a straight path
between them. The existence of this difference of length between two paths violates no
law. No one would claim that a tape measure fails to perform properly when laid along
a curved path.
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Spacetime map displays only
already detected events

Measure length of curved path
with tape measure . . .

. or with short straight sticks
laid end to end along path

All surveyors agree on
length of path
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Straight path in space has
shortest length

Measure proper time along
curved worldline with
wristwatch . . .
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FIGURE 5-7. Length along a winding path starting at the town square, Notice that the total length
along the winding path from point O to point B is greater than the length along the straight northward axis
from O to B.

Among all possible paths between two points in space, the straight-line path is
unique. All surveyors agree that this path has the shortest length. When we speak of
“the distance between two points,” we ordinarily mean the length of this straight
path. e

5.6 WRISTWATCH TIME ALONG A
WORLDLINE

straight worldline has longest proper time
between fwo given evenfs in spacefime

A curved path in Euclidean space is determined by laying down a flexible tape measure
and recording distance along the path’s length. A curved worldline in Lorentz space-
time is measured by carrying a wristwatch along the worldline and recording what it
shows for the elapsed dme. The summed spacetime interval — the proper time read
directly on the wristwatch— measures the worldline in Lorentz geometry in the same
way that distance measures path length in Euclidean geometry.

A particle moves along the worldline in Figure 5-8. This particle carries a wrist-
watch and a sparkplug; the sparkplug fires every meter of time (1, 2, 3,4, . . . )as
read off the particle’s wristwatch. The laboratory observer notes which of his clocks the
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FIGURE 5-8. Proper time along a curved worldline, Notice that the total proper time along the curved
worldline from event O to event B is smaller than the proper time along the straight line from O o B.
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traveling particle is near every time the sparkplug fires. He plots that location and that
lattice clock time on his spacetime map, tracing out the worldline of the particle. He
numbers spatk points sequentially on the resulting worldline, as shown in Figure 5-8,
knowing that these numbers register meters of time recorded on the moving wrist-
watch.

Consider the spacetime interval between two sequential numbered flashes of the
sparkplug, for instance those marked 3 and 4 in the figure. In the laboratory frame
these two sparks are separated by a difference in position and also by a difference in
time (the time between them). The squared interval — the proper time — between the
sparks is given by the familiar spacetime relation:

(proper time)? = (difference in time)? — (difference in position)?
prop p

What about the proper time between sparks 3 and 4 calculated from measurements
made in the sparkplug frame? In this frame, both sparks occur at the same place,
namely at the position of the sparkplug. The difference in position between the sparks
equals zero in this frame. As a result, the time difference in the sparkplug frame —the
“wristwatch time” —is equal to the proper time between these two events:

(proper time)? = (1 meter)? — (zero)®> = (1 meter)? [recorded on traveling wristwatch]

This analysis assumes that sparks are close together in both space and time. For
sparks close enough together, the velocity of the emitting particle does not change
much from one spark to the next; the particle velocity is effectively constant between
sparks; the piece of curved worldline can be replaced with a short straight segment.
Along this straight segment the particle acts like a free-float rocket. The proper time is
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invariant in free-float rocket and free-float laboratory frames. Thus the laboratory
observer can compute the value of the proper time between events 3 and 4 and predict
the time lapse — one meter — on the traveling wristwatch, which measures the proper
time directly.

Elsewhere along the worldline the particle moves with a different speed. Neverthe-
less the proper time between each consecutive pair of sparks must also be independent
of the free-float frame in which that interval is reckoned. For sparks close enough
together, this proper time equals the time read directly on the wristwatch.

All observers agree on the proper time between every sequential pair of sparks
emitted by the sparkplug. Therefore the sum of of all individual proper times has the
same value for all observers. This sum equals the value of the total proper time, on
which all free-float observers agree. And this total proper time is just the wristwatch
time measured by the traveling sparkplug.

In brief, proper time is the time registered in a rocket by its own clock, or by a person
through her own wristwatch or her own aging. Like aging, proper time is cumulative.
To obtain total proper time racked up along a worldline between some marked
starting event and a designated final event, we first divide up the worldline into
segments so short that each is essentially “‘straight”” or ““free-float.” For each segment
we determine the interval, that is, the lapse of proper time, the measurement of aging
experienced on that segment. Then we add up the aging, the proper time for each
segment, to get total aging, total wristwatch time, total lapse of proper time.

An automobile may travel the most complicated route over an entire continent, but
the odometer adds it all up and gives a well-understood number. The traveler through
the greater world of spacetime, no matter how many changes of speed or direction she
undergoes, has the equivalent of the odometer with her on her journey. It is her
wristwatch and her body — her aging. Your own wristwatch and your biological clock
automatically add up the bits of proper time traced out on all successive segments of
your worldline.

It is possible to proceed from event O to event B along quite another worldline — for
example, along the straight worldline OB in Figures 5-8 and 5-9 (bottom). The proper
time from O to B along this new worldline can be measured directly by a flashing clock
that follows this new worldline. It can also be calculated from records of flashes
emitted by the clock as recorded in any laboratory or rocket frame.

Total proper time along this alternative worldline has a different value than total
proper time along the original worldline. In Lorentz geometry a curved worldline
between two specified events is shorter than the direct worldline between them —
shorter in terms of total proper time, total wristwatch time, total aging.

Total proper time, the aging along any given worldline, straight or curved, is an
invariant: it has the same value as reckoned by observers in all overlapping free-float
frames. This value correctly predicts elapsed time recorded directly on the wristwatch
of the particle that travels this worldline. It correctly predicts the aging of a person or a
mouse that travels this worldline. A different worldline between the same two events
typically leads to a different value of aging—a new value also agreed on by all
free-float observers: Aging is maximal along the straight worldline between two
events. This uniqueness of the straight worldline is also a matter of complete agree-
ment among all free-float observers. All agree also on this: The straight worldline is the
one actually followed by a free particle. Conclusion: Between two fixed events, a free
particle follows the worldline of maximal aging. This more general prediction of the
worldline of a free particle is called the Principle of Maximal Aging. It is true not
only for “‘straight”” particle worldlines in the limited regions of spacetime described by
special relativity but also, with minor modification, for the motion of free particles in
wider spacetime regions in the vicinity of gravitating mass. The Principle of Maximal
Aging provides one bridge between special relativity and general relativity.

The stark contrast between Euclidean geometry and Lorentz geometty is shown in
Figure 5-9. In Euclidean geometry distance between nearby points along a curved
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FIGURE 5-9. Path in space: In Euclidean geometry the curved path has greater length. Worldline in
spacetime: In Lotentz geometry the curved worldline is traversed in shorter proper time.

path is always equal to or greater than the northward separation between those two
points. In contrast, proper time between nearby events along a curved worldline is
always equal to or /ess than the corresponding time along the direct worldline as
measured in that frame.

Stark contrast between Euclidean
" and Lorentz geometries
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The difference of proper time between two alternative worldlines in spacetime
violates no law, just as the difference of length between two alternative paths in space
violates no law. There is nothing wrong with a wristwatch that reads different proper
times when carried along different worldlines between events 0 and B in spacetime,
just as there is nothing wrong with a tape measure thar records different lengths for
different paths between points O and B in space. In both cases the measuring device is
simply giving evidence of the appropriate geometry: Euclidean geometry for space,
Lorentz geometry for spacetime.

In brief, the determination of cumulative interval, proper time, wristwatch time,
aging along a worldline between two events is a fundamental method of comparing
different worldlines that connect the same two events.

Among all possible worldlines between two events, the straight worldline is unique.
All observers agree that chis worldline is scraight and has the longest proper time—
greatest aging —of any possible worldline connecting these events. -

5.7 KINKED WORLDLINE

roridiine decreases aging along

The change in slope of the worldline from event to event in Figures 5-8 and 5-9
(bottom) means that the clock being carried along this worldline changes velocity: It
accelerates. Different clocks behave differently when accelerated. Typically a clock can
withstand a great acceleration only when it is small and compact. A pendulum clock is
not an accurate timepiece when carried by car through stop-and-go traffic; a wrist-
watch is fine. A wristwatch is destroyed by being slammed against a wall; a radioactive
nucleus is fine. Typically, the smaller the clock, the more acceleration it can withstand
and still register properly, and the sharper can be the curves and kinks on its worldline.
In all figures like Figures 5-8 and 5-9 (bottom), we assume the ideal limit of small
(acceleraton-proof) clocks.

We are now free to analyze a motion in which particle and clock are subject to a
great acceleration. In particular, consider the simple special case of the worldline of
Figure 5-8. That worldline gradually changes slope as the particle speeds up and slows
down. Now make the period of speeding up shorter and shorter (great driving force!);
also make the period of slowing down shorter and shorter. In this way come eventually
to the limiting case in which episodes of acceleration and deceleration — curved
portions of the worldline —are too short even to show up on the scale of the spacetime
map (worldline OQB in Figure 5-10). In this simple limiting case the whole history of
motion is specified by (1) initial event 0, (2) final event B, and (3) turnaround event Q,
halfway in time between O and B. In this case it is particularly easy to see how the lapse
of proper time between O and B depends on the location of the halfway event—and
thus to compare three worldlines, OPB, OQB, and ORB.

Path OPB is the worldline of a particle that does not move in space; it stays next to
the reference-frame clock. Proper time from O to B by way of P is evidently equal to
time as measured in the free-float frame of this reference clock:

(total proper time along OPB) = 10 meters of time

In contrast, on the way from O to Bvia R, for each segment the space separation equals
the time separation, so the proper time has the value zero:



5.7 KINKED WORLDLINE

space = O meters FIGURE 5-10. Three alternative
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(proper time along leg OR)? = (time)? — (space)?
= (5 meters)? — (5 meters)?
=0
(total proper time along ORB) = 2 X (proper time along OR)
=0

As far as we know, only three things can travel 5 meters of distance in 5 meters of
time: light (photons), neutrinos, and gravitons (see Box 8-1). No material clock can
travel at light speed. Therefore the worldline ORB is not actually attainable by a
matetial particle. However, it can be approached arbitrarily closely. One can find a
speed sufficiently close to light speed —and yet less than light speed —so that a trip
with this speed first one way then the other will bring an ideal clock back to the
reference clock with a lapse of proper time that is as short as one pleases. In the same
way we can, in principle, go to the star Canopus and back in as short a round-trip
rocket time as we choose (Section 4.8).

As distinguished from the limiting case ORB, worldline OQB demands an amount
of proper time that is greater than zero but still less than the 10 meters of proper time
along the direct worldline OPB:

(proper time along leg 0Q)? = (5 meters)? — (4 meters)?
= 25 (meters)? — 16 (meters)?
= 9 (meters)?
= (3 meters)?

SO

(proper time along leg 0Q) = 3 meters
and

(total proper time along both legs OQB) = 2 X (proper time along 0Q)
= 6 meters

This is less proper time than (proper time along OPB) = 10 meters that characterized
the “‘direct’”” worldline OPB. Our trip to Canopus and back desctibed in Chapter 4
follows a worldline similar to OQB. -
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Zero proper time for light

Reduced proper time along
kinked worldline
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SAMPLE PROBLEM 5-1

MORE IS LESS

In the spacetime map shown, time and space are measured in years. A table shows space
and time locations of numbered events in this frame.

SPACE AND TIME

LOCATIONS OF EVENTS
Space  Time

(years)  (years)
Event 1 1 0
Event 2 1 1
Event 3 -0.5 3
Event 4 2 é

—— space =
Two alternative worldlines between events 1 and 4

One traveler moves along the solid straight worldline segments from event 1 to
events 2, 3, and 4. Calculate the time increase on her clock between event 1 and
event 2; between event 2 and event 3; between event 3 and event 4, Calculate
total proper time— her aging — along worldline 1, 2, 3, 4.

Another traveler, her twin brother, moves along the straight dotted worldline
from event 1 directly to event 4. Calculate the time increase on his clock along the
direct worldline 1, 4,

Which twin (solid-line traveler or dotted-line traveler) is younger when they
rejoin at event 4?

SOLUTION

a.

From the table next to the map, space separation between events 1 and 2 equals
0. Time separation equals | year. Therefore the interval is reckoned from
(interval)? = 12 — 0? = 12, Thus the proper time lapse on a clock carried between
events 1 and 2 equals 1 year.

Space separation between event 2 and event 3 equals 1 — (—0.5) = 1.5
light-years, Time separation equals 2 years. Therefore the square of the interval is
22 —(1.5)> =4 — 2.25 = 1.75 (years)? and the advance of proper time equals
the square root of this, or 1.32 years.

Between event 3 and event 4 space separation equals 2.5 light-years and time
separation 3 years. The square of the interval has the value 32 — (2.5)2 =9 —
6.25 = 2.75 (years)? and proper time between these two events equals the square
root of this, or 1.66 years.
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Total proper time—aging—along worldline 1, 2, 3, 4 equals the sum of
proper times along individual segments: 1 + 1.32 + 1.66 = 3.98 years.

b. Space separation between events 1 and 4 equals 1 light-year. Time separation is 6
years. The squared interval between them equals 62 — 12 = 36 — 1 = 35
(years)?. A traveler who moves along the direct worldline from event 1 o event 4
records a span of proper time equal to the square root of this value, or 5.92 years.

c. The brother who moves along straight worldline 1, 4 ages 5.92 years during the
ttip. The sister who moves along segmented worldline 1, 2, 3, 4 ages less: 3.98
years. As always in Lorentz geometry, the direct worldline (shown dotted) is
longer—that is, it has more elapsed proper time, greater aging— than the
indirect worldline (shown solid).

5.8 STRETCH FACTOR

atio of frame-clock time to wristwatch fime

A speeding beacon emits two flashes, F and §, in quick succession. These two flashes,

as recorded in the rocket that carries the beacon, occur with a 6-meter separation in

time but a zero separation in space. Zero space separation? Then 6 meters is the value

of the interval, the proper time, the wristwatch time between Fand §. As registered in

the laboratory, in contrast, the second flash § occurs 10 meters of time later than the

first flash F. The ratio between this frame time, 10 meters, and the proper time, 6

meters, between the two events we call the time stretch factor, or simply stretch

factor. Some authors use the lowercase Greek letter gamma, , for the stretch factor,

as we do occasionally. We will also use the Greek letter tau, T, for proper time.
The same two events register in the super-rocket frame that overtakes and passes the

beacon — register with a separation in time of 20.88 meters. In this frame, the time

stretch factor between the two events is (20.88)/6 = 3.48. In the beacon frame the Time lopse mini for f

stretch factor is unity: 6/6 = 1. Why? Because in this beacon frame flashes Fand § r:“::hi c!? sev:_:::“;gr‘:“ ;:::;

occur at the same place, so beacon-frame clocks record the proper time directly. This  place

proper time is less than the time between the two flashes as measured in either

laboratory or super-rocket frame. The larger value of time observed in laboratory and

super-rocket frames shows up in Figure 5-11 (center and right). Among all conceiv-

able frames, the separation in time between the two flashes evidently takes on its

minimum value in the beacon frame itself, the value of the proper time 7.

Different reference frames:
different times between two events

Hold it! In Sections 5.6 and 5.7 you insisted that the time along a straight worldline is
a MAXIMUM. Now you show us a straight worldiine along which the time is— you
say—a MINIMUM. Maximum or minimum? Please make up your mind!

The worldline taken by the beacon wristwatch from F to § is straight. It is straight
whether mapped in the beacon frame itself or in the rocket or super-rocket frame.
The beacon racks up 6 meters of proper time regardless of the frame in which we
reckon this time. When we turn from this wristwatch tdme to what different
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FIGURE 5-12. Figure 5-10 stripped down
to emphasize total proper time (wrist-
watch time), printed boldface along two
different worldlines between the same two
events O and B in a given reference frame.
Among all possible worldlines connecting events
O and B, the straight worldline registers maxi-
mal lapse of proper time.
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rocke_t time

laboratory time

super-rocket time

*

“s

oy

> >
*super-rocket

+* laboratory

space space space
LABORATORY ROCKET SUPER-ROCKET
t;= 10 meters . = 6 meters t". = 20.88 meters

FIGURE 5-11. Spacetime maps of Figure 5-3, modified to show the worldline of the speeding
beacon (heavy dashed line) and the segment of this line between emission F of the first flash and
the second flash S (solid section of worldline). Emission'F is taken as the zero of space and time. Time tg
of the second emission S is different as recorded in different frames. The shortest time is recorded in that frame
in which the two events occur at the same place— in this case the rocket frame.

free-float frames show for the separation in map time (latticework time, frame time)
between the two flashes, however, the record displays a minimal value for that
separation in time only in the beacon frame itself.

In contrast, Figure 5-12 (Figure 5-10 in simplified form) shows two different
worldlines that join events O and B mapped in the same reference frame. In this case
we compare two different proper times: a proper time of 10 meters racked up by a
wristwatch carried along the direct course from O to B, and a proper time of 6 meters
recorded by the wristwatch carried along on the kinked worldline OQB. In every such
comparison made in the context of flat spacetime, the direct worldline displays
maximum proper time. Caution: Conditions can be different in curved spacetime
(Chapter 9).

In summary, two points come to the fore in these comparisons of the time between
two events. (1) Are we comparing map time (frame time, latticework time) between
those two events, pure and simple, free of any talk about any worldline that might
connect those events? Then separation in time between those events is least as
mapped in the free-float frame that shows them happening at the same place. (2) Or
are we directing our attention to a worldline that connects the two events? More
specifically, to the time racked up by a wristwatch toted along that worldline? Then
we have to ask, is that worldline straight? Then it registers maximal passage of
proper time. Or does it have a kink? Then the proper time racked up is not maximal.

When we find ourselves in a free-float frame and see a beacon zooming past in a
straight line with speed v, how much is the factor by which our frame-clock time is
stretched relative to the beacon wristwatch time? Answer: The stretch factor is

(stretch factor) =y = m (5-1)

How derive this famous formula? If you do not cover up the following lines and
derive this answer on your own, here is the reasoning: Start with measurements in the
laboratory frame. We know that for this rocket

(advance in proper time)? = (advance in lab time)? — (lab distance covered)?

However, we want to compare lapses in laboratory time and proper time; laboratory
distance covered is not of interest. For the laboratory observer the proper clock moving
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along a straight worldline covers the distance between the two events in the time
between the events. Therefore this distance and time are related by particle speed:

(lab distance covered) = (speed) X (advance in lab time)
Substitute this expression into the equation for proper time:

(proper time)? = (lab time)? — (speed)? X (lab time)?
= (lab time)? [1 — (speed)?}

This leads to an expression for the square of the stretch factor:

(lab time)? 1 1
————— = (stretch factor)? = =
(proper time)? 1 — (speed)? 1— 22

where we use the symbol v = v_,,/c for speed. The equation for the stretch factor
becomes

(stretch factor) =y = m (5-1)

The stretch factor has the value unity when » = 0. For all other values of v the stretch
factor is greater than unity. For very high relative speeds, speeds close to that of light
(v — 1), the value of the stretch factor increases without limit.

The value of the stretch factor does not depend on the direction of motion of the
rocket that moves from first event to second event: The speed is squared in equation
(5-1), so any negative sign is lost.

The stretch factor is the ratio of frame time to proper time between events, where
speed (= v) is the steady speed necessary for the proper clock to pass along a straight
worldline from one event to the other in that frame.

The stretch factor also describes the Lorentz contraction, the measured shortening of a
moving object along its direction of motion when the observer determines the distance
between the two ends a¢ the same time. For example, suppose you travel at speed v
between Earth and a star that lies distance L away as measured in the Earth frame. Your
trip takes time # = L/v in the Earth-linked frame. Proper time T—your wristwatch
time — is smaller than this by the stretch factor: T= L /[ X (stretch factor)} = (L/7) (1
— v?)1/2, Now think of a very long rod that reaches from Earth to star and is at rest in the
Earth frame. How long is that rod in your rocket frame? In your frame the rod is moving at
speed ». One end of the rod, at the position of Earth, passes at speed ». A time T later in
your frame the other end of the rod arrives —along with the star— also moving at speed
v according to your rocket measurements. From these data you calculate that the length of
the rod in your rocket frame—call it L’ —is equal to L’ =0T =9(L/v) (1 — v})12=L
(1 — »?)'/2, This is a valid measute of length. By this method the rod is méasured to be
shorter.

Finally, the stretch factor is often used as an alternative measure of particle speed: A
patticle moves with a speed such that the stretch factor is 10. This statement assumes
that the particle is moving with constant speed, so that the separation between any pair
of events on the particle worldline has the same stretch factor as the separation between
any other pair. This way of describing particle speed can be both convenient and
powetful. We will see (Chapter 7) that the total energy of a patticle is proportional to
the stretch factor.
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Stretch factor
= frame time/proper time

Stretch factor derived

Lorentz-contraction by
same ‘‘stretch’’ factor

Stretch factor as a measure
of speed
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SAMPLE PROBLEM 5-2

ROUND TRIP OBSERVED IN A (&
DIFFERENT FRAME

Return to the alternative worldlines between
events 0 and B, shown in Figure 5-10 and the
spacetime maps in this sample problem. Measure
these worldlines from a rocket frame that moves
outward with the particle from O to Q and keeps on
going forever at the same constant velocity. Show
that an observer in this outward-rocket frame
predicts the same proper time— wristwatch

SOLUTION

time— for worldline OQB as that predicted in the
laboratory frame. Similarly show that this
outward-rocket-frame observer predicts the same
proper time along the direct worldline OPB as does
the laboratory observer. Finally, show that both
observers predict the elapsed wristwatch time
along OQB to be less than along OPB.

Here are laboratory and rocket spacetime maps for these round trips, simplified and

drawn to reduced scale,

A
time
Iiie l
B -
3
10, Q /
3 Q
O —— space —» O —— space —»
LABORATORY OUTWARD-ROCKET
SPACETIME MAP SPACETIME MAP

Laboratory and outward-rocket spacetime maps, each showing alternative worldlines (direct
OPB and indirect OQB) between events O and B, Laboratory spacetime map: Figure 5-10,
redrawn to a different scale. Proper times are shown on the laboratory spacetime map. Outward-rocket
spacetime map: The rocket in which the outgoing particle is at rest. Portions of two invariant hyperbolas
show how events Q and B transform. The direct worldline OPB has longer total proper time— greater

aging—as computed using measurements from either frame.

Find x’g and #'g: First compure space and time locations of events Q and B in the
outgoing rocket frame — right-hand map. (Event O is the reference event, x=0and r =
0 in all frames by convention.) We choose the rocket frame so that the worldline segment
00 lies vertical and the outbound rocket does not move in this frame. As a result, event Q
occurs at rocket space origin: x’g = 0. (Primes refer to measurements in the outward-
rocket frame.) The rocket time #’, for this event is just the wristwatch time between Oand
0, because the wristwatch is at rest in this frame: 'y = 3 meters.

In summary, using a prime for rocket measurements:

¥ o= 3 meters
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Find x’g and #': In the laboratory frame, the particle moves to the right from event O to
event (), covering 4 meters of distance in 5 meters of time. Therefore its speed is the
fraction v = 4/5 = 0.8 of light speed. As measured in the rocket frame, the laboratory
frame moves to the /eft with speed » = 0.8 , by symmetry. Use equation (5-1) with v =
0.8 to compute the value of the stretch factor:

1 1 1 1 1 _10_5

[l =22 B [1—(0.8)2}/2 - [1—0.6417 - [0.3612 06 6 3

This equals the ratio of rocket time period #' 5 to proper time T along the direct path OPB.
Hence elapsed rocket time #' 5= (5/3) X 10 meters = 50/3 meters of time. In this time,
the laboratory moves to the left in the rocket frame by the distance x’y = — o'y =
—(4/5) (50/3) = —200/15 = —40/3 meters. In summary for outgoing rocket:

40 1
X g= —3 meters =— 155 meters

5 2
V= 5 mewens = 16-3— meters of time
Events Q and B are plotted on the rocket spacetime map.

Compare Wristwatch Times: Now compute the total proper time — wristwatch
time, aging— along alternative worldlines OPB and OQB using rocket measurements.
Direct worldline OB has proper time T given by the regular expression for interval:

2 2
(Ton) = (on — (¥ op)* = (5;0) = (—4—30)

_ 2500 1600 _ % = 100 (meters)?

9 2

whence Tgg = 10 meters computed from rocket measurements. This is the same value as
computed in the laboratory frame (in which proper time equals laboratory time, since
laboratory separation in space is zero).

Worldline OQB has two segments. On the first segment, 0Q, proper time lapse is just
equal to the rocket time span, 3 meters, since the space separation equals zero in the rocket
frame. For the second segment of this worldline, OB, we need to compute elapsed time in
this frame:

50 .50 9 41

_.__—3..__-—_=_

3 3 3 3

Therefore,
41\2 40\2
(rqn)* = (#'gp)* — (' gp) = (?) - (?)

=—— — ——=—=9 (meters)?

whence Tgg = 3 meters. So the total increase in proper time—the total aging —along
worldline OQB sums to 3 + 3 = 6 meters as reckoned from outward-rocket measure-
ments. This is the same as figured from laboratory measurements.




160

Events and worldlines exist
independent of
any reference frame
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How can these weird results be true? In our everyday lives why don’t we bhave to take
account of clocks that record different elapsed times between events, and rods that we
measure to be contracted as they speed by us?

In answer, consider two events that occur at the same place in our frame. The proper
clock moving in spacetime between these two events has speed zero for us. In this
case the stretch factor has the value unity: the frame clock is the proper clock. The
same is approximately true for events that are much closer together in space (mea-
sured in meters) than the dme between them (also measured in meters). In these
cases the proper dock moving between them has speed v— measured in meters/
meter— that is very much less than unity. That is, the proper clock moves very
much slower than the speed of light. For such slow speeds, the stretch factor has a
value that approaches unity; the proper clock records very nearly the same time lapse
between two events as frame clocks. This is the situation for all motions on earth that
we can follow by eye. For all such ““ordinary-speed” motions, moving clocks and
stationary clocks record essentially the same time lapses. This is the assumption of
Newtonian mechanics: * Absolute, true, and mathematical time, of itself, and from
its own nature, flows equably without relation to anything external . . .”

A similar argument leads to the conclusion that Lorentz contraction is negligible
for objects moving at everyday speeds. Newton's mechanics—with its unique
measured time between events and its unique measured length for an object whether
or not it moves— gives correct results for objects moving at everyday speeds. In
contrast, for particle speeds approaching light speed (approaching one meter of
distance traveled per meter of elapsed time in the laboratory frame), the denomina-
tor on the right of equartion (5-1) approaches zero and the strecch factor increases
without limit. Increased without limit, also, is the laboratory time between ticks of
the zooming particle’s wristwatch, This is the case for high-speed particles in
accelerators and for cosmic rays, very high-energy particles (mostly protons) that
continually pour into our atmosphere from space. Newton's mechanics gives results
wildly in error when applied to these particles and their interactions; the laws of
relativistic mechanics must be used.

More than one cosmic ray has been detected (indirectly by the resulting shower of
particles in the atmosphere) moving so fast that it could cross our galaxy in 30 seconds

as recorded on its own wristwatch. During this trip a thousand centuries pass as
recorded by clocks on Earth! (See Exercise 7-7.) -

5.9 TOURING SPACETIME WITHOUT A
REFERENCE FRAME

all you need is worldlines and events

An explosion is an explosion. Your birth was your birth. An event is an event. Every
event has a concreteness, an existence, a reality independent of any reference frame. So,
t0o, does a worldline that connects the trail of event points left by a high-speed
sparkplug that flashes as it streaks along. Events mark worldlines, independent of any
reference frame.

Worldlines also locate events. The intersection of two worldlines locates an event as
clearly and sharply as the intersection of two straws specifies the place of a dust speck in
a great barn full of hay (Figure 5-13). To say that an event marks a collision between
two particles is identification enough. The worldlines of those two particles are rooted
in the past and stretch out into the future. They have a rich texture of connections with
nearby worldlines. The nearby worldlines in turn are linked in a hundred ways with
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FIGURE 5-13. The crossing of straws in a barn full of bay is a symbol for the worldlines that fill up
spacetime. By their crossings and jogs, these worldlines mark events with a uniqueness beyond all need of
reference frames. Straight worldlines track particles with mass; wiggly worldlines trace photons. Typical
events symbolized in the map (black dots) from left 1o right: absorption of a photon; reemission of a photon;
collision between a particle and a particle; collision between a photon and another particle; another collision
between a photon and a particle; explosion of a firecracker; collision of a particle from outside with one of the
[fragments of that firecracker.

—— space —»

worldlines more remote. How then does one tell the location of an event? Tell first
what worldlines thread the event. Next follow each of these worldlines. Name
additional events that they encounter. These events pick out further worldlines.
Eventually the whole barn of hay is cataloged. Each event is named. One can find one’s
way as surely to a given intersection as the London dweller can pick her path to the
meeting of St. James's Street and Piccadilly. No numbers giving space and time
location of an event in a given reference frame. No reference frame at all!

Most streets in Japan have no names and most houses no numbers. Yet mail is
delivered just the same. Each house is named after its senior occupant, and everyone
knows how the streets interconnect these named houses. Now print the map of
Japanese streets on a rubber sheet and stretch the sheet this way and that. The postal
carrier is not fooled. Each house has its unique name and the same interconnections
with neighbor houses as on the unstretched map. So dispense with all maps! Replace
them with a catalog or directory that lists each house by name, notes streets passing the
house, and tabulates the distance to each neighboring house along the streets.

Similarly, the visual pattern of event dots on a spacetime map (spacetime diagram)
and the apparent lengths of worldlines that connect them depend on the reference
frame from which they are observed (for example, compare alternative spacetime
maps of the same worldline shown in the figure in Sample Problem 5-2). However,
each named event is the same for every observer: the event of your birth is unique to
you and to everyone connected with you. Moreover, the segment of a worldline that

Locate house at intersection
of streets

Locate event at intersection
of worldlines
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describe Nature
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connects one event with the next has a unique magnitude— the interval or proper
time—also the same for every observer. Therefore dispense with reference frames
altogether! Replace them with a catalog or directory that lists each event by name,
notes each worldline that threads the event, and tabulates the interval that connects the
event with the next event along each worldline. With this directory in hand we can say
precisely how all events are interconnected with each other and which events caused
which other events. That is the essence of science; in principle we need no reference
frames.

Bur reference frames are convenient. We are accustomed to them. Most of us prefer
to live on named streets with numbered houses. Similarly, most of us speak easily of
space separations between events and time separations between the same events as if
space and time separations were unconnected. In this way we enjoy the concreteness of
using our latticework of rods and clocks while suffering the provinciality of a single
reference frame. So be it! Nevertheless, with worldlines Nature gives us power to relate
events—to do science— without reference frames at all. -

5.10 SUMMARY

straighter worldline? greater aging!

Events? Yes. Each event endowed with its own location in that great fabric we call
spacetime? Yes. But time? No point in all that fabric displays any trace of anything we
can identify with any such thing as the “‘time" of that event. Label that event with a
“time’’ anyway? Sure. No one can stop us. Moreover, such labeling often proves quite
useful. But it is owr labeling! A different reference frame, a different wristwatch
brought to that event along a different worldline yields a different time label for that
event.

For our own convenience, then, we plot events on a spacetime map (spacetime
diagram) for a particular free-float frame and its latticework of rods and clocks. This
map can be printed on the page of a book if events are limited to one line in space.
Distance along this line is plotted horizontally on the spacetime map, with time of the
event plotted vertically (Section 5.1). The time and space values of an event are
measured with respect to a common reference event, plotted at the origin of the
spacetime map. The invariance of the interval: (interval)> = (time)? — (distance)?
between an event and the reference event corresponds to the equation of a hyperbola,
the same hyperbola as plotted on the spacetime map of every overlapping free-float
frame. The event point lies somewhere on the same invariant hyperbola as plotted
on every one of these spacetime maps (Sections 5.2 and 5.3).

Billions of events sparkle like sand grains scattered over the spacetime map. A given
event is unconnected to most other events on the map. Here we pay attention to
particular strings of events that are connected. The worldline of a particle connects in
sequence events that occur at the particle (Section 5.4). The “length” of a worldline
between an initial and a final event is the elapsed time measured on a clock carried
along the worldline between the two events (Section 5.6). This is called the proper
time, wristwatch time, or aging along this worldline. The lapse of proper time is given
the symbol 7, in contrast to the symbol # for the frame time read on the latticework
clocks in a given free-float frame.

Carry a wristwatch (or grow old!) along a worldline: This is one way to measure the
total proper time along it from some initial event (such as the birth of a person or a
particle) to some final event (such as death of a person or annihilation of a particle).
This method is direct, experimental, simple. A second method? Calculate the interval
berween each pair of adjacent events that make up the worldline, and then add up all
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these intervals, assuming that each tiny segment is short enough to be considered
straight. This method seems more bothersome and detailed, bur it can be carried out
by the observer in any free-float frame. All such observers will agree with_one
another —and with the clock-carrier— on the value of the total proper time from the
initial event to the final event on the worldline (Section 5.6).

Among all possible worldlines between two given events, the straight line is the
worldline of maximal aging. This is the actual worldline followed by a free particle
that travels from one of these two events to the other (Section 5.6).

As measured in a given free-float frame, the stretch factor = 1/(1 —#2)/2 equals
the ratio of elapsed frame time # to elapsed proper time 7 along a segment of worldline
in which the particle moves with speed » in that frame. The stretch factor is also the
Lorentz contraction factor (Section 5.8): Locate, at the same time, the front and back
ends of an object moving in a given free-float frame. These end locations will be (1 —
v?)'/2 as far apart in that frame as they are in a frame in which the object is ar rest.

Worldlines connect events. Like events, they exist independent of any reference
frame. In principle, worldlines allow us to relate events to one another—to do
science — without using reference frames at all (Section 5.9).. w=—
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PRACTICE

The spacetime diagram shows two alternative world-
lines from event 1 to event 4. The table shows coordi-
nates of numbered events in this frame. Time and
space are measured in years.

a One traveler moves along the solid segmented
worldline from event A to events B, C, and D. Calcu-
late the time increase on his wristwatch (proper clock)

(1) between event A and event B.

(2) between event B and event C.

(3) between event C and event D.

(4) Also calculate the total proper time along
worldline A, B, C, D. ‘
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Coordinates

Space  Time

—
IS
T

(years) (years)
time Event A 0 0
| 3 Event B 0 1
EventC 3.5 5
Event D 3 6
2
1¢ B
A ] ] ! ]
0 1 2 3 4

— space —>»

EXERCISE 5-1. Two alternative worldlines between initial event
A and final event D.

b His twin sister moves along the straight dotted
worldline from event A directly to event D. Calculate
the time increase on her wristwatch between events A
and D.

¢ Which twin (solid-line or dotted-line traveler)
is younger when they rejoin at event D?

The laboratory spacetime diagram in the figure shows
two worldlines. One, the vertical line labeled B, is the
worldline of an object that is at rest in this frame. The
other, the segmented line that connects events 0, 1, 2,
and 3, is the worldline of an object that moves at
different speeds at different times in this frame. The
proper time is written on each segment and invariant
hyperbolas are drawn through events 1, 2,and 3. The
event table shows the space and time locations in this
frame of the four events O, 1, 2, and 3.

a Trace the axes and hyperbolas onto a blank
piece of paper. Sketch a qualitatively correct space-
time diagram for the same pair of worldlines observed
in a frame in which the particle on the segmented
worldline has zero velocity between event 1 and event
2.

b What is the velocity, in this new frame, of the
particle moving along worldline B?

¢ On each straight portion of the segmented
worldline for this new frame write the numerical value
of the interval between the two connected events.

TRANSFORMING WORLDLINES

0

—— space —>

Event Coordinates
in the Laboratory Frame
Event0 x=0 t=0
Event1 x=3.000 +t=4.000
Event2 x=1.750 +=7.000
Event3 x=5.000 t=11.000

EXERCISE 5-2. Two worldlines as recorded in the laboratory
frame. Numbers on the segmented worldline are proper times along
each straight segment.

5-3 mapmaking in spacetime

Note: Recall Exercise 1-6, the corresponding map-
making exercise in Chapter 1.

Here is a table of timelike intervals between events,
in meters. The events occur in the time sequence
ABCD in all frames and along a single line in space in
all frames. (They do #oz occur along a single line on
the spacetime map.)

INTERVAL
to event A B C D
from
event
A 0 1.0 3.161 5.196
B 0 2.0 4.0
C 0 2.0
D 0

a Use a ruler and the hyperbola graph to con-
struct a spacetime map of these events. Draw this map
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EXERCISE 5-3. Template of hyperbolas for converting intervals into a spacetime map.

on thin paper so you can lay it over the hyperbola
graph and see the hyperbolas.

Discussion: How to start? With three atbitrary
decisions! (1) Choose event A to be at the origin of the
spacetime map. (2) Choose event B to occur at the
same place as event A. That is, event point Bis located
on the positive time axis with respect to event point A.
After plotting B, use your ruler to draw this straight
time axis through event points A and B. Keep this line
parallel to the vertical lines on the hyperbola graph in
all later constructions. (3) Even with these choices,
there are two spacetime locations (x, #) at which you
can locate the event point C; choose either of these two

spacetime locations arbitrarily. Then go on to plot
event D.

Analogy to surveying: In surveying (using Eu-
clidean geometry) you locate all points a given dis-
tance from some stake by using that stake as origin
and drawing a circle of radius equal to the desired
distance. In a spacetime map (using Lorentz geome-
try) you locate all event points a given interval from
some event by using that event point as origin and
drawing a hyperbola with nearest point equal to the
desited interval.

b Now take a new piece of paper and draw a
spacetime map for another reference frame. Choose
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event D to be at the origin of the spacetime map. This
means that all other events occur before D. Hence
turn the hyperbola plot upside down, so that the
hyperbolas open downward. Choose event B to occur
at the same place as D. Now find the locations of A
and C using the same strategy as in part a.

¢ Find an approximate value for the relative
speed of the two frames for which you have made
spacetime plots.

d Hold one of your spacetime maps up to the
light with the marks on the side of the paper facing
the light. Does the map you see from the back also
satisfy the table entries?

PROBLEMS

A wortied student writes, ‘‘Relativity must be wrong.
Consider a 20-meter pole carried so fast in the direc-
tion of its length that it appears to be only 10 meters
long in the laboratory frame of reference. Let the
runner who carries the pole enter a barn 10 meters
long, as shown in the figure. At some instant the
farmer can close the front door and the pole will be
entirely enclosed in the barn. However, look at the
same situation from the frame of reference of the
runner. To him the barn appears to be contracted to
half its length. How can a 20-meter pole possibly fit
into a 5-meter barn? Does not this unbelievable con-
clusion prove that relativity contains somewhere a
fundamental logical inconsistency?”’

EXERCISE 5-4. Fast runner with ““20-meter” pole enclosed in a
““10-meter”’ barn. In the next instant he will burst through the back
door, which is made of paper.

THE POLE AND BARN PARADOX

Write a reply to the worried student explainin
clearly and carefully how the pole and barn are treate:
by relativity without internal contradiction. Use th
following outline or some other method.

a Make two carefully labeled spacetime dia
grams, one an x# diagram for the barn rest frame, th
other an x’#" diagram for the runner rest frame. Re
ferring to the figure, take the event “Q coincides witt
A’ to be at the origin of both diagrams. In both plo
the worldlines of A, B, P, and Q. Pay attention to the
scale of both diagrams. Label both diagrams with the
time (in meters) of the event “‘Q coincides with B’
(derived from Lorentz transformation equations o1
otherwise). Do the same for the times of events ‘‘F
coincides with A" and “‘P coincides with B.”

b Discussion question: Suppose the barn has
no back door but rather a back wall of steel-reinforced
concrete. What happens after the farmer closes the
front door on the pole?

¢ Replace the pole with a line of ten tennis balls
the same length as the pole and moving together with
the same velocity as the pole. The farmer’s ten chil-
dren line up inside the barn, and each catches and
stops one tennis ball at the same time as the farmer
closes the front door of the barn. Describe the stop-
ping events as recorded by the observer riding on the
last tennis ball. Plot them on your two diagrams.

A highway patrolman aims a stationaty radar trans-
mitter backward along the highway toward oncom-
ing traffic. A detector mounted next to the transmitter
analyzes the radar wave reflected from an approach-
ing car. An internal computer uses the shift in fre-
quency of the reflected wave to reckon and display the
car’s speed. Analyze this shift in frequency as in parts
a-—e or with some other method. Treat the car as a
simple mirror and assume that the radar signals move
back and forth along one line on the highway. Radar
is an electromagnetic wave that moves with the speed
of light.

The figure shows the worldline of the car, world-
lines of two adjacent maxima of the radar wave, and
the wavelength A of incident and reflected waves.

a From the 45-degree right triangle ABC, show
that

At = vAt + A gecea
From the 45-degree right triangle DEF, show that

At = Aipiiene — VAL
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EXERCISE 5-5. Worldlines of approaching car and two radar wave maxima that reflect from the car. The speed of the car is greatly

exaggerated.

Eliminate A¢ from these two equations to find an
expression for Argecea 10 terms of Aiuaen and the
automobile speed v.

b The frequency f of radar (in cycles/second) is
related to its wavelength A in a vacuum by the for-
mula f= ¢/A, whete ¢ is the speed of light (= the
speed of radar waves in air). Derive an expression
or frequency fegecea Of the reflected radar signal in
terms of frequency f;,geq Of the incident wave and the
speed v of the oncoming automobile. Show that the
result is

f:eﬂtmcd=(1+v)fhndum

1—v

¢ For an automobile moving at a speed v =
Veoav /€ that is a small fraction of the speed of light,
assume that the fractional change in frequency of

reflected radar is small. Under this assumption, use
the first two terms of the binomial expansion

(1—2)"=1—nzfor|z| << 1

to show that the fractional change of frequency is
given by the approximate expression

— ==y

Substitute the speed of a car moving at 100 kilome-
ters/hour (= 44.7 meters /second = 60 miles/hour)
and show that your assumption about the small frac-
tional change is justified.

d One radar gun used by the Massachusetts
Highway Patrol operates at a frequency of
10.525 X 10° cycles/second. By how many cycles/
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second is the reflected beam shifted in frequency when
reflected from a car approaching at 100 kilometers/
hour?

e What discrimination between different fre-
quency shifts must the unit have if it can distinguish
the speed of a car moving at 100 kilometers/hour
from the speed of one moving at 101 kilometers/
hour?

Reference: T. M. Kalotas and A. R. Lee, American_Journal of Physics,
Volume 58, pages 187 — 188 (February 1990).

5-6 asummerevening’sfantasy

You are standing alone outdoors at dusk on the first
day of summer. You see Sun setting due west and the
planet Venus in the same direction. On the opposite
horizon the full Moon is rising due east. An alien ship
approaches from the east and lands beside you. The
occupants inform you that they are from Proxima
Centauri, which lies due east beyond the rising Moon.
They say they have been traveling straight to Earth
and that their reduced approach speed within the
solar system was such that the time stretch factor
gamma during the approach was 5/3.

At the same instant that the aliens land, you see
Sun explode. The aliens admit to you that eatlier, on
their way to Earth, they shot a laser light pulse at Sun,
which caused this explosion. They warn that Sun’s
explosion emitted an immense pulse of particles
moving at half the speed of light that will blow away
Earth’s atmosphere. In confirmation, shortly after the
aliens land you notice that the planet Venus, lying in
the direction of Sun, suddenly changes color.

You grab a passing human of the opposite sex and
plead with the aliens to take you both away from
Earth in order to establish the human gene pool else-
where. They agree and set the dials to flee in an
easterly direction away from Sun at top speed, with
time stretch factor gamma of 25/7. The takeoff is to
be 7 minutes after the alien landing on Earth.

Do you make it?

Draw a detailed Earth spacetime diagram showing
the events and worldlines of this story. Use the fol-
lowing information.

* Sun is 8 light-minutes from Earth.

Venus is 2 light-minutes from Earth.

Assume that Sun, Venus, Earth, and Moon all
lie along a single direction in space and are rela-
tively at rest during this short story. The incom-
ing and outgoing paths of the alien ship lie along
this same line in space.

+ All takeoffs and landings involve instantaneous
changes from initial to final speed.

© 52— 32=42 and (25)> — (7)*> = (24)?

A SUMMER EVENING'S FANTASY

a Plot EVENTS labeled with the following
NUMBERS.
0. your location when the aliens land (at the
origin)
Sun explodes
light from Sun explosion reaches you
Venus's atmosphete blown away
light from event 3 reaches you
you and aliens depart Earth (you hope!)
Earth atmosphere blown away

b Plot WORLDLINES labeled with the follow-
ing CAPITAL LETTERS.
A. your worldline

N

B. worldline of Earth

C. aliens’ worldline

D. worldline of Sun

E. worldline of Venus

F. worldline of light from Sun’s explosion

G. worldline of the “speed-one-half”’ pulse
of particles from Sun’s explosion

H. worldline of light emitted when Venus
loses atmosphere

J. terminal part of the worldline of the laser

cannon pulse fired at Sun by the aliens

¢ Write numerical values for the speed v =
Veony /€ ON every segment of all worldlines.

5-7 the runner on the train
paradox

A letter sent to the Massachusetts Institute of Tech-
nology by Hsien-Yen Tsao of Los Angeles poses the
following paradox, which he asserts disproves the
theory of relativity. The Chairman of the Physics
Department sends the inquiry along to you, asking
you to respond to M. Tsao. You determine to make
the answer clear, concise, decisive, and polite—a
personal test of your diplomacy and grasp of relativ-
ity.
The setting: A train travels at high speed. A
runner on the train sprints toward the back of the train
with the same speed (with respect to the train) as the
train moves forward (with respect to Earth). There-
fore the runner is not moving with respect to Earth.

The paradox: We know that, crudely speaking,
clocks on the train run “‘slow’’ compared to the Earth
clock. We also know that the runner’s clock runs
“slow”” compatred to the train clocks. Therefore the
runner’s clock should run ““doubly slow”” with respect
to the Earth clock. But the runner is not moving with
respect to Earth! Therefore the runner’s clock must
run at the same rate as the Earth clock. How can it
possibly be that the runner’s clock runs “doubly slow’
with respect to the Earth clock and also runs @ the
Ssame rate as the Earth clock?
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5-8 the twin paradox put to
rest—a worked example

Motto: The swinging line of
simultaneity tells all!

Combine the Lorentz transformation with the space-
time diagram to clear up—once and for all!—the
solution to the Twin Paradox. An astronaut travels
from Earth to Canopus (Chapter 4) at speed 2, =
99/101, arriving at Canopus #* = 20 years later ac-
cording to her rocket clock, # = 101 years later ac-
cording to Earth-linked clocks— which means that
the stretch factor ) has the value 101/20.

The key idea is “lines of simultaneity” (boxed
labels in the figure). A line of simultaneity connects
events that occur “at the same time.” But events
simultaneous in the Earth (“laboratory’) frame are
typically not simultaneous in the rocket frame (Sec-
tion 3.4). Horizontal is the line of simultaneity on the
Earth (“laboratory”) spacetime map that connects

THE TWIN PARADOX PUT TO REST—A WORKED EXAMPLE
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events occurring at the same time in the Earth frame.
Totally different — not a horizontal line! — is a line of
simultaneity on the Earth spacetime map that con-
nects events simultaneous in the outgoing astronaut
frame. To draw this line of outgoing-astronaut simul-
taneity, start with the inverse Lorentz transformation
equation for time:

= —yyx+ 2
For the outgoing astronaut, 4 = 99/101 and y =
101/20. We want the line of simultaneity that passes
through turnaround event T. So let ' = 20 years.
Then:
20 =—(99/101)(101/20)x + (101/20) ¢
Muldply through by 20/101:

400/101 = —(99/101)x + ¢

time
A
_ worldline
of Earth
RETURN

TO EARTH ¢ C
Earth clock -
reads 202 -3.96 B
= 198.04 years.

Line of simultaneity
for astronaut as she
leaves Canopus

Line of simu[luneify
for astronaut as she
arrives at Canopus

Earth clock
reads 3.96 years.

__ worldline of
returning astronaut

__ TURNAROUND
— AT CANOPUS

T worldline of
oulgoing astronaut

STARTAT —  ©
EARTH

EXERCISE 5-8. Earth spacetime map of the trip to Canopus and
back. As the astronaut arvives ar Canopus, her colleagues in ber
outgoing reference frame record along line AT events simultaneous
with this arrival, including Earth-clock reading of 3.96 years at
A. At Canopus the astronaut changes frames, thus changing the line

space ———=

of simultaneity, which swings to BT. As she leaves Canopus, ber
new colleagues take an Earth-clock recding of 198.04 years at B.
At turnaround, the ticks on the Earth clock along worldline segment
AB go from the outward-moving astronaut’s future to the incoming
astronaut’s past.
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which yields
r=0.980 x + 3.96

This is the equation for a straight line passing
through event points A and 7 in the spacetime dia-
gram. It is the line of simultaneity for the outgoing
astronaut, connecting all events simultaneous with
the arrival of the rocket at Canopus (simultaneous in
that frame). Among these events is event A, the Earth
clock reading of 3.96 years, which occurs at Earth
position x = 0. In brief, at the moment the rocket
arrives at Canopus, the Earth clock reads 3.96 years as
observed in the outgoing rocket frame.

Now the astronaut jumps to the incoming rocket
frame. This reverses the velocity of the astronaut with
respect to the Earth-linked frame — and 5o reverses the
slope of the line of astronaut simultaneity. This new
line of astronaut simultaneity passes through event
points Band T in the figure. Event Bis the Earth clock
reading of 202 — 3.96 = 198.04 years.

To go back over the astronaut trip while looking at
the spacetime map is (finally!) to solve the Twin
Paradox. As the astronaut travels outward toward
Canopus, many colleagues follow her at the same
speed, with clocks synchronized in her frame. As they
whiz past Earth, each records the reading on the Earth
clock. Later analysis leads them to agree that the time
between ticks of Earth’s clock is longer than the time
between ticks of their own outward-moving clocks.
(They say, “The Earth clock runs slow.”) At any
event point on her outward worldline, the astronaut’s
line of simultaneity slopes upward to the right in the
Earth spacetime diagram, as shown in the figure.
Simultaneous with astronaut atrival at Canopus
(event T, when #// outward-moving clocks read 20
years), one of her colleagues reads a time 3.96 years on
the Earth clock (event A).

Now the astronaut jumps from the outward-mov-
ing rocket to a returning rocket. She inherits a com-
pletely new set of colleagues, with a new set of synchro-
nized clocks. The astronaut’s new line of simultaneity
slopes upward to the left in the Earth spacetime dia-
gram. Simultaneous with her departure from Cano-
pus (event T, when #// inward-moving clocks read 20
years), one of her new colleagues reads a time 202 —
3.96 = 198.04 years on the passing Earth clock
(event B). Thereafter new colleague after new col-
league streaks past Earth, recording the fact that Earth
clock ticks are farther apart in time than the ticks on
their own clocks. (They say, ‘“The Earth clock runs
slow.”).

The analysis so far accounts for the short time
segments OA and BC recorded by the Earth clock on
its vertical worldline AC. What about the omitted

THE TWIN PARADOX PUT TO REST—A WORKED EXAMPLE

time lapse AB? This is recorded, sure enough, by the
Earth clock plowing forward along wotldline OCin its
comfortable single free-float frame. However, the
story of time AB is quite different for the turn-around
astronaut. Before she reaches turnaround at T, events
on line AB are in ber future. All those Earth clock ticks
are yet to be recorded by her outgoing colleagues.
These events lie 2bove her line of simultaneity BT as
she arrives at Canopus at T. However, as she turns
around, her line of simultaneity also slews forward,
swinging from line AT to line BT. Suddenly the
events on line AB—all those intermediate ticks of the
Earth clock—ate in the astronaut’s past. These
events lie below the line of simultaneity BT as she
starts back at T. Her outward-moving colleague reads
3.96 years on the Earth clock as she reaches Canopus;
an instant later on her clock, her new inward-moving
colleague reads 198.04 on the Earth clock.

Shall we say that the Earth clock “‘jumps ahead” as
the astronaut turns around? No! Utterly ridiculous!
For what single observer does it jump ahead? Not for
the Earth observer. Not for the outgoing set of clock-
readers. Not for the returning set of clock readers. For
whom then? Nobody! At the same time as she reaches
Canopus— old meaning of simultaneous! —the as-
tronaut’s outgoing colleague records 3.96 years for
the Earth clock. At the same time as she leaves
Canopus— new meaning of simultaneous! — her new
ingoing colleague records 198.04 years on the Earth
clock. The astronaut has nobody but herself to blame
for her misperception of a “‘jump”” in the Earth dlock
reading.

The “lost Earth time” AB in the figure makes
consistent the story each observer tells about the
clocks. Simple is the story told by the Earth observer:
“My clock ticked along steadily at the ‘proper’ rate
from astronaut departure to astronaut return. In con-
trast, ticks on the astronaut clock were far apart in
time on both the outgoing and incoming legs of her
trip. We agree that her total ticks are less than my
total ticks: she is younger than I when we meet
again.”” More complicated is the asttonaut account of
clock behavior: “Ticks on the Earth clock were far
apart in time as I traveled to Canopus; ticks on the
Earth clock were also far apart as I traveled home
again. But as I turned around, a whole bunch of Earth
clock ticks went from my future to my past. This
accounts for the larger number of total ticks on the
Earth dock than on my clock during the trip. We
agree that ] am younger when we meet again.”

So saying, the astronaut renounces her profession
and becomes a stand-up comedian.

Reference: E. Lowry, American Journal of Physics, Volume 31, page
59 (1963).



6.1 LIGHT SPEED: LIMIT ON CAUSALITY

no signal reaches us faster than light

Nine-year-old Meredith waves her toy magician's wand and shouts, '*Sun is exploding
right now!"’ Is she righe? We have no way on Earth of knowing—at least not for a
while. Sun lies 150,000 million meters from Earth. Therefore it will take 150,000
million meters of light-travel time for the first light flash from the explosion to reach
us. This equals 500 seconds— 8 minutes and 20 seconds. We will just have to wait
and see if Meredith is correct . . .

When 8 minutes and 20 seconds pass, we have evidence that Meredich was
mistaken: Looking through our special dark glasses, we see no exploding Sun.

But Meredith’s wand has started us thinking. What in the laws of nature prohibits
the wave of her wand from being the signal for Sun to explode at that same instant?
Or—more reasonably, given the awesome event— what prevents Meredith from
having instantaneous warning, so that she raises her wand simultaneously with Sun’s
explosion in order to give us (in light of later developments) a false impression of her
power?

Both questions have the same answer: “The speed of light.” Whatever her powers,
Meredith cannot affect Sun in less than 500 seconds; neither can a warning signal reach
us from Sun in less time than that. All during that intervening 500 seconds we would
see the accustomed round shape of Sun, apparently healthy as ever.

More generally, one event cannot cause another when their spatial separation is
greater than the distance light can travel in the time between these events. Light speed
sets a limit on causality. No known physical process can overcome this limit: not
gravity, not some other field, not a zooming particle of any kind. *‘Spacetime interval”
quantifies this limit on causality. Interval berween far-away events — unlike distance
between far-away points — can be zero. In this and other ways the spacetime geometry
of the real world differs fundamentally from the space geometry of Eudlid’s 2300-
year-old textbook. e~
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Signal Sun with super speed?

No, just speed of light
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Squared distance: Positive or zero

Squared interval:

Positive, zero, or negative

Timelike interval:
Time part dominates

CHAPTER 6 REGIONS OF SPACETIME

6.2 RELATION BETWEEN EVENTS:
TIMELIKE, SPACELIKE, OR LIGHTLIKE

siinntie cinn vialde thraa naceihl el s
minus sign yieias rree possinie eigl
= §

between pairs of events

Using Euclidean geomerry, a surveyor reckons the distance between two steel stakes
from the sum of the squares of the northward and eastward separations of these stakes:

(distance)? = (northward separation)? + (eastward separation)?

In consequence, in Euclidean geometry a distance—or its square—always has a
positive value or zero.

In contrast, the spacetime interval between events in Lorentz geometry arises from
the difference of squares of time and space separations:

(interval)® = (separation in time)? — (separation in space)?

In consequence of the minus sign, this equation yields a number that may be positive,
negative, or zero, depending on whether the time or the space separation predomi-
nates. Moreover, whichever of these three descriptions characterizes the interval in one
free-float frame also characterizes the interval in any other free-float frame. Why?
Because the spacetime interval between two events has the same value in all overlap-
ping free-float frames. In the threefold possibilities for an interval, nature reveals the
causal relation between events.

An interval between two events earns the name timelike or spacelike or light-
like depending on whether the time part predominates, the space part predominates,
or the time and space parts are equal, respectively, as shown in Table 6-1. For
convenience, the minus sign is placed so that the resulting squared interval is greater
than or equal to zero.

Timelike Interval: We picture the sequence of sparks emitted by a moving
sparkplug. Points representing these sparks on the spacetime map trace out the
worldline of the particle (Chapter 5). No material particle has ever been measured to
travel faster than light. Every material particle always travels /ess than one meter of
distance in one meter of light-travel time. The sparks emitted by the particle have a
greater time separation than their separation in space. In other words, the worldline of
a particle consists of events that have a timelike relation with one another and with the
initial event. We say that a material particle follows a timelike worldline.

The interval T between two timelike events reveals itself to the observer in any
free-float frame:

(timelike interval)®> = 72 = (time separation)? — (space separation)®  (6-1)

< TABLE 6-1 >
CLASSIFICATION OF THE RELATION BETWEEN TWO EVENTS
Description Squared interval is named and reckoned
Time part of interval dominates space part (timelike interval)? = 72 = (time)* — (distance)?
Space part of interval dominates time part (spacelike interval)? = 52 = (distance)? — (time)?

Time part of interval equals space part (lighdlike interval)* = 0 = (time)® — (distance)?
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left-rocket fime laboratory time right-rocket time
A A A
- | B _
lefi-rocket space laboratory space right-rocket space
== ==
LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME

FIGURE 6-1. Events A and B form a timelike pair (with event A arbitrarily chosen as reference

event), bere recorded in the spacetime maps of three free-float frames, Point B lies on a hyperbola

opening along the time axis in each frame. The shortest time between events A and B is vecorded in the
laboratory frame, the frame in which the two events occur at the same place.

Same two sparks registered in different frames? Different records for the separation
in time between those sparks. Different records for the separation in space. Same figure
for the timelike interval between them!

Nobody can keep us from tracing out on one and the same diagram (Figure 6-1)
the very different records for the separation AB that observers get in different free-float
frames. One frame? One point on the diagram. Another frame? Another point on the
diagram. And so on. These many records for the same pair of events AB trace out a
hyperbola. This hyperbola opens out in the time direction.

The two sparks, A and B— definite locations though they occupy in spacetime —
nevertheless register in different frames of reference as having different separations in
reference-frame time. Among the many conceivable frames, which one records this
separation in time as smallest? Answer: The frame in which spark B occurs at the same
place as spark A. In other words, the frame that happens to move along in sync with
the sparkplug, even if only briefly. In that frame the clock records a separation in time
between A and B identical with the dmelike interval AB.

As seen in the left-moving rocket frame in Figure 6-1, spark B lies to the right of
spark A. In contrast, spark B occurs to the left of spark A in the right-moving rocket.
The position of B relative to A depends on the reference frame from which it is
measured. For a pair of events separated by a timelike interval, labels “'right”* and
“left’’ have no invariant meaning: they are frame-dependent.

Spacelike Interval: The interval between two events A and D is spacelike when
the space part predominates over the time part. Such was the case for a possible
explosion of Sun (event A) and Meredith’s wand waving (event D), simultaneous with
A as recorded in the Earth frame (Section 6.1). Events A and D, if they occurred,
would be separated in the Earth—Sun frame by a distance of 150,000 million meters
and separated by a time of zero meters. Clearly the space part predominates over the
time part! Whenever the space part predominates, we call the relation between the two
events spacelike.

The interval s (sometimes called by the Greek letter sigma, 0) between two
spacelike events reveals itself to the observer in any free-float frame:

(spacelike interval)? = s2 = (space separation)? — (time separation)?  (6-2)

Timelike interval:
Invariant hyperbola opens
along time axis

Spacelike interval:
Space part dominates
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Spacelike interval:
Invariant hyperbola opens
along space axis

CHAPTER 6 REGIONS OF SPACETIME

Events A and D registered in different frames? Then different records for the separa-
tion in time between those events. Also different records for the separation in space.
Same numerical value for the spacelike interval between them!

We plot on another spacetime diagram (Figure 6-2) all of the very different records
for the separation AD that observers get in different free-float frames. One frame? One
point on the diagram. Another frame? Another point on the diagram. And so on.
These many records for the same pair of events AD trace out a hyperbola. This
hyperbola opens out in the space direction.

The two events, A and D— definite locations though they occupy in spacetime —
nevertheless register in different frames of reference as having different separations in
reference-frame space. Among the many conceivable frames, which one records this
separation in space as smallest? Answer: The frame in which spark D occurs at the
same ¢ime as spark A. In that frame a long stick records a separation in space between A
and D identical with the spacelike interval, AD. This is called the proper distance
between the two spacelike events.

In the Earth —laboratory frame in Figure 6-2, Meredith waves her wand (event D)
at the same time as Sun explodes (event A). In the right-moving rocket frame Sun
explodes after Meredith waves her wand. In the lefe-moving rocket frame Sun
explodes before the wand wave. For a pair of events separated by a spacelike interval,
labels ““before™ and “‘after”” have no invariant meaning: they are frame-dependent. To
allow the wand to control Sun would be to scramble cause and effect!

No particle—not even a flash of light— can move between two events connected
by a spacelike interval. To do so would require it to cover a distance greater than the
time available to cover this distance (space separation greater than time separation). In
brief, it would have to travel faster than light. This is alternative evidence that two
events separated by a spacelike interval cannot be causally connected: one of them
cannot “‘get at” the other one by any possible signal.

A lefi-rocket time A laboratory time A right-rocket time

v

> A > >
left-rocket right-rocket
space space
’
— =I—
LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME

FIGURE 6-2. The spacelike pair of events A and D (with event A arbitrarily chosen as reference
event) as recorded in the spacetime maps of three free-float frames. Point D lies on a byperbola
opening along the space axis in every rocket and laboratory frame. The shortest distance between these events
is recorded in the laboratory frame, the frame in which the two events occur at the same time. A beavy line
represents the spacetime separation AD. No particle can travel along this line; the speed would be greater
than light speed— and would be infinitely great as measured in the laboratory frame, since the particle
would have to cover the distance from A to D in zero time!
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SAMPLE PROBLEM 6-1
RELATIONS BETWEEN EVENTS (&7 )

Events 1, 2, and 3 all have laboratory locations y = z = 0. Their x and # measurements are
plotted on the laboratory spacetime map.

a. Classify the interval between events 1 and 2: timelike, spacelike, or lightlike.
b. Classify the interval between events 1 and 3.
c. Classify the interval between events 2 and 3.

event

(meters)

event|

—_—
— N W A U O N

0 1 2 3 4 5 &6 7
—— space (meters) —»

SOLUTION

a. Forevent 1, = 2 meters and x = 1 meter. For event 2, t = 7 meters and x = 4
meters. The squared interval between them: (interval)? =(7 —2)? — (4 — 1)?=
52— 3%2=25 — 9= 16 (meters)?. The time part is greater than the space part, so
the interval between these two events is timelike: T = 4 meters.

b. Forevent 1, = 2 meters and x = 1 meter. For event 3, =5 meters and x =6
meters. The squared interval berween them: (interval)? = (5 —2)? — (1 — 6)*=
32— 52=9— 25 =— 16 (meters)?. The space part is greater than the time part,
so the interval is spacelike: s = 4 meters. (For spacelike intervals, we subtract the
squared time part from the squared space part before taking the square root.)

c. Forevent 2, =7 meters and x = 4 meters. For event 3, =5 metersand x =6
meters. The squared interval between them: (interval)? = (7 — 5)* — (4 — 6)* =
22 — 22 = 4 — 4 = ( (meters)®. The time part equals the space part, so the
interval is Jightlike: it is a null interval.

Lightlike Interval (Null Interval): Two events stand in a lighdike relation
when the interval between them is zero:

Lightlike interval:
Time separation equals
space separation

(time separation)? — (space separation)® = 0
or

magnitude of (separation in time) = (distance in space) [for lightlike interval] (6-3)
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Lightlike interval:

Plotted along +45 degree lines
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An interval that is lightlike? A separation in time between two events, A and G,
identical to the distance in space between them? What does this condition mean? This:
A pulse of light can fly directly from event A and arrive with perfect timing at event G.
How come? Distance in meters between the two locations measures the meters of time
required for light to fly from one place to the other. Separation in time between the two
events represents the time available for the trip. Time available equals time needed?
Guarantee that the pulse from A arrives in coincidence with event G! More generally,
whenever the influence of one event, spreading out at the speed of light, can directly
affect a second event, then the interval between those two events rates as lightlike, zero,
null.

Only light (“‘photons”), neutrinos, and gravitons can move directly between two
events connected by a lightlike interval. Only by means of one of these light-speed
particles can the one event in a lightlike pair cause the other.

The spherical out-going pulse of light from an event, A, may trigger two widely
separated events, E and G (Figure 6-3). Does this common genesis imply that Eand G
occur at the same time? Yes and no! Yes, there’s always a free-float reference frame in
which the two daughter events appear as simultaneous. That frame—for no good
reason — we call the laboratory frame in Figure 6-3. In other frames of reference — for
example, the left-moving rocket frame in Figure 6-3 — the clocks show that E occurs
before G. There are still other frames— the righte-moving rocket frame is one—in
which the clocks register E and G in the opposite order of time. But no frame shows
either E or G in the past of A.

Hold it! Aren't spacelike separations impossible? 1 understand timelike and lightlike
separations between two events, because a particle— or at least a light flash— can
travel between them. Not even a light flash, however, can travel from ome event to a
second event separated from the first by an interval that is spacelike. The first event
cannot possibly cause the second event in the spacelike case. Therefore a spacelike
interval cannot arise in nature. So why talk about it?

left-rocket time laboratory time right-rocket time
A A A
. =
E Gy
W G_ -
A > A > A >
lefi-rocket space laboratory space right-rocket space
=== =
LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME

E

-@:—»

() (),

FIGURE 6-3. Two lightlike pairs of events AE and AG (with event A arbitrarily chosen as
reference event) as recorded in spacetime maps of three free-float frames. A flash originates at A
and spreads outward from the center of a rod at vest in the laboratory frame. Events E and G are receptions of
this flash at the two ends of the rod as recorded by different observers. In the laboratory frame, reception events

E and G occur at the same time. In the right-moving rocket frame, the rod moves to the left, so event G occurs

sooner than event E. In the left-moving rocket frame, the rod moves to the right, so event E occurs sooner than

event G.
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.= Oops! A spacelike interval between two events certainly can and does arise in nature.
~  Signals from the supernova labeled 1987A reported that event to us in 1987,
which was 150,000 years after the explosion occurred. Yet occur it did! No astron-
omer of Babylonian, Egyptian, or Greek days reported it, nor could they even know
of it. Yet it had already happened for them. That event separated itself from each of
them by a spacelike interval. Only the advance of time to the year 1987 brought
down the interval between that explosion and Earthbound observers from spacelike
to lightlike. In that year a lighe pulse carried the earliest possible report of that
explosion to our eyes. And look today? See no explosion at thart location in the sky.
The light from it has passed us by. Our present relation to that event? Timelike!
-

6.3 LIGHT CONE: PARTITION IN
SPACETIME

in vaQ ance ot the in rervail preserves cause ana

Thus far in dealing with the interval between two events, A and B, we have considered
primatily the situation in which these events lie along a single direction in space —on
the reference line where the laboratory and rocket reference clocks are located. In
contrast, the surveyors in our imaginary kingdom made use of two space dimensions
— northward and eastward. We know, however, that Euclidean space is truly three-
dimensional. A surveyor measuring hilly terrain soon appreciates the need for a third
dimension: the direction vertically upward! The measure of distance in three dimen-
sions requites a simple extension of the expression for distance in two dimensions: The
square of the distance becomes the sum of the squares of #hree mutually perpendicular
separations:

(distance)? = (north separation)? + (east separation)? + (up separation)?
Euclidean space requires three dimensions. In contrast, spacetime, which includes
the time dimension, demands four. The expression for the square of a timelike interval
now has four terms: a positive term (the square of the time separation) and three

negative terms (the squares of the separations in three space dimensions).

(interval)?> = (time separation)? — (north separation)?
— (east separation)? — (up separation)?

The three space terms can be represented by the single distance term in the equation
above, yielding

(timelike interval)? = (dme separation)? — (distance)?

(spacelike interval)? = (distance)? — (time separation)?

(lightlike interval)> = 0 = (time separation)® — (distance)?
or, for the lightlike interval,

magnitude of (separation in time) = (distance in space) [lightlike interval] {6-3)

For pairs of events with lightlike separation, the interval equals zero. The zero
interval is a unique feature of Lorentz geometry, new and quite different from

177

Interval generalized to
three space dimensions
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SAMPLE PROBLEM 6-2

EXPLETIVE DELETED (s

At 12:00 noon Greenwich Mean Time (GMT) an  circuit (event D) temporarily disables the receiving
astronaut on Moon drops a wrench on his toe and ~ amplifier at Mission Control on Earth. Take Earth
shouts “Damn!” into his helmet microphone  and Moon to be 3.84 X 10® meters apart in the
(event A), carried by a radio signal toward Earth.  Earth frame and assume zero relative motion.

At one second after 12:00 noon GMT a short

Does Mission Control on Earth hear the astronaut’s expletive?

b. Could the astronaut’s strong language have caused the short circuit on Earth?

¢.  Classify the spacetime separation between events A and D: timelike, spacelike, or
lightlike.
d. Find the proper distance or proper time between events A and D.

e. For all possible rocket frames passing between Earth and Moon, find the shortest
possible distance between events A and D. In the rocket frame for which this
distance is shortest, determine the time between the two events.

SOLUTION

a. In one second, electromagnetic radiation (light and radio waves) travels 3.0 X
108 meters in a vacuum. Therefore the radio signal does not have time to travel
the 3.84 X 10® meters between Moon and Earth in the one second available
between the events A and D as measured in the Earth frame. So Mission Control
does not hear the exclamation.

b. Nosignal travels faster than light. So the astronaut’s strong language cannot have
caused the short circuit.

c. The space part of the separation between events (3.84 X 108 meters) dominates
the time part (one second = 3.0 X 10® meters). Therefore the separation is
spacelike.

d. The square of the proper distance s comes from the expression

s2 = (space separation)? — (time separation)?
= (3.84 X 10® meters)? — (3.00 X 10® meters)?
= (14.75 — 9.00) X 10" (meters)?
= 5.75 X 10'6 (meters)?

The proper distance equals the square root of this value: s = 2.40 X 10® meters

e. The proper distance equals the shortest distance between two spacelike events as
measured in any rocket frame moving between them (Figure 6-2, laboratory
map). Hence 2.40 X 108 meters equals the shortest possible distance between
events A and D. In the particular rocket frame for which the distance is shortest,
the time between the two events has the value zero—events A and D are
simultaneous in this frame.
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SAMPLE PROBLEM 6-3
SUNSPOT )

Bradley grabs his sister's wand and waves it, be eruption of the sunspot at the surface of Sun
shouting “Sunspot!” At that very instant his fa- itself. The Earth—Sun distance equals approxi-
ther, Lloyd, who is operating a home solar obser-  mately 1.5 X 10" meters. Neglect relative motion
vatory, sees a spot appear on the face of Sun. Let  between Earth and Sun.

event E be Bradley waving the wand and event A

Is it possible that Bradley’s wand waving caused the sunspot to erupt on Sun?
b. Is it possible that the sunspot erupting on Sun caused Bradley to wave his wand?

c. Classify the spacetime separation between events A and E: timelike, spacelike, or
lightlike.

d. Find the value of proper distance or proper time between events A and E.

e. For all possible rocket frames passing between Earth and Sun, find the shortest
possible distance or the shortest possible time between events A and E.

SOLUTION

a. Light travels 1 meter of distance in 1 meter of time—or 1.5 X 10" meters of
distance in 1.5 X 10! meters of time. Hence in the Earth-Sun frame, eruption of
the sunspot (event A) occurred 1.5 X 10! meters of time before Bradley waved
the wand (event E). So Bradley’s wand waving could not have caused the
eruption on Sun.

b. On the other hand, it is possible that eruption of the sunspot caused Bradley to
wave his wand: He raises the wand in the air, looks over his father’s shoulder, and
waves the wand as the spot appears on the projection screen. (We neglect his
reaction time.)

c. Events A and E are connected by one light pulse; their space and time separations
both have the value 1.5 X 10'"* meters in the Earth frame. Therefore the
spacetime separation between them is lightlike.

d. Space and time separations between events A and E are equal. Therefore the
interval between themn has value zero. Hence proper time between them — equal
to proper distance between them —also has value zero.

e. The interval is invariant. Therefore all possible free-float rocket frames passing
between Earth and Sun reckon zero interval between events A and E. This means
each of them measures space separation between events A and E equal to the time
separation between these events. The common value of the space and time
separations are not the same for all rocket frames, but they are equal to one
another in every individual rocket frame. We are asked to find the shortest
possible value for this time.

Think of a rocket just passing Sun as the sunspot erupts, the rocket headed
toward Earth at nearly light speed with respect to Earth. Rocket lattice clocks
record the light flash from the sunspot moving away from the rocket at standard
speed unity, However, these clocks record that Earth lies very close to Sun
(Lorentz contraction of distance) and that Earth rushes toward the rocket at nearly
light speed. Therefore light does not travel far to get to Earth in this rocket frame;
neither does it take much dme. For a rocket moving arbitrarily close to light
speed, this distance between A and E approaches zero, and so does the time
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SAMPLE PROBLEM 6-3

between A and E. Hence the shortest possible distance between A and E—equal
to the shortest possible time between A and E—has the value zero. But this
constitutes a limiting case, since rocket speed may approach but cannot equal the
speed of light in any free-float frame.

anything in Euclidean geometry. In Euclidean geometry it is never possible for distance
AG between two points to be zero unless all three of the separations (northward,
eastward, and upward) equal zero. In contrast, interval AG between two events can
vanish even when separation in space and separation in time are individually quite
large. Equation (6-3) describes the separation between lightlike events, but now
separation in space may show up in two or three space dimensions as well as one time
dimension. The distance in space is always positive.
. : It is interesting to plot on an appropriate map locations of all events, G, G, G,,
Kight Rcaly triacas out "%‘." cone @G, . . . ,that can be connected with one given event A by a single spreading pulse
mIpOLAIme Codn o light. Every such future event has a distance in space from A identical to its delay in
time after A. Only so can it satisfy the requirement (6-3) for a null interval. For it:

(future time with respect to A) =+ (distance in space from A) flightlike intervol] (6-4)

It is equally interesting to display — and on the same diagram —all the evenes H, H;,
H,, Hj, . . . that can send a light pulse to A. Every such event fulfills the condition

(past time relative to A) = — (distance in space from A) [for lightlike interval] (6-5)

Both of these equations satisfy the magnitude equation (6-3).

In Figure 6-4 we suppress display of a third space dimension in the interest of
simplicity. We limit attention to future events G, G,, G,, . . .and pastevents H, H,,
H,, . . . that lie on a north—south/east—west plane in space. A flash emitted from
event A expands as a circle on this space plane. As it spreads out from event A, this
circle of light traces out a cone opening upward in the spacetime map of Figure 6-4.
This is called the future light cone of event A. The cone opening downward traces
the history of an in-coming circular pulse of radiation so perfectly focused that it
converges toward event A, collapsing exactly at event A at time zero. This downward-
opening cone has the name past light cone of event A. All the events G, G,,
G,, . . . lie on the future light cone of event A, all evenes H, H,, H,, . . .onits
past light cone.

Numerous as the events may be that lie on the light cone, typically there are many
more that don’t! Look, for example, at all the events that occur 7 meters of time later
than the zero time of event A. On the spacetime map, these events define a plane 7
meters above the 1= 0 plane in which event A lies, and parallel to that plane. The light
cone intersects this plane in a dircle (circle in the present map; a sphere in a full
spacetime map with three space dimensions). An event on the plane falls into one or
another of three categories, relative to event A, according as it lies inside the circle (as
does B in Figure 6-4), on it (as does G), or outside it (as does D).

The light cone is unique to Lorentz geometry. It gives nature a structure beyond any
power of Euclidean geometry. The light cone does more than divide events on a single
plane into categories. It dassifies every event, everywhere in spacetime, into one or
another of five distinct categories according to the causal relation that event bears to
the chosen event, A:



6.3 LIGHT CONE: PARTITION IN SPACETIME 181

Plane containing all events fime
that occur 7 meters of time

*. after event A in this frame A

r/
Future
light cone
of event A

H? H]

FIGURE 6-4. Light cone as partition in spacetime; perspective three-dimensional spacetime map
showing eastward, northward, and time locations of events occurring on a flat plane in space,
Events G, Gy, G,, and G are on the future light cone of event A; events H, H,, H,, and Hy are on its past
light cone. See also Figure 6-5.

1. Can a material particle emitted at A affect what is going to happen at B?
If so, B lies inside the future light cone of A and forms a timelike pair with
event A,

2. Cana light ray emitted at A affect — with no time to spare — what is going
to happen at G?

If so, G lies om the future light cone of A and forms a lightlike pair with event fi:g“}':ts:o::d effect preserved by
A.

3. Can no effect whatever produced at A affect what happens at D?

If so, D lies outside the future and past light cones of A and forms a spacelike
pair with event A. It lies in the absolute elsewhere of A.

4. Can a marerial particle emitted at J affect what is happening at A?

If so, ] lies inside the past light cone of A and forms a dmelike pair with

event A.

5. Can a light ray emitted at H affecc—with no time to spare—what is
happening at A? )
If so, H lies on the past light cone of A and forms a lightlike pair with event
A.

Nature reveals a cause-and-effect structure beyond the vision of Euclidean geome-
try. The causal relation between an event B and another event A falls into one or the
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FIGURE 6-5. Exploded view of the regions into wh

classified with respect to a selected event A,
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other of five categories picked out by the light cone of A. That light cone and those
categories have an existence in spacetime quite apart from any space and time
measurements that may be used to describe them. Zero interval between events in one
free-float frame means zero interval between the same events in every overlapping
free-float frame. The light cone is the light cone is the light cone!

Event A appears at the origin of every spacetime map 1n this chapter. What's so specral
about event A?

-

v~ Nothing whatever is special about event A/ On the contrary, we have not captured
K the full story of the causal structure of spacetime until for every event A (A}, A,, A;,
. . . ) we have classified every other event B(B;, B,, B;, . . . ) into the appropri-
ate category — timelike! lightlike! spacelike! — with respect to that event.

Figure 6-5 summarizes the relations between a selected event A and all other events of
spacetime. =~

CHAPTER 6 EXERCISES

PR AC'I'ICE (4) Isit possible to find a rocket frame in which the

temporal order of the two events is reversed?

. That is, is it possible to find a rocket frame in

6-1 relations between events which the event that occurs before the other

This is a continuation of Sample Problem 6-1. Events event in the laboratory frame cccurs after the
1, 2, and 3 all have the laboratory coordinates y = other event in the rocket frame?

z = 0. Their x- and #-coordinates are plotted on the
laboratory spacetime diagram.

a Answer the following questions three times: event
once for the timelike pair of events 1 and 2, once for
the spacelike pair of events 1 and 3, and once for the

lightlike pair of events 2 and 3. even
(1) What is the proper time (or proper distance) T
between the two events? time
(meters)

event

N W A O O N

(2) Is it possible that one of the events caused the

other event? |
(3) Isitpossible to find a rocket frame in which the

spatial order of the two events is reversed? That

is, is it possible to find a rocket frame in which

the event that occurs to the right of the other

event in the laboratory frame will occur to the

left of the other event in the rocket frame? EXERCISE 6-1. Laboratory spacetime map.

—

0 1 2 3 4 5 6 7
—— space (meters) —»
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b For the timelike pair of events, find the speed
and direction of a rocket frame with respect to which
the two events occutred at the same place. For the
spacelike pair of events, find the speed and direction
of a rocket frame with respect to which the two events
occurred at the same time.

6-2 timelike, lightlike, or
spacelike?

The first table lists the space and time coordinates of
three events plus the reference event (event 0) as
observed in the laboratory frame.

LABORATORY COORDINATES OF THREE

EVENTS
t x Jy
(years) (years) (years)
Event 0 0 0 0
Event 1 3 4 0
Event 2 6 5 0
Event 3 8 8 3

a Copy the second table. In the top half of each
box in the second table, write the nature of the
interval —timelike, lightlike, or spacelike—
between the two corresponding events.

b In the bottom half of each box in the second
table, write ‘yes” if it is possible that one of the events
caused the other and “‘no” if it is not possible.

/'——_\
CEXEROISE 62

TIMELIKE, LIGHTLIKE, OR SPACELIKE?

¢ Find the speed (with respect to the laboratory
frame) of a rocket frame in which event 1 and event 2
in the first table occur at the same place.

d Find the speed (with respect to the laboratory
frame) of a rocket frame moving along the x-axis in
which event 2 and event 3 in the first table occur at the
same time.

6-3 proper time and proper
distance

Note: This exercise uses the Lorentz transformation
equations.

a Two events P and Q have a spacelike separa-
tion. Show in general that a rocket frame can be found
in which the two events occur at the same time. Also
show that in this rocket frame the distance between
the two events is equal to the proper distance between
them. (One method: assume that such a rocket frame
exists and then use the Lorentz transformation equa-
tions to show that the relative velocity of this rocket
frame is less than the speed of light, thus justifying the
assumption made.)

b Two events P and R have a timelike separa-
tion. Show in general that a rocket frame can be found
in which the two events occur at the same place. Also
show that in this rocket frame the time between the
two events is equal to the proper time between them.

PROBLEMS

6-4 avtobiography of a photon

A photon emitted by a star on one side of our galaxy is
absorbed near a star on the other side of our galaxy,

INTERVAL BETWEEN EVENTS: TIMELIKE, LIGHTLIKE, OR SPACELIKE?

Event 1

Event 2 Event 3

Event O

Y

Event 1

Event 2

Y
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100,000 light-years away from its point of origin as
measured in the frame of the galaxy. How does the
photon experience its own birth and death? That is to
say, what are the space and time separations between
the birth and death of the photon in the frame of the
photon?

Discussion: We cannot answer this question, be-
cause we cannot move along with the photon. No
matter how fast the unpowered rocket in which we
ride, we still measure light to move past us with the
speed of light! Still, we can try to answer the question
as a limiting case in the galaxy frame. Think of ex-
tremely energetic PROTONS traveling the same
path. As protons of greater and greater energy are
emitted by the first star and are absorbed near the
second star at the other side of the galaxy, what
happens to the distance between these two events in
the frame of the proton? What happens to the time
between these events in the frame of the proton?
Come in this way to a limiting case in which the
PROTON is moving arbitrarily close to the speed of
light in the galaxy frame. In this limit, what would
you expect the distance and time to be between birth
and death in the frame of a PHOTON traveling the
same path in space?

a You are the photon. Using the above argu-
ment, write the first few sentences of your autobiog-
raphy.

At the end of the trip, near a star at the fringe of our
galaxy, a galaxy-spanning photon travels 10 kilome-
ters vertically through the atmosphere of a planet
before it enters a telescope and is absorbed in the eye
of an astronomer.

The average index of refraction of the atmo-
sphere of this planet is # = 1.00030. The speed of
the photon in such an atmosphere is v = v_,,/c =
1/n. (The speed of light in @ vacuum is unity.)

b What is the proper time for this last leg of the
trip—the time in the rest frame of the “‘slowed-
down’’ photon? How far apart is the top of the atmo-
sphere and the astronomer’s eye in the frame of the
photon?

¢ Complete your photon autobiography with an
additional couple of sentences.

Discussion: Relativity is a classical theory — that
is, a nonquantum theory—in which photons are
postulated to move at light speed in a vacuum and at
aspeed v = 1 /7 in air, where # is the index of refrac-
tion. Quantum electrodynamics (QED), the
quantum theory of interactions between light and
matter, tells us that it is incorrect to talk of a single
photon moving through air. Rather, one thinks of an
initial photon being absorbed by an atom in the air
and a second photon emitted, the second photon then
absorbed by another atom, which emits a third pho-
ton, and so forth. The classical relativistic analysis is
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not correct when viewed from the quantum perspec-
tive. For more on quantum electrodynamics, read
Richard P. Feynman, QED: The Strange Theory of
Light and Matter (Princeton, Princeton University
Press, 1985).

6-5 the detonator paradox

A U-shaped structure made of the strongest steel
contains a detonator switch connected by wire to one
metric ton (1000 kilograms) of the explosive TNT, as
shown in the figure. A T-shaped structure made of
the same strong steel fits inside the U, with the long
arm of the T not quite long enough to reach the
detonator switch when both structures are at rest in
the laboratory.

Now the T structure is removed far to the left and
accelerated to high speed. It is Lorentz-contracted
along its direction of motion. As a result, its long arm
is not long enough to reach the detonator switch when
the two collide. Therefore there will be no explosion.

—

o TNT
detonator
switch

BOTH AT REST

REST FRAME OF T STRUCTURE

EXERCISE 6-5. Both at rest: The leg of the T almost reaches the
detonator switch when both the T and the U are at vest. Points A
and B are used in part b of the exercise. Rest frame of U struc-
ture: The leg of the moving T is Loventz contracted in the vest frame
of the U. Does this mean that the explosion will not take place? Rest
frame of T structure: The legs of the moving U are Lorentz-con-
tracted in the rest frame of the T. Does this mean explosion will take
place?
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However, look at the same situation in the rest
frame of the T structure. In this frame the arm of the
T has its rest length, while the two arms of the U
structute are Lorentz-contracted. Therefore the arm of
the T will certainly strike the detonator switch and
there will be a terrible explosion.

a Make a decisive prediction: Will there be an
explosion or not? Your life depends on it!

b The wire from the detonator switch to the
TNT is restrung through point B on the U structure
when both structures are at rest, and a laser is installed
at point A on the T structure. Later, when the two
structures collide at A, the laser fires a pulse at B that
cuts the detonator wire. Does this new apparatus
change your prediction about detonation of the TN'T?

Acknowledgment: A paper describing this paradox crossed the desk
of one of the authors, but the paper and the name of its author have
been lost. The laser inhibitor device was devised by Gordon Roesler.

6-6 how fast can you walk?

Webster's Eighth says that to “‘walk’ means to “‘go on
foot without lifting one foot clear of the ground before
the other touches the ground.” In other words, at least
one foot must be on the ground at all times. Use this
definition to discover the maximum speed of walking
imposed by relativity.

We assume advanced technology here! A walking
robot moves its free foot forward at nearly the speed of
light. Then one might argue (ambiguously) as fol-
lows: While the free foot is moving forward, the
planted foot is on the ground, ready to be picked up
when {look out'} the free foot comes down in front.
Half the time each foot is in motion at nearly light
speed and half the tdme it is at rest. Therefore the
average speed of each foot, equal to the maximum
possible speed of the walking robot, is half the speed
of light.

Why is this atgument ambiguous? Because of the
relativity of simultaneity. The word when applied to
separated events should always unfurl a red flag. The
event ‘‘front foot down’’ (label FrontDown) and the
event ‘‘rear foot up’’ (label RearUp) occur at different
places along the line of motion. Observets in relative
motion will disagree about whether or not events
FrontDown and RearUp occur at the same time.
Therefore they will disagree about whether or not the
robot has one foot on the ground at all times in order
to satisfy the dictionary definition of walking.

How to remove the ambiguity in the definition of
walking? One way is to make the conventional defini-
tion frame-independent: One foot must be on the
ground at all times as observed in every free-float frame
of reference. What limits does this place on the two
events FrontDown and RearUp? The rear foot must
leave the ground after, or at least simultaneous with,

HOW FAST CAN YOU WALK?

the front foot touching the ground, as observed by all
free-float observers. Use the following outline to de-
rive the consequences of this definition for the maxi-
mum speed of walking.

a Consider the three possible relationships be-
tween events FrontDown and RearUp: timelike,
lightlike, and spacelike. For each of these three rela-
tionships, write down answers to the following three
questions:

(1) Will the temporal order of the two events be
the same for all observers?

(2) Does this relationship adequately satisfy the
frame-independent definition of walking?

(3) If so, does this relationship give the maximum
possible speed for walking?

Show that you answer “yes” to all three questions
only for a lightlike relationship between the two
events.

b A lightlike relationship between events Front-
Down and RearUp means that light can just travel
from one event to the other with no time left over. Let
the distance between these events — the length of one
step in the Earth frame— be the unit of distance and
time. Show that for the limiting speed in this frame,
each foot spends two units of time moving forward,
then waits one unit while the light signal propagates
to the other foot, then waits three units while the other
foot goes through the same process. Summary: Out of
six units of time, each foot moves forward at (nearly)
the speed of light for two units. What is the average
speed of each foot, and therefore the speed of the
walker, as measured in the Earth frame?

¢ Draw a spacetime diagram for the Earth frame,
showing worldlines for each of the robot’s feet and
worldlines for the connecting light flashes. Add a
worldline showing the averaged motion of the torso,
always located halfway between the two feet in the
Earth frame. Demonstrate that this torso moves at the
speed of the walker reckoned above.

d Paul Horwitz says, ‘“We determined the value
of a maximum walking speed by finding a frame-
independent definition of walking. Therefore this
walking robot moves at the same speed as observed in
every frame.”’ Is Paul right?

Reference. George B. Rybick, American_Journal of Physics, Volume
59, pages 368-369 (April 1991)

6-7 the flickering bulb
paradox: a project

Note: The following is too long for a regular exercise,
but it has many insights worth pursuing as a longer
activity. Therefore we call it a project.

Two long parallel conducting rails are open at one
end but connected electrically at the other end
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EXERCISE 6-7. Rail frame: Configuration at t = 0 in the rest frame of the rails. Slider CD moves to the
right with speed v, such that the Loventz-contraction factor equals 2. The vertical legs of the slider are
conductors; the horizontal crosspiece is an insulator. Slider frame: Configuration at t' = 0 in the rest
frame of the slider. The rails and lamp move to the left with speed v, such that the Loventz-contraction factor

is 2.

through a lamp and battery, as shown in the figure
(rail frame). One of the rails has a square vertical
offset 2 meters long. Between the rails moves (with-
out friction) an H-shaped slider, whose vertical legs
are conductors but whose horizontal crosspiece is an
insulator. (Assume that the vertical legs are not per-
fect conductors so that, with a sufficiently powerful
battery, a voltage is maintained between the rails even
when they are connected by the vertical legs of the
slider.) If either vertical leg of the slider connects the
two rails, the electrical circuit is completed, permit-
ting the lamp to light.

The rest (proper) length of the slider is also 2
meters, but it moves at such a speed that its Lorentz-
contracted length is 1 meter in the rail frame. Hence
in the rail frame there is a lapse of time during which
neither leg of the slider is in contact with the upper
rail. Since the circuit is open during this period, the
bulb should switch off for a time and then on again
— it should flicker.

The figure (slider frame) shows the configuration
at#’ = 0in the slider frame. In this frame the slider is
at rest, its length is equal to its rest length, 2 meters,
while the rails, the lamp, and the battery all move to
the left with a speed such that their lengths along the
direction of motion are reduced by a factor of 2. In

particular the offset in the upper rail is Lorentz-
contracted to a length of one meter. Therefore, in the
slider frame, one or the other of the slider conductors
always spans the rails, so the circuit is never broken
and the bulb should never switch off —it should
NOT flicker!

Those trying to disprove relativity shout, ‘‘Para-
dox! In the rest frame of the rails the lamp switches off
and then on again — it flickers. In contras, in the rest
frame of the slider the lamp stays on—it does not
flicker. Yet all observers must agree: The lamp either
flickers or it does not flicker. Relativity must be
wrong!”’

Analyze the system in sufficient detail either to
demonstrate conclusively the correctness of this objec-
tion or to pinpoint its error.

Reference: G. P. Sastry, American Journal of Physics, Volume 55,
pages 943 -946 (October 1987).

Note: The following is too long for a regular exercise,

but it has many insights worth pursuing as a longer

activity. Therefore we call it a project. .
Kerwin Warnick writes in with the following par-
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adox. A spaceship of proper length L, accelerates
from rest. Its front end travels a distance xpin time #
to a final speed at which the ship is contracted to half
its rest length. In the same time g the rear end moves
the same distance xpas the front end plus the distance
L,/2 by which the ship has contracted. Distance
traveled by the rear end xz + (L, /2) in time 7z means
an average speed [xz + (L, /2)1/#. Since the proper

THE CONTRACTING TRAIN PARADOX: A PROJECT

length L, can be arbitrarily large, this average speed
can be arbitrarily great, even greater than the speed of
light. “This disproves relativity!”” he exclaims.

Analyze this thought experiment in sufficient de-
tail either to demonstrate conclusively the correctness
of Warnick’s objection or to pinpoint its error.

Reference: Edwin F. Taylor and A. P. French, American Journal of
Physics, Volume 51, pages 889-893 (October 1983).
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7.1 MOMENERGY: TOTAL CONSERVED
IN A COLLISION

momenium conserved.,
energy conserved.

momenergy conserved!

Paradoxically, few examples of motion are more complicated than a collision, and few
are simpler. The complication shows nowhere more clearly than in the slow-motion
videotape of the smashup of two automobiles. Millisecond by millisecond the fender
of one colliding car deforms another fraction of a centimeter. Millisecond by millisec-
ond the radiator grille of the other car bends inward a little more on the way to toral
collapse: steel against steel, force against force, crumpling surface against crumpling
surface. What could be more complex?

For the drivers of the colliding cars the experience is shattering. They are hardly
aware of noise and complicated damage. A single impression overpowers their senses:
the inevitability of the crash. Call it what we will—inertia, momentum, the grip of
spacetime on mass — something is at work that drives the two vehicles together as the
frantic drivers jam their brake pedals down, locking the wheels as the cars slither over
the glassy ice, crash into one another, then slide apart.

Does mass lose its inertia during the collision? No. Inertia does its best to keep each
car going as it was, to keep its momentum constant in magnitude and direction.
Momentum: we can think of it loosely as an object’s will to hold its course, to resist
deflection from its appointed way. The higher the object’s momentum, the more
violently it hits whatever stands in its way. But the momentum of a single object is not
all-powerful. The two vehicles exchange momentum. But spacetime insists and
demands that whatever momentum one car gains the other car must lose. Regardless
of all complications of detail and regardless of how much the momentum of any one
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Momentum conservation simplifies
description
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Energy too is conserved

Momenergy is conserved!

CHAPTER 7 MOMENERGY

object may change, the combined momentum of the two objects remains constant: the
total is unchanged in the collision. A like statement applies to energy, despite a
conversion of energy of motion into heat energy and fender crumpling.

A collision thus manifests a wonderful simplicity: the combination of the motion-
descriptive quantities (momentum and energy) of the two colliding bodies does not
change. That combination is identical before and after the collision. In a word, it is
conserved. This conserved combination we call momentum -energy or, more
briefly, momenergy (defined more carefully in Section 7.2). We will use the two
terms interchangeably in this book.

A collision cannot be elevated from mere talk to numbers without adopting,
directly or indirectly, the principle of conservation of momentum and energy. In the
enterprise of identifying the right numbers, using them, and understanding them, no
concept is more powerful than what relativity smilingly holds forth: momenergy.

Wait a minute. Apparently you ave going to find new expressions for momentum and
energy, then combine them in some way to form a unity: momenergy. But 1 have three
complaints. (1) What is wrong with what good old-fashioned secondary school physics
textbooks grve us, the Newtonian expressions for momentum — Pyyuypm = MV,py— and
kinetic energy Ky = Yomv2,,— where v, is expressed in conventional units, say
meters/second? (2) Momentum and energy do not even have the same units, as these
formulas make clear. How can you combine quantities with different units? (3)
Momentum and enevgy are different things entively; why try to combine them at all?

Take your questions in order.

1. Newtonian Expressions: Only for slow-moving particles do we get correct
results when we use Newtonian expressions for momentum and energy. For
particle speeds approaching that of light, however, total energy and momentum
of an isolated system, as Newton defined momentum and energy, are not
conserved in a collision. In contrast, when momentum and energy are defined
relativistically, then total momentum and total energy of particles in an isolated
system are conserved, no matter what their observed speeds.

2. Units: Itis easy to adopt identical units for momentum and energy. As a start we
adopt identical units for space and time. Then the speed of a particle is expressed
in unit-free form, », in meters of distance per meter of light-travel time (Section
2.8). This choice of units, which we have already accepted earlier in this book,
gives even Newtonian expressions for momentum — pyeqeon = 7 — and kinetic
energy — Kyewon = Y2mv? —the same unit: mass. These are not relativistic
expressions, but they do agree in their units, and agree in units with the correct
relativistic expressions.

3. Momentum and Energy Different: Yes, of course, momentum and energy
are different. Space and time are different too, but their combination, spacetime,
provides a powerful unification of physics. Space and time are put on an equal
footing, but their separate identities are maintained. Same for momenergy: We
will see that its “space part” is momentum, its ‘‘time part’’ energy. We will also
discover that its magnitude is the mass of the particle, reckoned using the good
ol’, ever-lovin’, familiar minus sign: m? = E* — p2,

Thus relativity offers us a wonderful unity. Instead of three separate motion-de-
scriptive quantities— momentum, energy, and mass— we have a single quantity:
momenergy. =~
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7.2 MOMENERGY ARROW

What lies behind the name momentum—energy (momenergy)? What counts are its
properties. We most easily uncover three central properties of momenergy by combin-
ing everyday observation with momenergy’s essential feature: Total momenergy is
conserved in any collision.

First, think of two pebbles of different sizes moving with the same velocity toward
the windshield of a speeding car. One bounces off the windshield without anyone
noticing; the other startles the occupants and leaves a scratch. Five times the mass? Five
times the punch-delivering capacity! Five times the momenergy. Momenergy, in other
words, is proportional to mass.

Second, momentum-energy of a particle depends on its direction of travel. A pebble
coming from the front takes a bigger chip out of the windshield than a pebble of equal
mass and identical speed glancing off the windshield from the side. Therefore mo-
menergy is not measurable by a mere number. It is a directed quantity. Like an arrow
of a certain length, it has magnirude and direction.

Our experience with the unity of spacetime leads us to expect that the momenergy
arrow will have three parts, corresponding to three space dimensions, plus a fourth
part corresponding to time. In what follows we find that momenergy is indeed a
four-dimensional arrow in spacetime, the momenergy 4-vector (Box 7-1). Its three
“space patts’’ represent the momentum of the object in the three chosen space
directions. Its “‘time part” represents energy. The unity of momentum and energy
springs from the unity of space and time.

In what direction does the momenergy 4-vector of a particle point? It poines in the
“same direction in spacetime” as the worldline of the particle itself (Figure 7-1). There
is no other natural direction in which it can point! Spacetime itself has no structure that
indicates or favors one direction rather than another. Only the motion of the particle
itself gives a preferred direction in spacetime. The particle moves from one event to a
nearby event along its worldline, In so doing, it undergoes a spacetime displace-
ment, small changes in the three space positions along with an accompanying small
advance in the time. The spacetime displacement has four parts: it is a 4-vector, The
momenergy arrow points in the direction of another arrow, the arrow of the particle’s
spacetime 4-vector displacement. Momenergy runs parallel to worldline!

Compare the worldline of an individual particle in spacetime with a single straw in a
great barn filled with hay. This particular straw has a direction, an existence, and a
meaning independent of any measuring method imagined by humans who stack the
hay or by mice that live in it, Similarly, in the rich trelliswork of worldlines that course
through spacetime, the arrowlike momenergy of the particle has an existence and
definiteness independent of the choice— or even use—of any free-floac frame of
reference (Section 5.9).

No frame of reference? Then no clock available to time motion from:here to there!
Or rather no clock except one that the particle itself carries, its own wristwatch that
records proper time. Proper time for what? Proper time for spacetime displacement
between two adjacent events on the worldline of the particle. Proper time provides the
only natural way to clock the rate of motion of the particle; that is the third and final
feature of momenergy.

In brief, che momenergy of a particle is a 4-vector: Its magnitude is proportional to
its maus, it points in the direction of the particle’s spacetime displacement, and it is
reckoned using the proper time for thar displacement. How are these properties
combined to form momenergy? Simple! Use the recipe for Newtonian momentum:
mass times displacement divided by time lapse for that displacement. Instead of

191

Momenergy of particle
proportional to its mass

Momenergy a directed quantity

Momenergy a 4-vector

Particle momenergy points along
its worldline

Momenergy independent of
reference frame

Particle wristwatch logs time for
momenergy



192

CHAPTER 7 MOMENERGY

WHAT IS A 4-VECTOR?

A vector is a mathematical object that has both magnitude and direction. The
meanings of the terms magnitude and direction, however, differ between one
geometry and another. Mathematics offers many geometries. The two ge-
ometries important to us in this book are Euclidean geometry and

Lorentz geometry.

Euclidean geometry defines 3-vectors located in 3-dimensional space. Let
a speeding particle emit two sparks. The particle's spatial displacement
from first spark to second spark is a 3-vector. Each of the three compo-
nents (northward, eastward, and upward) of this 3-vector displacement
has a value larger or smaller, depending on the orientation of the coordi-
nate system chosen. In contrast, the magnitude of the displacement— the
distance traveled (computed as the square root of the sum of the squares of
the three components of displacement) — has the same value in all coordi-
nate systems.

Lorentz geometry defines 4-vectors located in 4-dimensional spacetime.
Construct the 4-vector spacetime displacement from the three space com-
ponents supplemented by the time component, the time between sparks
emitted by the speeding particle. Each of these four components (including
time) has a value larger or smaller, depending on the choice of free-float
frame of reference from which it is measured. The square of the separation
in time between the two sparks as so measured, diminished by the square
of the separation in space in the chosen frame, yields the square of the
spacetime interval between the two events. This interval has the same
value in all free-float frames. Itis also the proper time, the time between the
two sparks read directly on the particle's wristwatch.

Newtonian mechanics combines (in various ways) time and mass of the
particle with Euclidean 3-vector displacement of the particle to yield addi-
tional 3-vectors that describe particle motion: velocity, momentum, acceler-
ation. Each 3-vector has magnitude and direction. The values of the three
components of each 3-vector depend on the orientation of the chosen coor-
dinate system. But for each 3-vector quantity, the 3-vector itself is the same,
both in magnitude and direction in space, no matter what Euclidean coordi-
nate system we choose. Every 3-vector exists even in the absence of any
coordinate system at all! That is why the analysis of Newtonian mechanics
can proceed in all its everyday applications independent of choice of coor-
dinate system.

Relativistic mechanics combines (in various ways) proper time and mass of
the particle with Lorentz 4-vector displacement of the particle to yield addi-
tional 4-vectors that describe particle motion. Central among these is the
particle’s momentum—energy 4-vector, or momenergy. Values of the four
components of the momenergy 4-vector differ as measured in different free-
float frames in relative motion. But the momenergy 4-vector itself is the same,
both in magnitude (mass!) and direction in spacetime, no matter what the
frame. The momenergy 4-vector of a particle exists even in the absence of
any reference frame at all! That is why the analysis of relativistic mechanics
can proceed in all its power independent of choice of free-float frame of
reference.
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momentum

time Motion Momenergy
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(momentum = Q)

FIGURE 7-1. Motion and momenergy seen as identically directed arrows, The momenergy arrow is
carried along the worldline with the particle. Under action of a force, the particle traces out a curved
worldline. The momenergy arvow— its constant magnitude equal to the mass of the particle— continually
alters its tilt to point in the same divection in spacetime as the worldline. (For the special case shown bere, the
particle moves in x and t, but not in'y or z.)

Newtonian displacement in space, use Einstein’s displacement in spacetime; instead of
Newron's “universal time,"" use Einstein’s proper time.

The result expresses the momenergy 4-vector in terms of the spacetime displace-
ment 4-vector:

(spacetime displacement)
(momenergy) = (mass) X - - (7-1)
(proper time for that displacement)

In any given free-float frame, the momentum of the particle is the three “space parts”
of the momenergy and the particle’s energy is the *‘time part.” This expression for
momenergy is simple, and it works — works as employed in the law of conservation of
momenergy: Total momenergy before reaction equals total momenergy after reaction.
Investigators have observed and analyzed more than a million collisions, creations,
transformations, decays, and annihilations of particles and radiation. They have failed
to discover a single violation of the relativistic law of conservation of momenergy.
To arrive at a formula as important as (7-1) so painlessly may at first sight create
doubts, These doubts have to be dismissed. Fact is, there is no room for any
alternative —as we see by going step by step through the facrors in this equadon.

Statement 1: m units of mass pursuing a given motion carry m times the
momenergy of one unit of mass. Reasoning: » identical objects racing along side
by side carry m times the momentum and 7 times the energy — and therefore 7 times
the momenergy — of an object of unit mass.

Statement 2: Momenergy points in the same direction in spacetime as
worldline. Reasoning: Where else can it point? Even the slightest difference in
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direction between momenergy and direction of motion along the worldline would bear
witness to some crazy asymmetry in spacetime, for which no experiment in field-free
space has ever given the slightest evidence.

Statement 3: The spacetime displacement between one event on the
worldline and a nearby event on it specifies the direction of that world-
line. Reasoning: The very concept of direction implies that there exists a segment, AB,
of the worldline short enough to be considered straight. And to fix the direction of this
spacetime displacement AB, it suffices to know the location of any two events, A and
B, on this short segment.

Statement 4: Worldline direction —and therefore momenergy — is inde-
pendent of the magnitude of the spacetime displacement. Reasoning: To
pick an event B’ on the worldline half as far from A as B along the short straight
segment— thus to cut in half the spacetime displacement— makes no change in the
direction of the worldline, therefore no change in the direction of the momenergy,
therefore no change in the momenergy itself.

Statement 5: The unit 4-vector (spacetime displacement) /(proper time for
that displacement) defines and measures the direction of the worldline
displacement and therefore the direction of the momenergy 4-vector.
Reasoning: What matters is not spacetime displacement individually, not proper time
individually, but only their ratio. This ratio is the only directed quantity available to us
to describe the rate of motion of the particle through spacetime.

= The spacetime displacement, AB, has a magnitude equal to the interval (or proper
time or wristwatch time) the particle requires to pass from A to B. That is why the
ratio in question is a unit 4-vector.
<. Proper time provides the only natural way, the only frame-independent means, to
clock the particle. If instead we should incorrectly put frame time into the
denominator — frame time measured by the array of clocks in a particular free-float
frame — the value of this time would differ from one frame to another. Divided into
the spacetime displacement, it would typically not yield a unit vector. The vector’s
magnitude would differ from one frame to another. Therefore we must use in the
denominator the proper time to go from A to B, a proper time identical to the
magnitude of the spacetime displacement AB in the numerator.

Statement 6: The momenergy 4-vector of the particle is

(spacetime displacement)
(momenergy) = (mass) X - - 7-1
(proper time for that displacement)

Reasoning: There is no other frame-independent way to construct a 4-vector that lies
along the worldline and has magnitude equal to the mass.

Units: In this book, as in more and more present-day writing, space and time
appear in the same unit: meter. Numerator and denominator on the right side of
equation (7-1) have the unit of meter. Therefore their quotient is unit-free. Asa result,
the right side of the equation has the same unit as the first factor: mass. So the left side,
the momenergy arrow, must also have the unit of mass. As the oneness of spacetime is
emphasized by measuring space and time in the same unit, so the oneness of momen-
ergy is clarified by measuring momentum and energy in the same unit: mass. Table
7-1 at the end of the chapter compares expressions for momentum and energy in urits
of mass with expressions in conventional units.
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You say that the equation for momenergy is

(spacetime displacement)

(momenergy) = (mass) X
o (proper time for that displacement)

I thought that “spacetime displacement’’ was the interval, which 15 the proper time. 1
know, however, that 1 am wrong, because if spacetime displacement and proper time
were the same, then the numerator and denominator of the fraction would cancel, and
momenergy would simply equal mass. Surely you would have told us of such simplicity.
What have I missed?

It is easy to confuse a vector—or a 4-vector — with its magnitude.

In the expression for momenergy, the spacetime displacement is a 4-vector (Box
7-1). In the laboratory frame this displacement 4-vector has four components, {d?,
. dx, dy, dz). In a free-float rocket moving in an arbitrary direction, the displacement
4-vector has four components, {d¢', dx’, dy', dz"}, typically different, respectively,
from those in the laboratory frame.

A vector in space (a 3-vector) has not only a magnitude bur also a direction
independent of any coordinate system. (**“Which way did they go?"" “That-a-way!"”
— pointing.) Similarly, the spacetime displacement has a magnitude and direction
in spacetime independent of any reference frame. This spacetime direction
distinguishes the 4-vector displacement (the numerator above) from its magnitude,
which is the proper time for that displacement (the denominator). This proper time
(interval) can be observed directly: it is the time lapse read off the wristwatch carried
by the particle while it undergoes the spacetime displacement.

In summary the fraction

1y

(spacetime displacement)

(proper time for that displacement)

has a numerator that is a 4-vector. This 4-vector numerator has the same magnitude
as the denominator, The resulting fraction is therefore a un1¢ 4-vector pointing along
the worldline of the particle. This unit 4-vector determines the directzon of the
particle’s momenergy in spacetime. And the magnitude of the momenergy? It is the
mass of the particle, the first term on the right of the expression at the top of this
page. In brief, the momenergy of a particle is 4-vector of magnitude m pointing
along its worldline in spacetime. This description is independent of reference frame.

-

7.3 MOMENERGY COMPONENTS AND
MAGNITUDE

Accidents of history have given us not one word, momenergy, but two words,
momentum and energy, to describe mass in motion. Before Einstein, mass and motion
were described not in the unified context of spacetime but in terms of space and time
separately, as that division shows itself in some chosen free-float frame. Often we still
think in those separated terms. But the single concept spacetime location of an event
unites the earlier two ideas of its position in space and the time of its happening. In the
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energy

east component

north component
of momentum

of momentum

FIGURE 7-2. Momenergy arrow of a mov-
ing object translated into the language of
momentum and energy, shown for the spe-
cial case in which upward momentum
(vertical momentum) equals zero. The mo-
menergy arrow 1tself has an existence and direc-
tion (in that great haystack of worldlines and
events that we call spacetime) independent of the
choice, or even presence, of any free-float frame.
In contrast, separate measures of momentum and
energy do depend on choice of frame. They point
parallel to, that is in the same direction as, the
corresponding space and time directions of the
chosen frame itself. See Figures 7-3 and 7-4 for
a still more revealing representation of the pro-
portion between momenergy and its components.

Momenergy components of
particle in a given frame
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same way we combine momentum and energy of a moving object into the single idea
of momenergy arrow. Having assembled it, we now break momenergy down again,
seeking new insight by examining its separate parts.

The unity of momenergy dissolves—in our thinking—into the separateness of
momentum and energy when we choose a free-float frame, say the laboratory. In that
laboratory frame the spacetime separation between two nearby events on the worldline
of a particle resolves itself into four different separations: one in laboratory time and
one in each of three perpendicular space directions, such as north, east, and upward.
With each spacetime separation goes a separate part, a separate portion, a separate
component of momenergy in the laboratory free-float frame (Figure 7-2).

The “‘space parts” of momenergy of a particle are its three components of momen-
tum relative to a chosen frame. Their general form is not strange to us— mass times a
velocity component. The “time part,” however, is new to us, foreshadowing impor-
tant insights into the nature of energy (Section 7.5). The four components are

eastward eastward
component | _ | component
of of
momenergy momentum
( ™ (eastward displacement)
= (mass
(proper time for that displacement)
northward northward
component | __ [ component
of of
momenergy momentum
( )X (northward displacement)
= (mass
(proper time for that displacement)
upward upward
component | _ | component
of of
momenergy momentum
— )X (upward displacement)
= (mass
(proper time for that displacement)
time
time displacement
compc;nent — (energy) = (mass) X (‘ p : )
o (proper time for that displacement)
momenergy

The calculus version of these equations is deliciously brief. Here, as in Section 6.2, tau
(7) stands for proper time:

dt
E=m—
dt
dx
Px:md_’l' (7-2)
dy
py=m;,?
dz
b, =m—



7.3 MOMENERGY COMPONENTS AND MAGNITUDE

The components of the momenergy 4-vector we now have before us in simple form,
but how much is the absolutely-number-one measure of this physical quantity, its
magnitude? This magnitude we reckon as we figure the magnitude of any Lorentz
4-vector: magnitude squared is the difference of squares of the time part and the space
part:

(magnitude of momenergy arrow)?
(energy)? — (east momentum)? — (north momentum)? — (up momentum)?
B =) — (08 — (0
" d1)? — (dx)?* — (dy)? — (dz)? (d1)?
m = m? = m
(d1)? (dy?

|

2

In brief, the magnitude of the momenergy 4-vector, or its square,
(magnitude of momenergy arrow)? = E? — p? = m? (7-3)

is identical with the particle mass, or its square. Moreover, this mass is a quantity
characteristic of the particle and totally independent of its state of motion.

It's worthwhile to translate this story into operational language. Begin with a
particle that is at rest. Its 4-vector of energy and momentum points in the pure
timelike direction, all energy, no momentum. Let an accelerator boost thar particle.
The particle acquires momentum. The space component of the 4-vector, originally
zero, grows to a greater and greater value. In other words, the momenergy 4-vector
tilts more and more from the “vertical,”” that is, from a purely timelike direction.
However, its magnitude remains totally unchanged, at the fixed value 7. In conse-

MASS

SAMPLE PROBLEM 7-1
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Magnitude of momenergy
4-vector: mass!

The energy and momentum components of a particle, measured in the laboratory, are

E = 6.25 kilograms
b, = 1.25 kilograms
by = b = 2.50 kilograms

What is the value of its mass?

SOLUTION

We obtain a value for mass using equation (7-3):

== — 0l =)
= {(6.25)> — (1.25)> — (2.50)? — (2.50)?] (kilograms)?
={39.06 — 1.56 — 6.25 — 6.25} (kilograms)?
= [39.06 — 14.06] (kilograms)?
= 25.00 (kilograms)?

Hence

m = 5.0 kilograms
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FIGURE 7-3. Different views of one and
the same momenergy 4-vector of a particle
in seven different free-float frames. The y-
and z-components of momentum are assumed to
equal zero, and frames are chosen to give integer
values for energy and x-momentum components.
The mass of the particle equals 20 units as
reckoned in every free-float frame: m?* = E? —
p?. This invariant value of the mass is shown by
the thick “handle” on each vector, For a frame
in which the particle is at rest (center diagram),
the energy is equal to the mass and the handle
covers the vector,

Doaes the momenergy 4-vector for this particle
require for its existence any reference frame? No
one would laugh move at such a misapprebension
than the particle! The momenergy 4-vector has
an existence in spacetime independent of any
clocks and measuring rods. We, however, wish to
assign to this §-vector an enevgy and momentum.
For that purpose we do vequire one or another

[ree-float frame.
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quence, the time component of that 4-vector, that is, the energy of the particle,
undergoes a systematic alteration.

If the geometry of spacetime were Euclidean, this ever-growing tilt, this continuing
rotation of the direction of the arrow of momenergy, would cause the vertical or time
component to become ever shorter. However, spacetime is not Euclidean. It is Lo-
rentzian, as appears in the minus sign in the equation for momenergy magnitude m:
m? = E? — p?. With momenergy magnitude, or particle mass #, being constant, and
momentum p ever growing, Lorentz geometry itself tells us that the ever-growing tile,
the ever-larger momentum value, p, causes the time component of the momenergy
— the energy E— not to shorten, as in a Eudlidean spacetime, but to lengthen as the
acceleration proceeds:

E = (m* + p»)'/? = an increasing function of momentum, p

This marvelously simple relation between energy and momentum, full of geometric as
well as physical content, has by now been tried and verified in so many thousands of
experiments of such varied kinds that it counts today as battle-tested.

Energy, momentum, and mass, expressed so far in the language of algebra, let
themselves be displayed even more clearly in the language of pictures. Only one
obstacle stands in the way. The paper is Euclidean and the vertical leg of a right
triangle typically is shorter than the hypotenuse. In contrast, spacetime is Lorentzian,
and the timelike dimension (the energy) is typically longer than the “hypotenuse” (the
mass). We are indebted to our colleague William A. Shurcliff for a way to have our
cake and eat it too, a device to employ Euclidean paper and yet display Lorentzian
length. How? By laying over the hypotenuse of the Euclidean triangle a fat line or
handle of length adjusted to the appropriate Lorentzian magnitude (Figure 7-3). The
length of the handle represents the invariant value of the particle mass. This length
remains the same, whatever the values of energy and momentum, values that differ as
the particle is observed from one or another frame of reference in relative motion.

Figure 7-3 shows a few of the infinitely many different values of energy and
momentum that one and the same particle can have as measured in different free-float
frames. Each arrow, being depicted on a Euclidean sheet of paper, necessarily appears
with an apparent length that increases with slope or particle speed. The handle on the
arrow, by contrast, has the length appropriate to Lorentz geometry. This length
represents particle mass, » = 20, a quantity independent of particle speed. The
momenergy 4-vector of a material particle is always timelike. Why timelike? Because
the momenergy 4-vector lies in the same spacetime direction as the worldline of the
particle (Section 7-2). The events along the worldline have a timelike relationship:
Time displacement between events is greater than the space displacement. One

(single particle: values from FIGURE 7-4. Momenergy 4-vector
sevsralpf?-umas superposed) for the single particle of Figure
A 7-3 as observed in seven free-float

[frames, these plots then super-
posed on a composite momenergy
diagram, Frames are chosen 5o that
y- and z-components of momentum
equal zero. Locus of the tips of the
arrows traces out a hyperbola. The
central short vertical arrow pointing to
the dot labeled m represents momenergy
as measured in the particle rest frame.
In this frame momentum has value zero
and energy— "‘rest energy’ — equals
- the mass of the particle. For clarity, the
x-momentum  ~ handles have been omitted from the 4-
(single Iparﬁcle: valves from  vecrors, which all have identical in-
several frames superposed)  variant magnitude m = 20.

hyperbola
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consequence is that the particle moves at less than the speed of light in every possible
free-float frame.

The equation E2 — p? = m? = (constant) is the formula for a hyperbola. Figure 7-4
generates this hyperbola by superposing on the same figure spacetime vectors that
represent energy and momentum of the same particle in different free-float frames.
For visual clarity the handles are omitted from these 4-vectors. However, each

momenergy 4-vector has the same magnitude, equal to the particle mass, m = 20.
-

7.4 MOMENTUM: “SPACE PART” OF
MOMENERGY

Newton called momentumn “‘quantity of motion.”” The expressions for momentum
that spacetime physics gives us, the last three equations in (7-2), seem at first sight to
distinguish themselves by a trivial difference from the expressions for momentum
given to us long ago by Newton's followers:

dx dy dz

Px Newton = ”351 Py Newon = m‘d_f, D: Newton = mz [valid for low velocity]

That difference? Today, proper time dT between nearby events on the worldline of the
particle. Laboratory time, in older days, when the concepts of proper time and interval
were unknown. The percentage difference between the two, trivial or even negligible
under everyday circumstances, becomes enormous when the speed of the object
apptoaches the speed of light.

We explore most simply the difference between relativistic and Newtonian predic-
tions of momentum by analyzing a particle that travels with speed » in the x-direction
only. Then the relation between displacement of this particle and its speed is x = 2.
For small displacements, for example between two nearby spark events on the
worldline, this becomes, in the mathematical limit of interest in calculus notation, dx
= vdt,

The proper time between the two nearby sparks is always less than the laboratory
time:

dt = [(d1)?}'/? = [(d1t)? — (dx)*}'/2 = [(d1)* — (vdt)*}'/?
dt
= (d@)(1 — )2 =— (7-4)
/4
where gamma, ¥ = 1/(1 — ¢2)!/2 is the time stretch factor (Section 5.8). This figure
for the interval, or proper time, between the two nearby sparks we now substitute into

equations (7-2) in order to learn how the reladvistic expressions for energy and
momentum depend on particle speed:

5 dt m "
p——— — . — — m
. (1— )2 o
dx m (dx/dr) my,
Pr=m = = my.y

& A= -
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E, p, m of particle in
different frames related by
hyperbola

Newtonian versus relativistic
expressions for momentum
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Low speed: Newton and Einstein
agree on value of momentum

High speed: Relativity reveals
much larger momentum

Unit of momentum: mass

Conversion to conventional
momentum units

CHAPTER 7 MOMENERGY

The momentum expression is the same as for Newtonian mechanics — mass 7
times velocity (dx/dt) — except for the factor (1 — »?)!/2 in the denominator. That
factor we can call 1 when the speed is small. For example, a commercial aitliner moves
through the air at approximately one millionth of the speed of light. Then the factor (1
— v2)1/2 differs from unity by only five parts in 10'2, Even for an alpha particle
(helium nucleus) ejected from a radioactive nucleus with approximately 5 percent of
the speed of light, the correction to the Newtonian figure for momentum is only a little
more than one part in a thousand. Thus for low speeds the momentum expressed in
equation (7-5) reduces to the Newtonian version.

At a speed close to that of light, however, the particle acquites a momentum
enormous compated with the Newtonian prediction. The unusually energetic cosmic-
ray protons mentioned at the end of Section 5.8 crossed the Milky Way in 30 seconds
of their own time, but a thousand centuries or 3 X 102 seconds of Earth time. The
ratio d¢/dT between Earth time and proper time is thus 10!, That is also the ratio
between the correct relativistic value of the protons’ momentum and the Newtonian
prediction.

Units: Both Newtonian and relativistic exptessions for momentum contain speed,
a ratio of distance to time. From the beginning we have measured distance and time in
the same unit, for example meter. Thetefore the ratio of distance to time is unit-free. In
Section 2.8, we expressed speed as a dimensionless quantity, the fraction of light
speed:

(meters of distance covered by particle)

(meters of time required to cover that distance)

__ (particle speed in meters/second) v,

conv

7-6
(speed of light in metets/second) ¢ 7

In terms of speed v (called beta, 8, by some authors), Newtonian and relativistic
expressions for the magnitude of the momentum have the forms

my [valid for low speed] (7-7)
mv/(1 — ?)1/? [good at any speed] (7-8)

PNewton

14

More Units: In order to convert momentum in units of mass to momentum in
conventional units, such as kilogram metets/second, multiply expressions (7-6),
(7-7), and (7-8) by the speed of light ¢ and use the subscript “conv’’ for ‘‘conven-
tional’’:

Peonv Newron — DNewton € = mVC = m(yconv/ )= MVcony  llow speed] (7-9)

. mve _ M (Veony/ €)E
P =T =02 1L — e 0172
mvCOI'lV

= [any speed] (7-10)
{1 = (Veons/ )’/

Thus conversion from momentum in units of mass to momentum in conventional
units is always accomplished by multiplying by the conversion factor ¢. This is true
whether the expression for momentum being converted is Newtonian or relativistic.
Table 7-1 at the end of the chapter summarizes these comparisons. «=~



1.5 ENERGY: “TIME PART” OF MOMENERGY 201

7.5 ENERGY: “TIME PART” OF
MOMENERGY

- " e buires aoenles maned ooy ™ ssassece)
energy has two paris: rest energy (= mass

fele
plus kinefic energy

What about the “‘time part” of the momentum —energy of a particle— the part we
have called its energy? This is certainly a strange-looking beast! As measured in a
particular free-float frame, say the laboratory, this time component as given in
equation (7-5) is

Relativistic expression for energy

dt m
E—

BT -

Compare this with the Newtonian expression for kinetic energy, using Kas the symbol
for kinetic energy:

1
Kt ™ 5 mv? [valid for low speed] (7-12)

How does the relativistic expression for energy, equation (7-11), compare with the
Newtonian expression for kinetic energy (7-12)? To answer this question, first look at
the behavior of these two expressions when particle speed equals zero. The Newtonian
kinetic enetgy goes to zeto. In contrast, at zero speed 1/(1 — 22)1/2 = 1 and the
relativistic value for energy becomes equal to mass of the particle,

. Rest energy of a particle
Ere =m 713 equals its mass

where E,, is called rest energy of the particle. Rest energy of a particle is simply its
mass. So the relativistic expression for energy does not go to zero at zero speed, while
the Newtonian expression for kinetic energy does go to zero.

Is this an irreconcilable difference? The Newtonian formula does not contain an
expression for rest energy, equal to the mass of the particle. But here is the distinction:
The relativistic expression gives the value for total energy of the particle, while the
Newtonian expression describes kinetic energy only (valid for low speed). However, in
Newtonian mechanics any constant energy whatever can be added to the energy of a
particle without changing the laws that describe its motion. One may think of the
zero-speed limit of the relativistic expression for energy as providing this previously
undetermined constant,

When we refer to energy of a particle we ordinarily mean total energy of the particle.
As measured in a frame in which the particle is ar rest, this total energy equals rest
energy, the mass of the particle. As measured from frames in which the particle moves,
total energy includes not only rest energy but also kinetic energy.

This leads us to define kinetic energy of a particle as energy above and beyond ics
rest energy:

(energy) = (rest energy) + (kinetic energy) Kinetic energy defined
or

E=m+K (7-14)
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SAMPLE PROBLEM 7-2
MOTION IN THE X-DIRECTION Clon™, e )

An object of mass 3 kilograms moves 8 meters ~ What value of kinetic energy would Newton pre-
along the x-direction in 10 meters of time as mea-  dict for this object? Using relativistic expressions,
sured in the laboratory. What is its energy and  verify that the velodity of this object equals its
momentum? Its rest energy? Its kinetic energy? ~ momentum divided by its energy.

SOLUTION

From the statement of the problem:

m = 3 kilograms
¢t = 10 meters
x = 8 meters
y = 0 meters
z = 0 meters

From this we obtain a value for the speed:

8 meters of distance
10 meters of time

0.8

x
p=—=
!

Use v to calculate the factor 1/(1 — #?)'/2 in equadon (7-8):

1 1 1 1
A—3)12  (1—08)Y2 (1—0.6472 (0.36)?

Sl
06 3
From equation (7-11) the energy is

E=m/(1 — v?)'/2 = (3 kilograms) (5/3) = 5 kilograms
From equation (7-8) momentum has the magnitude

p=mv/(1 — v?)'2 = (5/3) X (3 kilograms) X 0.8 = 4 kilograms
Rest energy of the particle just equals its mass:
E,, = m = 3 kilograms

From equation (7-15) kinetic energy K equals total energy minus rest energy:

K= E — m =5 kilograms — 3 kilograms = 2 kilograms

The Newtonian prediction for kinetic energy is
1 1 _
Kewon = Emv’ = s X 3 X (0.8)> = 0.96 kilogram

which is a lot smaller than the correct relativistic result. Even at the speed of light, the
Newtonian prediction would be Kyeya = 1 kilogram, whereas relartivistic value would
increase without limit.
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Equation (7-16) says that velocity equals the ratio (magnitude of momentum)/(en-

ergy):

E 5 kilograms

This is the same value as reckoned directly from the given quantities.

From this comes the relativistic expression for kinetic energy K:

m 1
K—E—Em—-E—m—m—m—m[m_l] (7-15)

Box 7-2 elaborates the relation between this expression and the Newtonian expres-
sion (7-12). Notice that if we divide the respective sides of the momentum equation
(7-8) by corresponding sides of the energy equation (7-11), the result gives particle
speed:

(7-16)

=
I
Nl

We could have predicted this directly from the first figure in this chapter, Figure 7-1.
Speed v is the tilt (slope) of the worldline from the vertical: (space displacement) /(time
for this displacement). Momenergy points along the worldline, with space component p
and time component E. Therefore momenergy slope p/E equals worldline slope .

Still More Units: In order to convert energy in units of mass to energy in
conventional units, such as joules, muldply the expressions above by the square of
light speed, ¢, and use subscript *“‘conv’":

me?
E. == E2 = [l — (vm,,/f)z]l/z [good ot any speed] (7-17)
Bov™= me2 [particle at rest] (7-18)

1
[1 = (veoun/eV]'?

K. .,=(E— E_)*=m? [ l] [good at any speed] (7-19)

v,

1 1 o \2 1
Ko povnn — P 2 = Em(—) 2= Emvjm flow speed only] (7-20)
[

Thus conversion from energy in units of mass to energy in conventional units is always
accomplished by multiplying by conversion factor ¢2. This is true whether the expres-
sion for energy being converted is Newtonian or relativistic. Table 7-1 at the end of the
chapter summarizes these comparisons.

Equarion (7-18) is the most famous equation in all physics. Historically, the factor
¢? captured the public imagination because it witnessed to the vast store of energy

available in the conversion of even tiny amounts of mass to heat and radiation. The -

units of me¢? are joules; the units of 7 are kilograms, However, we now recognize that
joules and kilograms are units different only because of historical accident. The

Conversion to conventional
energy units



SAMPLE PROBLEM 7-3
MOMENERGY COMPONENTS (S )

For each of the following cases, write down the  vector in the given frame in the form [E, p,, p,, p.].
four components of the momentum—energy 4-  Each particle has mass .

a. A particle moves in the positive x-direction in the laboratory with kinetic energy
equal to three times its rest energy.

b. The same particle is observed in a rocket in which its kinetic energy equals its
mass.

c. Another particle moves in the y-direction in the laboratory frame with momen-
tum equal to twice its mass.

d. Yetanother particle moves in the negative x-direction in the laboratory with total
energy equal to four times its mass.

e. Sdll another particle moves with equal x, y, and z momentum components in the
laboratory and kinetic energy equal to four times its rest energy.

SOLUTION

a. Total energy of the particle equals rest energy m plus kineric energy 3m. Therefore
its total energy E equals E = m + 3m = 4m. The particle moves along the
x-direction, 5o p, = p, = 0 and p, = p, the total momentum. Substitute the value
of E into the equation m* = E? — p? to obtain

P2 =B — m? = (4m)* — 2 = 16m* — m? = 15m?

Hence p, = (15)"?m.
In summary, the components of the momenergy 4-vector are

[E, pw by 2.1 = [4m, (15)/%m, 0, 0]

Of course the magnitude of this momenergy 4-vector equals the mass of the
particle m— true whatever its speed, its energy, or its momentum.

b. In this rocket frame, total energy —rest energy plus kinetic energy—has the
value E = 2m. As before, p? = E2 — m* = 2m)* — m* = 4m* — m? = 3m? .
Hence p, = 3'/2m and components of the 4-vector are [E, p,, p,, p.1=[2m, 3'/2m,
0, 01

c. In this case p, = p, = O and p,= p= 2m . Moreover, B2 = m?+ p?> = m? + (2m)?
= 5m2. So, finally, [E, p,, p,, p,} = [5"2m, 0, 2m, O}.

d. We are given directly that E = 4m, the same as in part a, except here the particle
travels in the negative x-direction so has negative x-momentum. Hence:

[E' px-l P’l Px} — [4"”; _(lS)lﬂm, 0, 0]
e. Total energy equals E= 5m. All momentum components have equal value, say

h=bpH=pn=P
In this case we use the full equation that relates energy, momentum, and mass:
(22 + (p)? + (p)? = 3P2 = B2 — m? = (Sm)? — m? = 24m?

or P2 = 8m? and hence {E, p,, p,, p.} = [5m, 8'2m, 8'/2m, 8'/2p}.
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ENERGY IN THE LOW-VELOCITY LIMIT

Energy at relativistic speeds and energy at everyday speeds: How are ex-
pressions for these two cases related?

Energy in Terms of Momentum: In the limit of velocities low compared with
the speed of light, the relativistically accurate expression for energy E = (m?
+p?)'"2 reduces to E=m+ p?/(2m) + corrections. To see why and how, and to
estimate the corrections, itis convenient to work in dimensionless ratios. Thus
we focus on the accurate expression in the form E/m=[1 + (p/m)?]'?2, or even
simpler, y = [1 + x]'"2, and on the approximation to this result, in the form

E/m =1 4 (1/2) (p/m)? + corrections, or y = 1 + (1/2) x + corrections

Example: x=0.21. Then our approximation formula givesy =(1.21)"2=]
+0.105 +acorrection. The accurate resultisy=1.100, which is the square
root of 1.21. In other words, the correction is negative and extremely
small: correction = —0.005.

Energy in Terms of Velocity: In the limit of velocities low compared with the
speed of light, the relativistically accurate expression for energy E=m/(1 —
v3)'"2, reduces to E = m + (1/2)mv? + corrections. It is convenient again to
work in dimensionless ratios. Thus we focus on the accurate expression in the
form E/m =[1 — v?]" "2, or even simpler, y=[1 — x]~ 2, and on the approxi-
mation to this result, in the form

E/m=1+(1/2) v + corrections, ory = 1 + (1/2) x + corrections

Example: x = 0.19. Then our approximation formula gives y = 1 + (1/2)
0.19 + a correction = 1.095 + a correction. The accurate resultisy =[1 —
0.1917"2=(0.81)""2=(0.9)"'=1.1111 . . . Inother words, the correc-
tion is positive and small: correction = +0.01611.

Another example: A jet plane. Take its speed to be exactly v=107%. That
speed, according to our approximation, brings with it a fractional aug-
mentation of energy, a kinetic energy per unit mass, equal to (1/2)v?=5 X
107 '3 or 0.000 000 000 000 5. In contrast, the accurate expression E/m =
[1 —v27 12 gives the result E/m = 1.000 000 000 000 500 000 000 009 375
000 000 000 . . . The 5 a litile less than halfway down the length of this
string of digits is no trifle, as anyone will testify who has seen the conse-
quences of the crash of a jet plane into a skyscraper. However, the 9375
further down the line is approximately a million million times smaller and
totally negligible in its practical consequences.

In brief, low speed gives rise to a kinetic energy which, relative to the mass, is
given to good approximation by (1/2) v2 or by (1/2) (p/m)2. Moreover, the
same one or other unit-free number (a “fraction’’ because it is small com-
pared to unity) automatically reveals to us the order of magnitude of the
fractional correction we would have had to make in this fraction itself if we
were to have insisted on a perfectly accurate figure for the kinetic energy.



206

Energy: Time part of momenergy
4-vector
Mass: Magnitude of that 4-vector

Relativity: All forms of energy
automatically conserved
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\E 1 FIGURE 7-5. Kinetic energy as a
X Sfunction of speed, as predicted by
g 08F L relativity [equation (7-19), valid
€ relativistic for all speeds] and by Newtonian
§ 0.6 mechanics [equation (7-20), valid
5 . for low speeds only].
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conversion factor ¢2, like the factor of conversion from seconds to meters or miles to
feet, can today be counted as a detail of convention rather than as a deep new principle.

Central to an understanding of the equation E,,, = m ot its equivalent E_, o, = 7¢>
is the subscript “‘rest.”” Energy is not the same as mass! Energy is only the time part of
the momenergy 4-vector. Mass is the magnitude of that 4-vector. The energy of an
object, expressed in conventional units, has the value 72 only when that object is
observed from a frame in which it is at rest. Observed from all other free-float frames,
the energy of the object is greater than its rest energy, as shown by equation (7-17).

Figure 7-5 compares relativistic and Newtonian predictions for kinetic energy per
unit mass as a function of speed. At low speeds the values are indistinguishable (left
side of the graph). When a particle moves with high speed, however, so that the factor
1/(1 — 2?)V/2 has a value much greater than one, relativistic and Newtonian expres-
sions do not yield at all the same value for kinetic energy (right side of the graph). Then
one must choose which expression to use in analyzing collisions and other high-speed
phenomena. We choose the relativistic expression because it leads to the same value of
the total energy of an isolated system before and after any interaction between particles
in the system —it leads to conservation of total energy of the system.

All this talk of reconciliation at low speeds obscures an immensely powerful feature
of the relativistic expression for total energy of an isolated system of particles. Total
energy is conserved in #// interactions among particles in the system: elastic and
inelastic collisions as well as creations, transformations, decays, and annihilations of
particles. In contrast, total kinetic energy of a system calculated using the Newtonian
formula for low-speed interactions is conserved only for elastic collisions. Elastic
collisions ate defined as collisions in which kinetic energy is conserved. In collisions that
are not elastic, kinetic energy transforms into heat energy, chemical energy, potential
energy, or other forms of energy. For Newtonian mechanics of low-speed particles,
each of these forms of energy must be treated separately: Conservation of energy must
be invoked as a separate principle, as something beyond Newtonian analysis of
mechanical energy.

In relativity, all these energies are included automatically in the single time compo-
nent of total momenergy of a system — total energy — which is always conserved for
an isolated system. Chapter 8 discusses more fully the momenergy of a system of
particles and the effects of interactions between patticles on the energy and mass of the
system. e
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7.6 CONSERVATION OF MOMENERGY
AND ITS CONSEQUENCES
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Momenergy puts us at the heart of mechanics. The relativity concept momenergy gives
us the indispensable tool for mastering every interaction and transformation of parti-
cles.

What does it mean in practice to say in this language of momenergy components
that the punch given to particle A by particle B in a collision is exactly equal in
magnitude and opposite in spacetime direction to the punch given to B by A? That
gain in momenergy of A is identical to loss of momenergy by B? That the sum of
separate momenergies of A and B— this sum itself regarded as an arrow in spacetime,
the atrow of total momenergy (Figure 7-6) — has the same magnitude and direction
after the encounter that it had before? Or, in brief, how does the principle of
conservation of momenergy translate itself into the language of components in a

-6 momentum

—————————— ]

17 aémrgy
' 30 eéergy
_______ 15 momentum ___ i 5
; '\-5 momentum
\ I 20 er:HBrgy
n"ica \ ]:3 energy
T0momentam. 16 momentum
BEFORE SYSTEM AFTER
(before and after!)
8 12 8 12
mass mass mass mass

\ 3 ¢ =Y ¢ i) ( ) 3
C&:]S/l? oy = 6/10 =16/20

v V=~ v

-5/13

FIGURE 7-6. Conservation of total momenergy in a collision. Before: The lighter 8-unit mass,
moving right with 15/ 17 light speed, collides with the slower and heavier 12-unit mass moving left (with 5
units of momentum to the left and 13 units of energy). System: Arrow of total momenergy of the system of two
particles. Combined momentum of the colliding particles has value —5 + 15 = 10 units rightward.
Combined energy of the two equals 13+ 17= 30 units. The total system momenergy is conserved. After: One
of many possible outcomes of this collision: The 8-unit mass bounces back leftward after collision, but the
punch that it provided has reversed the direction of motion and increased the speed of the heavier 12-unit
mass. The handle of the momenergy arrow of each particle gives the true magnitude of that momenergy,
Jigured in the Lorentz geometry of the real physical world, as contrasted to the length of that 4-vector as it
appears in the Euclidean—and therefore misleading— geometry of this sheet of paper. The scale of
magnitudes in this figure is different from that of Figure 7-3.
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given free-float frame? Answer: Each component of the momenergy vector, when added
together for particles A and B, has the same value after the collision as before the
collision. In other words,

energy of A energy of B total energy
before the | + | before the | = | before the

encounter encounter encounter

total energy
Energy of system conserved = after the

encounter

energy of A energy of B
= after the | + | after the

encounter encounter

called conservation of the time part of momenergy. Add to this three statements about the
three space components of momenergy, of which the first one reads,

Is the speed of light a constant? An invariant? Is mass conserved in a collision?
Is it an invariant? A constant? Many terms from everyday speech are taken
over by science and applied to circumstances far beyond the everyday. The
three useful adjectives invariant, conserved, and constant have distinct mean-
ings in relativity .

Invariant

In relativity a quantity is invariant if it has the same value when measured by
observers in different free-float frames — frames in relative motion. First
among relativistic invariants is the speed of light: It has the same value when
reckoned using data from the laboratory latticework of recording clocks as
when figured using data from the rocket latticework. A second central invar-
iant is the interval between two events: All inertial observers agree on the
interval (proper time or proper distance). A third mighty invariant is the mass
of a particle. There are many other invariants, every one with its special
usefulness.

Some very important quantities do not qualify as invariants. The time between
two events is not an invariant. It differs as measured by observers in relative
motion. Neither is the distance between events an invariant. It too differs
from one frame to another. Neither the energy nor the momentum of a
particle is an invariant.

Conserved

A quantity is conserved if it has the same value before and after some
encounter or does not change during some interaction. The total momenergy
of an isolated system of particles is conserved in an interaction among the
particles. In a given free-float frame this means that the total energy is
conserved. So is each component of total momentum. The magnitude of total
momenergy of a system — the mass of that system —is also conserved in an
interaction. On the other hand, the sum of the individual masses of the
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eastward component eastward component
of momentum of A | + | of momentum of B
before the encounter before the encounter

eastward component
= | of total momentum

before the encounter

Momentum of system conserved
eastward component

= | of total momentum
after the encounter

eastward component eastward component
= | of momentumof A | + | of momentum of B
after the encounter after the encounter

called conservation of the space part of momenergy. Figure 7-6 illustrates the conserva-
tion of momenergy in a recoil collision between two particles. Momentum is laid out

constituent particles of a system ordinarily is not conserved in a relativistic
interaction. (For examples, see Chapter 8.)

Constant

Something that is constant does not change with time. The speed of the Great
Pyramid with respect to the rock plateau of Giza is constant— equal to zero,
or at least less than one millimeter per millennium. This speed may be con-
stant, but it is not an invariant: As observed from a passing rocket, the Great
Pyramid moves with blinding speed! Is the speed of the Great Pyramid con-
served? Conserved during what encounter? There is no before or after to
which the term ‘““conserved’’ can refer. The term ‘‘conserved’’ simply does
not apply to the speed of the Great Pyramid.

It is true that the speed of light in a vacuum is constant— it does not change
with time. It is also true, but an entirely different statement, that the speed of
light is an invariant— has the same value measured by different observersin
uniform relative motion. It is true that total momenergy of an isolated system
is constant— does not change with time. It is also true, but an entirely differ-
ent statement, that total momenergy of an isolated system is conserved in a
collision or interaction among particles in that system.

When anyone hears the word invariant, conserved, or constant,
she is well-advised to listen for the added phrase with respect fo,
which should always be expressed or implied. Usually (but not
always) constant means with respect to the passage of time. Con-
served usually (but not always) means with respect to a collision or
interaction. Invariant can have at least as many meanings as there
are geometries to describe Nature: In Euclidean geometry, dis-
tance is invariant as measured with respect to relatively rotated
coordinate axes. In Lorentz geometry, interval and mass are in-
variants as measured with respect to free-float frames in relative
motion. The full meaning of the word invariant or conserved or
constant depends on the condition under which this property is
invoked.
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right and left on the page; energy is marked off vertically. The left diagram shows two
particles before collision and their momentum-energy vectors. The right diagram
shows the corresponding display after the collision.

The center diagram shows total momenergy of the system of two particles. The
momenergy vectors of the two particles defore the collision add up to this total; the
momenergy vectors of the two particles after the collision add up to the same total.
Total momenergy of the system has the same value after as before: it is conserved in the
collision.

Well, you've done it again: You've given us a powerful tool that seems impossible to
visualze. How can one think about this momenergy 4-vector, anyway? Can you
personally picture it in your mind'’s eye?

We can almost visualize the momenetgy arrow, by looking at Figure 7-6 for
example. There momentum and energy components of a given momenergy vector
have their correct relative values. And the direction of the momenergy arrow in
spacetime is correctly represented in the diagram.

However, the magnitude of this arrow — mass of the particle—does not corre-
spond to its length in the momenergy diagram. This is because mass is reckoned
from the difference of squares of energy and momentum, whereas length of a line on
the Euclidean page of a book is computed from the s#m of squares of horizontal and
vertical dimensions. The handle or thickened region on the typical arrow and the big,
boldface number for mass remind us of the failure— the lie— that results from
trying to represent momenergy on such a page.

To observe a given momenergy 4-vector first from one free-float frame, then from
another, and then from another (Figure 7-3) is to see the apparent direction of the
arrow changing. The change in frame brings with it changes in the energy and
momentum components. However, magnitude does not change. Mass does not
change. To examine the momenergy 4-vector of a particle in different frames is to
gain improved perspective on what momenergy is and does.

See if this analogy helps: The momentum —energy 4-vector is like a tree. The tree
has a location for its base and for its tip whether or not we choose this, that, or the
other way to measure it. The shadow the tree casts on the ground, however, depends
upon the tilt of the tree and the location of Sun in the sky.

Likewise, momenergy of a particle as it passes through a given event on its
worldline has a magnitude and direction, a fixity in spacetime, independent of any
choice we make of free-float frame from which to observe and measure it. No means
of reporting momenergy is more convenient for everyday purposes than separate
specification of momentum and energy of the object in question in some chosen
free-float frame. Those two quantities separately, however, are like the shadow of the
tree on the ground. As Sun rises the shadow shortens. Similarly the momentum of a
car or spaceship depends on the frame in which we see it. In one frame, terrifying. In
another frame, tame. In a comoving frame, zero momentum, as the tree’s shadow
disappears when Sun lies in exactly that part of the sky to which the tilted tree points.
In such a special frame of reference, the time component of an object’s momenergy
—that is, its energy — takes on its minimum possible value, which is equal to the
mass itself of that object. However, in whatever free-float frame we observe it, the
arrow of momenergy clings to the same course in spacetime, maintains the same
length, manifests the same mass. -

1y
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momenergy of an object unifies energy,
tum, and mass

The momenergy 4-vector of a particle equals its mass multiplied by the ratio of its
spacetime displacement to proper time— wristwatch time— for that displacement
(Section 7.2):

spacetime
displacement
_ 4-vector
= (mass) | ——— 7-1)
proper time
for that

displacement

momenergy
4-vector

Momenergy of a particle is a 4-vector. It possesses magnitude equal to the particle’s
mass. The momenergy at any given event in the motion of the particle points in the
direction of the worldline at that event (Section 7.2).

The momenergy of a particle has an existence independent of any frame of refer-
ence.

The terms momenergy, momentum, and enetgy, as we deal with them in this book,
all have a common unit: mass. In older times mass, momentum, and energy were all
conceived of as different in nature and therefore were expressed in different units. The
conventional units are compared with mass units in Table 7-1.

The magnitude of the momenergy 4-vector of a particle is reckoned from the
difference of the squares of energy and momentum components in any given frame
(Section 7.3):

m2=EZ —-(Px)Z—.(P’)Z—.(P‘)Z

or, more simply,
m2=E2— p2=(E'P— (p')? (7-3)

Mass m of the particle is an invariant, has the same numerical value when computed
using energy and momentum components in the laboratory frame (unprimed compo-
nents) as in any rocket frame (primed components).

In a given inertial frame, the momenergy 4-vector of a particle has four compo-
nents. Three space components describe the momentum of the particle in that frame
(Sections 7.3 and 7.4):

_ dx
px=m 7
dy
py=m s 7-2)
_ dz
p=m =

The magnitude of the momentum can be expressed as the factor 1/(1 — #2)!/2 times
the Newtonian expression for momentum mw». The result is

p=mv/(1 —v?)1/? (7-8)
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The ‘“‘time part” of the momenergy 4-vector in a given inertial frame equals energy of
the particle in that frame (Sections 7.3 and 7.5):

F— ar m
=m % = m (7-2), (7-11)

For a particle at rest, the energy of the particle has a value equal to its mass:
E.. =m (7-13)

For a moving particle, the energy combines two parts: rest energy — equal to mass of
the particle— plus the additional kinetic energy K that the particle has by virtue of its
motion:

E=E ,+K=m+K (7-14)
From these equations comes an expression for kinetic energy:

1
K=E—m=m ’(TTZ)I/Z_l (7-15)

The momenergy 4-vector derives from conservation its power to analyze particle
interactions. Conservation states that the total momenergy 4-vector of an isolated
system of particles is conserved, no matter how particles in the system interact with one
another or transform themselves. This conservation law holds independent of choice of
the free-float frame in which we employ it (Section 7.6).

In any given inertial frame, conservation of total momenergy of an isolated system
breaks apart into four conservation laws:

1. Total energy of the system before an interaction equals total energy of the
system after the interaction.

E=m/(]_v2)|/2 E2_P2=m2

Velocity from time of flight; Useful in analysis of collisions
energy from conservation p=vE when velocity is not of inferest
law applied fo previous or and attention is focused
subsequent collisions Gives p or v on testing or applying

or E when other conservation laws

two are known

and m is not

of interest

Velc:lcny p=mv/(1-v2)/2 Mom:ntum

Velocity from time of flight; momentum from
bending of particle track in magnetic field

FIGURE 7-7. Formulas that relate momentum, energy, mass, and velocity of an object, and notes
about their uses in analyzing experiments, In this diagram, p is the magnitude of the momentum.
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< TABLE 7-1_ >
QUANTITIES RELATING TO MOMENERGY

In units of mass
(for example, E and p

In conventional units
(for example, E,, in joules,

both in kilograms; Reference Deony in kilogram meters/second,;
X, ¥, , ¢, T in meters) equations ?ony i0 seconds)
Energy T . - 72,5, 11, 17) o= —"
at (1 — )12 [1 = Weony/ )P
Rest energy Eee=m (7-13, 18) Ecopy rese = m62
1 1
Kinetic energy K= m(m - 1) (7-15, 19) Kooy = mc? (W - 1)
_ my _ MY cony
Momencum P A=y 8,10 Peo = = G PT
Momentum components H=m E =" (7-2,5) D conv — 1 T —
dat (1 — 9?2 [1 = (Weony/€)?}7?
o dy mv, _ MY,y cony
py=m i m (7-2, 5) Dycony = _L_(l SO
[l=m£=m—1/z (7-2, 5) ) =ﬂ_
a1 — e ’ T (1 (eone/ D2
Mass m? = E2 — p? (7-3) mict = Eln, — pla, €
Particle speed v= 2 (7-16) Veony = Pm"—v(z-
E Eeny
Newtonian low-speed limit 1
Kinetic energy Kyeweon = —mv? (7-12, 20) Koow Newton = Emvgm‘,
Momentum DNeweon = MV 7-7,9) Deonv Newton — M¥cony

Momentum components

Px Newton . "V
Py Newton mvy
pz Newton . 7V

P x conv Newton - 7%V x conv
[7 7 conv Newton = mvy conv

P z conv Newton . ¥z cony

2. Total x-momentum of the system is the same before and after the interaction.
3. Total y-momentum of the system is the same before and after the interaction.
4. Total z-momentum of the system is the same before and after the interaction.

In this chapter we have developed expressions that relate energy, momentum, mass,
and velocity. Which of these expressions is useful depends upon circumstances and the
system we are trying to analyze. Figure 7-7 summarizes these equations and circum-
stances under which they may be useful. Table 7-1 compares energy and momentum
in units of mass and in conventional units. =~
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MOMENERGY 4-VECTOR

CHAPTER 7 EXERCISES

PRACTICE

7-1 momenergy 4-vector

For each of the following cases, write down the four
components of the momentum-—energy (momen-
ergy) 4-vector in the given frame in the form (E, p,, p,,
p.}. Assume that each particle has mass 7. You may
use square roots in your answer.

a A particle moves in the positive x-direction in
the laboratory with total energy equal to five times its
rest energy.

b Same particle as observed in a frame in which it
is at rest.

¢ Another pardicle moves in the z-direction with
momentum equal to three times its mass.

d  Yer another particle moves in the negative
y-direction with kinetic energy equal to four times its
mass.

e Still another particle moves with total energy
equal to ten times its mass and x-, y-, and z-compon-
ents of momentum in the ratio 1 to 2 to 3.

7-2 system mass

Determine the mass of the system of particles shown
in Figure 7-6. Is this system mass equal to the sum of
the masses of the individual particles in the system?
Does the mass of this system change as a result of the
interaction? Does the momenergy 4-vector of the sys-
temn change as a result of the interaction? (In Chapter

8 there is a lot more discussion about the mass of a
system of particles.)

7-3 much ado about little

Two freight trains, each of mass 5 X 106 kilograms
(5000 metric tons) travel in opposite directions on the
same track with equal speeds of 42 meters/second
(about 100 miles/hour). They collide head on and
come to rest.

a Calculate in milligrams the kinetic energy for
each train (1/2)mv? before the collision. (Newtonian
expression OK for 100 mph!) (1 milligram = 1073
gram = 1076 kilogram)

b After the collision, the mass of the trains plus
the mass of the track plus the mass of the roadbed has
increased by what number of milligrams? Neglect
energy lost in the forms of sound and light.

7-4 fast protons

Each of the protons described in the table emits a flash
of light every meter of its own (proper) time 7.
Between successive flash emissions, each proton trav-
els a distance given in the left column. Complete the
table. Take the rest energy of the proton to be equal to
1 GeV = 10° eV and express momentum in the
same units. Hints: Avoid calculating or using the
speed v in relativistic particle problems; it is too close
to unity to distinguish between protons of radically
different energies. An accuracy of two significant fig-

{_ EXERCISE 7-4 >
FAST PROTONS

Lab distance

Ax traveled Lab time
berween flashes Momentum mdx/dT Energy Time strecch between flashes

(meters) (GeV) (GeV) factor (meters)

0
0.1
1
5
10

10?

108
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ures is fine; don’t give more. Recall: E2 — p% = m?
and E = mdt/dT = m) {note tau'}.

PROBLEMS

7-5 Lorentz transformation for
momenergy components

The rocket observer measures energy and momentum
components of a particle to have the values E" and p,”,
b,/ and p,”. What are the corresponding values of
energy and momentum measured by the laboratory
observer? The answer comes from the Lorentz trans-
formation, equation (L-10) in the Special Topic fol-
lowing Chapter 3.

The moving particle emits a pair of sparks closely
spaced in time as measured on its wristwatch. The
rocket latticework of clocks records these emission
events; so does the laboratory latticework of clocks.
The rocket observer constructs components of particle
momentum and energy, equation (7-2), from knowl-
edge of particle mass 7, the spacetime displacements
dt’,dx’, dy’, and dz” derived from the event record-
ings, and the proper time 4T computed from these
spacetime components. Laboratory momenergy com-
ponents come from transforming the spacetime dis-
placements. The Lorentz transformation, equation
(L-10), for incremental displacements gives

dt = vydx” + yds’
dx = ydx" + vydt’
dy =dy’
dz =dz’

a Multiply both sides of each equation by the
invariant mass 7 and divide through by the invariant
proper time 47. Recognizing the components of the
momenergy 4-vector in equation (7-2), show that the
transformation equations for momenergy are

E= vy, + yE
b= Y0 T vyE’
H=r,
b=tz

b Repeat the process for particle displacements
dt, dx, dy, and dz recorded in the laboratory frame to
derive the inverse transformations from laboratory to
rocket.

E'=—uvpp,+ JE
V= yp— vVE
Py=b

V.=0p.
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7-6 fast electrons

The Two-Mile Stanford Linear Accelerator accelerates
electrons to a final kinetic energy of 47 GeV (47 X
109 electron-volts; one electron-volt = 1.6 X 10~1°
joule). The resulting high-energy electrons are used
for experiments with elementary particles. Electro-
magnetic waves produced in large vacuum tubes
(“klystron tubes”) accelerate the electrons along a
straight pipelike structure 10,000 feet long (approxi-
mately 3000 meters long). Take the rest energy of an
electron to be 7 = 0.5 MeV = 0.5 X 106 electron-
volts.

a Electrons increase their kinetic energy by ap-
proximately equal amounts for every meter traveled
along the accelerator pipe as observed in the labora-
tory frame. What is this energy gain in MeV/meter?
Suppose the Newtonian expression for kinetic energy
were correct. In this case how far would the electron
travel along the accelerator before its speed were equal
to the speed of light?

b In reality, of course, even the 47-GeV elec-
trons that emerge from the end of the accelerator have
a speed v that is less than the speed of light. What is
the value of the difference (1 — ») between the speed
of light and the speed of these electrons as measured in
the laboratory frame? [Hint: For v very near the value
unity, 1 —22=(1 + 2)(1 — ) = 2(1 — v).} Let
a47-GeV electron from this accelerator race a flash of
light along an evacuated tube straight through Earth
from one side to the other (Earth diameter 12,740
kilometers). How far ahead of the electron is the light
flash at the end of this race? Express your answer in
millimeters.

¢ How long is the “3000-meter”’ accelerator
tube as recorded on the latticework of rocket clocks
moving along with a 47-GeV electron emerging from
the accelerator?

7-7 super cosmic rays

The Haverah Park extensive air shower array near
Leeds, England, detects the energy of individual cos-
mic ray particles indirectly by the resulting shower of
particles this cosmic ray creates in the atmosphere.
Between 1968 and 1987 the Haverah Park array
detected more than 25,000 cosmic rays with energies
greater than 4 X 10" electron-volts, including 5
with an energy of approximately 10?0 electron-volts.
(rest energy of the proton = 10° electron-volts =
1.6 X 1071 joule)

a Suppose a cosmic ray is a proton of enetgy 1020
electron-volts. How long would it take this proton to
cross our galaxy as measured on the proton’s wrist-
watch? The diameter of our galaxy is approximately
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10 light-years. How many centuries would this trip
take as observed in our Farth-linked frame?

b The research workers at Haverah Park find no
evidence of an upper limit to cosmic ray energies. A
proton must have an energy of how many times its
rest energy for the diameter of our galaxy to appear to
it Lorentz-contracted to the diameter of the proton
(about 1 fermi, which is equal to 1075 meters)? How
many metric tons of mass would have to be converted
to energy with 100-percent efficiency in order to give
a proton this energy? One metric ton equals 1000
kilograms.

Reference: M. A. Lawrence, R. J. O. Reid, and A. A. Warson,
Journal of Physics G: Nuclear and Particle Physics, Volume 17, pages
733-757 (1991).

7-8 rocket nucleus

A radioactive decay or “inverse collision™ is observed
in the laboratory frame, as shown in the figure.

Suppose that m, = 20 units, m = 2 units, and
Ec= 5 units,

a What is the total enetgy E, of particle A?

b From the conservation of energy, find the toral
energy Ep, (test plus kinetic) of particle D.

¢ Using the expression E?2 — p? = m? find the
momentum p of particle C.

d From the conservation of momentum, find the
momentum pp, of particle D.

e What is the mass mp, of particle D?

f Does mc+ mp after the collision equal m,
before the collision? Explain your answer.

g Draw three momenergy diagrams for this re-
action similar to those of Figure 7-6: BEFORE, SYS-
TEM, and AFTER. Plot positive and negative mo-
mentum along the positive and negative horizontal
direction, respectively, and energy along the vertical
direction. On the AFTER diagram draw the momen-
ergy vectors for particles C and D head to tail so that
they they add up to the momenergy vector for the
system. Place labeled mass handles on the arrows in
all three diagrams, including the arrow for the system.

particle A particle C porticle D

(at rest)

BEFORE AFTER

EXERCISE 7-8. Radivactive decay of a particle.

ROCKET NUCLEUS

particle C
(at rest)

BEFORE AFTER

EXERCISE 7-9. Two particles collide to form a third at rest in the
laboratory frame.

® > <@

particle A particle B

7-9 sticky collision

An inelastic collision is observed in the laboratory
frame, as shown in the figure. Suppose that m, = 2
units, E, = 6 units, mc = 15 units.

a From the conservation of energy, what is the
energy Ej of particle B?

b What is the momentum p, of particle A?
Therefore what is the momentum py of particle B?

¢ From m? = E? — p? find the mass mg of par-
ticle B.

d  Quick guess: Is the mass of particle C after the
collision less than or greater than the sum of the
masses of particles A and B before the collision? Vali-
date your guess from the answer to part c.

7-10 colliding putty balls

A ball of putty of mass 7 and kinetic energy K streaks
across the frozen ice of a pond and hits a second
identical ball of putty initially at rest on the ice. The
two stick together and skitter onward as one unit.
Referring to the figure, find the mass of the combined
particle using parts a—e or some other method.

a What is the total energy of the system before
the collision? Keep the kinetic energy K explicitly, and
don’t forget the rest energies of both particles A and
B. Therefore what is the total energy E of particle C
after the collision?

b Using the equation m? = E2— p2 = (m +
K)? — p? find the momentum p, of particle A before
the collision. What is the total momentum of the
system before the collision? Therefore what is the
momentum p of particle C after the collision?

o—o O

particle A particle B partide C
(at rest) (ot rest)
BEFORE AFTER

EXERCISE 7-10. Two purry balls stick together.
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¢ Again use the equation 72 = E2 — p2 to find
the mass 7. of particle C. Show that the result satisfies
the equation

mt = (2m)? + 2mK = (2m)? (1 + £)
2m

d Examine the result of part ¢ in two limiting
cases. (1) The value of 7 in the Newtonian low-ve-
locity limit in which kinetic energy is very much less
than mass: K/m << 1. Is this what one expects from
everyday living? (2) What is the value of 7 in the
highly relativistic limit in which K/m >> 12 What is
the upper limit on the value of m¢ Discussion:
Submicroscopic particles moving at extreme relativis-
tic speeds rarely stick together when they collide.
Rather, their collision often leads to creation of addi-
tional particles. See Chapter 8 for examples.

e Discussion question: Are the results of part
c changed if the resulting blob of putty rotates, whir-
ling like 2 dumbbell about its center as it skitters
along?
7-11 [limits of Newtonian
mechanics

a One electron-volt (eV) is equal to the increase
of kinetic energy that a singly charged particle experi-
ences when accelerated through a potential difference
of one volt. One electron-volt is equal to 1.60 X

1071 joules. Verify the rest energies of the electron
and the proton (masses listed inside the back cover) in
units of million electron-volts (MeV).

b The kinetic energy of a particle of a given
velocity » is not correctly given by the expression 1/2
mv?, The error

(relativistic expression) (Newtonian expression
for kinetic energy for kinetic energy )

DERIVATION OF RELATIVISTIC EXPRESSION FOR MOMENTUM

Newtonian expression
for kinetic energy

is one percent when the Newtonian kinetic energy has
risen to a certain fraction of the rest energy. What
fraction? Hint: Apply the first three terms of the
binomial expansion

1
(l+z)"=1+nz+5n(n—l)z2+. ..

to the relativistic expression for kinetic energy, an
accurate enough approximation if |z| << 1. Let this
point— where the error is one percent— be arbittar-
ily called the ““limit of Newtonian mechanics.” What
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is the speed of the particle at this limit? At what
kinetic energy does a proton reach this limit (energy in
MeV)? An electron?

¢ Anelectron in a modern color television tube is
accelerated through a voltage as great as 25,000 volts
and then directed by a magnetic field to a particular
pixel of luminescent material on the inner face of the
tube. Must the designer of color television tubes use
special relativity in predicting the trajectories of these
electrons?

7-12 derivation of the
relativistic expression for
momentum — a worked
example

A very fast particle interacts with a very slow particle.
If the collision is a glancing one, the slow particle may
move as slowly after the collision as before. Reckon
the momentum of the slow-moving particle using the
Newtonian expression. Now demand that momen-
tum be conserved in the collision. From this derive the
relativistic expression for momentum of the fast-
moving particle.

The top figure shows such a glancing collision.
After the collision each particle has the same speed as
before the collision, but each particle has changed its
direction of motion.

Behind this figure is a story. Ten million years ago,
and in another galaxy nearly ten million light-years
distant, a supernova explosion launched a proton
toward Earth. The energy of this proton far exceeded
anything we can give to protons in our earthbound
particle accelerators. Indeed, the speed of the proton
so nearly approached that of light that the proton’s
wristwatch read a time lapse of only one second be-
tween launch and arrival at Earth.

We on Earth pay no attention to the proton’s
wristwatch. For our latticework of Earth-linked ob-
servers, ages have passed since the proton was
launched. Today our remote outposts warn us that
the streaking proton approaches Earth. Exactly one
second on our clocks before the proton is due to arrive,
we launch our own proton at the slow speed one
meter /second almost perpendicular to the direction
of the incoming proton (BEFORE part of the top
figure). Our proton saunters the one meter to the
impact point. The two protons meet. So perfect is our
aim and timing that after the encounter our proton
simply reverses direction and returns with the same
speed we gave it originally (AFTER part of the top
figure). The incoming proton also does not change
speed, but it is deflected upward at the same angle at
which it was originally slanting downward.
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DERIVATION OF RELATIVISTIC EXPRESSION FOR MOMENTUM
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Earth Frame: BEFORE

Earth Frame: AFTER

Y l//ﬁo
* y
Earth Frame: BEFORE
1
y
2
Rocket Frame: BEFORE

EXERCISE 7-12. Top: A symmetric elastic collision between a fast proton and a slow proton in which each
proton changes direction but not speed as a result of the encounter. Center: Events and separations as
observed in Earth frame before the collision. Here x = 10 million light-years and y = 1 meter, so these
[figures are not to scale! Bottom: Events and separations as observed in the rocket frame before the collision.

How much does y-momentum of out slow-mov-
ing proton change during this encounter? Newton can
tell us. At a particle speed of one meter/second, his
expression for momentum, 7v, is accurate. Our pro-
ton simply reverses its direction. Therefore the change
in its momentum is just 2 7w, twice its original mo-
mentum in the y-direction.

What is the change in the y-momentum of the
incoming proton, moving at extreme relativistic
speed? We demand that the change in y-momentum
of the fast proton be equal in magnitude and opposite
in direction to the change in y-momentum of our slow
proton. In brief, y-momentum is conserved. This de-
mand, plus a symmetry argument, leads to the rela-
tivistic expression for momentum.

Key events in our story are numbered in the center
figure. Event 1 is the launching of the proton from the
supernova ten million years (in our frame) before the
impact. Event 2 is the quiet launch of our local proton
one second (in our frame) before the impact. Event 0
is the impact itself. The x-direction is chosen so that
y-displacements of both protons have equal magni-
tude between launch and impact, namely one meter.

Now view the same events from a rocket moving
along the x-axis at such a speed that events 1 and O are

vertically above one another (bottom figure). For the
rocket observer the transverse y-separations are the
same as for the Earth observer (Section 3.6),s0y = 1
meter in both frames. The order of events 1 and 2,
however, is exactly reversed in time: For the rocket
observer, we released our proton at high speed ten
million years before impact and she releases hers one
second before the collision. Otherwise the diagrams
are symmetrical: To make the bottom figure look like
the center one, exchange event numbers 1 and 2, then
stand on your head!

Rocket observer and Earth obsetver do not agree
on the time between events 1 and 0, but they agree on
the proper time T,, between them, namely one sec-
ond. They also agree on the proper time T,, between
events 2 and 0. Moreover, because of the symmetry
between the center and bottom figures, these two
proper times have the same value: For the case we
have chosen, the wristwatch (proper) time for each
proton is one second between launch and impact.

Ti0 = T2

We can use these quantities to construct expres-
sions for the y-momenta of the two protons. Both are
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protons, so their masses 7 are the same and have the
same invariant value for both observers. Because of
the equality in magnitude of the y-displacements and
the equality of T,q and T;4, we can write

[both frames]

The final key idea in the derivation of the relativis-
tic expression for momentum is that the slow-moving
proton travels between events 2 and 0 in an Earth-
measured time that is very close in value to the proper
time between these events. The vertical separation y
between events 2 and 0 is quite small: one meter. In
the same units, the time between them has a large
value in the Earth frame: one second, or 300 million
meters of light-travel time. Therefore, for such a
slow-moving proton, the proper time T,, between
events 2 and O is very close to the Earth time 2,y
between these events:

Ty == Iy [Earth frame only]

Hence rewrite the both-frames equation for the
Earth frame:

)

Y
m-—=—m-—
T1o %20

[Earth frame only]

The right side of this equation gives the y-momentum
of the slow proton before the collision, cotrectly cal-
culated using the Newtonian formula. The change in
momentum of the slow proton during the collision is
twice this magnitude. Now look at the left side. We
claim that the expression on the left side is the y-mo-
mentum of the very fast proton. The y-momentum of
the fast proton also reverses in the collision, so the
change is just twice the value of the left side. In brief,
this equation embodies the conservation of the y-
component of total momentum in the collision. Con-
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clusion: The left side of this equation yields the rela-
tivistic expression for y-momentum: mass times
displacement divided by proper time for this displace-
ment.

What would be wrong with using the Newtonian
expression for momentum on the left side as well as on
the right? That would mean using earth time #,
instead of proper time T, in the denominator of the
left side. But #,, is the time it took the fast proton to
reach Earth from the distant galaxy as recorded in the
Earth frame — ten million years or 320 million mil-
lion seconds! With this substitution, the equation
would no longer be an equality; the left side would be
320 million million times smaller in value than the
right side (smaller because #,, would appear in the
denominator). Nothing shows more dramatically
than this the radical difference between Newtonian
and relativistic expressions for momentum —and the
correctness of the relativistic expression that has
proper time in the denominator.

This derivation of the relativistic expression for
momentum deals only with its y-component. But the
choice of y-direction is arbitrary. We could have in-
terchanged y and x axes. Also the expression has been
derived for particles moving with constant velocity
before and after the collision. When velocity varies
with time, the momentum is better expressed in terms
of incremental changes in space and time. For a parti-
cle displacement dr between two events a proper time
dt apart, the expression for the magnitude of the
momentum is

ar
P=m_

at

One-sentence summary: In order to preserve con-
servation of momentum for relativistic collisions,
simply replace Newton’s “universal time” # in the
expression for momentum with Einstein’s invariant
propet time T.






8.1 THE SYSTEM

an isolated island of viclence

Particle physics is one of the great adventures of our time. No one can venture into the
heart of ic without momenergy as guide and lamp. Particles clash, yes. But however
caraclysmic the encounter, it always displays one greac simplicity. It rakes place on a
local stage, an island of violence, apart from all happenings in the outside world. In
other isolated arenas of action football players form a team, actors a troupe, soldiers a
platoon; but in a battle of matter and energy, the participants receive the name
system.

What the action starts with, what particles there are, what speeds they have, what
directions they take: that's the story of the system at the start of the action. We may or
may not pursue in all detail every stage of every encounter, as we view the scenes of a
play or watch the episodes of a game. However, nothing thar claims to be an account of
the clash, brief though it may be, is worthy of the name unless it reports every
participant that leaves the scene with its speed and its direction. Departing, they still
belong to the system. Moreover, at every step of the way from entry to departure we
continue to use for the collection of participants the name syszem.

The child keeps count of who wins and who loses in the shoot-out before he or she
leatns to ask questions of right and wrong, of why and wherefore, We likewise keep
tabs on what goes into an encounter and what comes out only to the extent of
broadcasting the participants’ momenergies before and after the act of violence. We do
not open up in this book the more complex story of the forces, old and new, that
govern the chances for this, that, and the other outcome of a given encounter. We limit
ourselves to the ground rules of momenergy conservation in an isolated system. =~
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Keep score of momenergy for
the system
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Elastic collision: Momenergy
automatically conserved

Inelastic collision: Momenergy
also conserved

CHAPTER 8 COLLIDE. CREATE. ANNIHILATE.

8.2 THREE MODEST EXPERIMENTS

elastic glass balls; inelastic wads of gum;
weighing heat

A collision does not have to be violent to qualify for attention nor be exotic to make
momenergy scorekeeping interesting. It is fun to begin with momenergy scorekeeping
for three encounters of everyday kinds before strolling out onto the laboratory floor of
high-energy particle physics.

First Experiment: Elastic Collision. Suspend two identical glass marbles from
the ceiling by two threads of the same length so that the marbles hang, at rest, just
barely touching. Draw one back with the finger and release it (Figure 8-1). The
released marble gathers speed. The speed peaks just as the first marble collides with the
second. The collision is elastic: Total kinetic energy before the collision equals total
kinetic energy after the collision. The elastic collision brings the first marble to a
complete stop. The impact imparts to the second all the momentum the first one had.
Conservation of momentum could not be clearer:

total momentum total momentum

to the right just to the right just
before the collision, | = | after the collision,
all of it resident on all of it resident on
the first marble the second marble

And energy? In the collision the two particles exchange roles. The first particle comes to
a halt. The second particle moves exactly as the first one did before the collision. Hence
energy too is clearly conserved.

Just before the collision and just after: How do conditions compare? Same total
momentum. Same total energy. Therefore same total momenergy.

Second Experiment: Inelastic Collision. Replace the two glass marbles by two
identical balls of putty, wax, or chewing gum (Figure 8-2). Pull them aside by equal
amounts and release.

Both released balls of chewing gum gather speed, moving toward one another. The
equal and opposite velocities peak just before they collide with each other. By
symmetry, the momentum of the right-moving particle has the same magnitude as the
momentum of the left-moving particle. However, these momenta point in opposite
directions. Regarded as vectors, they sum to zero. The momentum of the system
therefore equals zero just before the collision.

Just after the collision? The two balls have stuck together. They are both a rest;
each has zero momentum. Their combined momentum is also zero. In other words,

lIIIIIIIIIIIIIIIIIIIIIIIII AB RE( mc. 1 BRI

FIGURE 8-1. One marble collides elastically with anotber.
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FIGURE 8-2. One ball of chewing gum locks onto the other.

the momentum of the system is zero after the collision. Zero it was also before the
collision. Thus the momentum of the system is conserved.

For system energy the outcome is more perplexing. Just before the collision, each
ball has an energy consisting of its mass 7 and its kinetic energy K. These energies add
to make the total energy of the system: E ., = 2m + 2K.

After the collision? Both balls of chewing gum are at rest, stuck together as a single
blob, which now constitutes the entire system. The energy of that stationary blob must
be its rest energy, equal to the mass of the system: E, e = Eree = My jeem- What is the
value of that system energy? It must be the same as the energy of the system before the
collision, equal to 2m + 2K, where m is the mass of each ball before the collision.
Hence, if energy is conserved, M, e, = 2m + 2K. This is greater than the sum of
masses of the incoming particles.

Where does this extra mass come from? The energy of relative motion of the
incoming particles gets converted, during the collision, into energy of plastic deforma-
tion and heat. Each of these forms of locked-in energy yields an increment of mass. In
consequence the mass of the pair of balls, stuck together as one, exceeds the sum of
masses of the two balls before impact.

Third Experiment: Weighing Heat. If warmed and distorted balls of gum
have more mass than cool and undistorted balls, then maybe we can measure directly
the increased mass simply by heating an object and weighing it. In this case the system
consists of a single large object, such as a tub of water, stationary and therefore with
zero total momentum. System energy consists of the summed individual masses of all
water molecules plus the summed kinetic energies of their random motions. This
summed kinetic energy increases as we add heat to the water; hence its mass should
increase. Can we detect the corresponding increase in weight as we heat the water in the
tub?

Alas, never yet has anyone succeeded in weighing heat. In 1787 Benjamin Thomp-
son, Count Rumford (1753 — 1814), tried to detect an increase in weight of barrels of
water, mercury, and alcohol as their temperature rose from 29° F to 61° F (in which
range ice melts). He found no effect. He concluded “‘that ALL ATTEMPTS TO
DISCOVER ANY EFFECTS OF HEAT UPON THE APPARENT WEIGHTS
OF BODIES WILL BE FRUITLESS" (capital letters his). Professor Vladimir Bra-
ginsky of the University of Moscow once described to us a new idea for weighing heat.
Let a tiny quartz pellet hang on the end of a long thin near-horizontal quartz fiber, like
a reeled-in fish at the end of a long supple fishing rod. A fly that settles on the fish
increases its weight; the fishing rod bends a little more. Likewise heat added to the
pellet will increase its mass and will bend the quartz-fiber ““fishing rod™ a licdle more.
That is the idea. The sensitivity required to detect a bending so slight unfortunately
surpasses the present limit of technology. Braginsky himself already has invented,
published, and made available to workers all over the world a now widely applied
scheme to measure very small effects. There is real hope that he—or someone
else—will weigh heat and confirm what we already confidently expect. «=~

Kinetic energy converted to mass

Can we weigh heat?
Not yetl
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FIGURE 8-3. Two noninteraciing particles,
each of mass 8, are in relative motion. Taken
together, they constitute a system of mass 20,
Where does the mass 20 reside? In the system!

8.3 MASS OF A SYSTEM OF PARTICLES

es gdd. momenia add. masses do nof add.

No one with any detective instincts will rest content with the vague thoughr that heat
has mass. Where within our stuck-together wads of chewing gum or Rumford’s barrel
of water or Braginsky’s quartz pellet is that mass located? In random motions of the
atoms? Nonsense. Each atom has mass, yes. But does an atom acquire additional mass
by virtue of any motion? Does motion have mass? No. Absolutely not. Then where,
and in what form, does the extra mass reside? Answer: Not in any part, but in the
system.

Hear resides not in the particles individually but in the system of particles. Heat
arises not from motion of one particle but from relative motions of two or more
particles. Heat is a system property.

The mass of a system is greater when system parts move relative to each other. Of
this central point, no simpler example offers itself than a system composed of a single
pair of masses. Our example? Two identical objects (Figure 8-3). Each has mass 8.
Relative to the laboratory frame of reference each object has momentum 6, but the two
momenta are opposite in direction. The energy of each object is E= (m? + p?)'/2 =
(82 + 6»)'/2 = 10.

The total momentum of the two-object system is p e, = 6 — 6 = 0. The energy of
the system is E e = 10 + 10 = 20. Therefore the mass of the system is Mypee, =
(Eqpem? — Deyseem®) /2 = [(20)2 — 02]'/2 = 20. Thus the mass of the system exceeds the
sum of the masses of the two parts of the system. The mass of the system does not agree
with the sum of the masses of its parts.

Energy is additive. Momentum is additive. But mass is 7of additive.

Ask where the extra 20 — 16 = 4 units of mass are located? Silly question, any
answer to which is also silly!

Ask where the 20 units of mass are located? Good question, with a good answer.
The 20 units of mass belong to the syster as a whole, not to any part individually.

Where is the life of a puppy located? Good question, with a good answer. Life is a
property of the system of atoms we call a puppy, not a property of any part of the
puppy.-

Where is the extra ingredient added to atoms to yield a live puppy? Unacceptable
question, any answer to which is also unacceptable. Life is not a property of any of the
individual atoms of which the puppy is constituted. Nor is it a property of the space
between the atoms. Nor is it an ingredient that has to be added to atoms. Life is a
property of the puppy system.

Life is remarkable, but in one respect the two-object system that we are talking
abourt is even more remarkable. Life requires organization, but the two-object system
of Figure 8-3 lacks organization. Neither mass interacts with the other. Yet the total
energy of the two-object system, and its total momentum, regarded from first one
frame of reference, then another, then another, take on values identical in every respect
to the values they would have were we dealing throughout with a single object of mass
20 units. Totally unlinked, the two objects, viewed as a system, possess the dynamic
attributes — energy, momentum, and mass—of a single object.

This wider idea of mass — the mass of an isolated system composed of disconnected
objects: what right have we to give it the name “‘mass’’? Nature, for whatever reason,
demands conservation of total momenergy in every collision. Each collision, no mattet
how much it changes the momenergy of each participant, leaves unchanged the sum of
their momenergies, regarded as a directed arrow in spacetime —a 4-vector. Encounter
or no encountet, and however complex any encounter, system momenergy does not
alter. Neither in spacetime direction nor in magnitude does it ever change. But the
magnitude— the length of the arrow of total momenergy, figured as we figure any
spacetime interval —is system mass. Whether the system consists of a single object or
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of many objects, and whether these objects do or do not collide or otherwise interact
with each other, this system mass never changes. That's why the concept of system
mass makes sense!

An example? Again, two objects of mass 8, again each moving toward a point
midway between them at = (momentum)/(energy) = (p=6)/(E=10)=3/5 the
speed of light. Now, however, we analyze the two motions in a frame moving with the
right-hand object (Figure 8-4). In this new frame the right-hand object is at rest: mass,
m = 8; momentum, p = 0; energy, E = [m? + p?1'/2 = 8. The left-hand object is
approaching with a speed (addition of velocities: Section L.7 of the Special Topic
following Chapter 3; also Exercise 3-11)

i 3/5+3/5 _ 6/5 _15

1+ (3/5)X3/5) 34725 17
It has energy E=m/{1 — ¢2}"/2=8/{1 —(15/17)*]'/?= 17 and momentum p =
vE=15. So much for the parts of the system! Now for the system itself. For the system
the energy is E, e = 8 + 17 = 25 and the momentum is p, e, = 0 + 15 = 15.

Now for the test! Does the concept of system mass make sense? In other words, does
system mass turn out to have the same value in the new frame as in the original frame?
It does:

Mo ™ Bl — Dumal) = (2P —XSYIVP == [625 — 225
= [400}/2 = 20

ot 8 energy / :
20 / .5
mcss. / 25 energy
17 eliue:rg}.nr b /4 .
...................................... 15 SRS |- S
momentum momentum momentum
BEFORE SYSTEM AFTER
(before and after!)
8 8 20
mass mass mass
C v=15/17 C C"vz:s/s

FIGURE 8-4. System of Figure 8-3 observed from a frame moving with the right-hand object. The
right-hand object is therefore initially at rest. Before: Arrows of momenergy for two objects before collision.
Each object has a mass of eight units (shaded bandles). The upper, vertical, arrow belongs to the particle
originally at rest, the slanted arrow to the incoming particle. System: Addition of the two momenta (one of
them zero!) gives the total momentum before collision. Similarly, addition of the two energies gives the total
energy. Mass of the system— even before the two particles interact!— comes from the expression for the
“hypotenuse” of a spacetimelike triangle. Result: 20 units of mass (shaded handle on center 4-vector):

(mass? = (energy)® — (momentam)® = (25 — (15)° = 625 — 225 = 400 = (20)?

After: The two particles now collide and amalgamate to form one particle. Arrow of total momenergy after
the amalgamation is identical to arrow of total momenergy before the collision. Mass of this two-object system
exceeds the mass of one object plus the mass of the other, not only after the collision but also before. Mass is not
an additive quantity.

225

Different free-float frames.
Same system mass.

25 EI:1 ergy
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SAMPLE PROBLEM 8-1

MASS OF A SYSTEM OF ()
MATERIAL PARTICLES

Compute M, ..., for each of the following systems. i terms of the unit mass 7; do not use momenta or
The particles that make up these systems do not  velocities in your answers. [Note: In the following
interact with one another. Express the system mass ~ diagrams, arrows represent (3-vector) momenta. }

System a
(kinetic energy = K= 3m)
m O—)' m O (at rest)
System b
(kinetic energy = K= 5m) (kinetic energy = K = 5m)
m O > m >
System ¢
(energy = E=7m)
3m O > m O (at rest)
System d
m
(E = ém)
m
(E=6m)
SOLUTION

System a: System enetgy equals the rest energy of the two particles (the sum of their
masses) plus the kinetic energy of the moving particle: E .., = (m + m) + 3m = 5m.
Squared momentum of the system equals that of the moving particle: p, .....> = p* =
E?2 — m? = (4m)* — m® = 15m>. Mass of the system is reckoned from the difference
between the squares of energy and momentum:

M, e = [Egpeen® ™ Poyueen’ 12 = [25m — 15m?}/2 = [10}*m = 3.162 m

Moreover, if the two objects collide and amalgamate, the system energy remains at the
value 25, the system momentum remains at the value 15, and the system mass
remains 20, as illustrated in Figure 8-4.

In summary, the mass of an isolated system has a value independent of the choice of
frame of reference in which it is figured. System mass remains unchanged by en-
counters between the constituents of the system. And why? Because the system mass is
the length (in the sense of spacetime interval) of the arrow of total momentum-energy.
This momenergy total is unaffected by collisions among the parts or by any transfor-
mations, decays, or annihilations they may undergo. System mass does make sense!

System! System! You keep talking about ‘‘system,” even when the particles do not

interact, as in the system of Figure 8-3. It seems to me that you are totally arbitrary in
the way you define a system. Who chooses which particles are in the system?
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System b: System energy equals rest energy of the two particles plus kinetic energy of
the two particles: E, ..., = 2m + 10m = 12m. Squared momentum of each particle is
P = E? — m? = (6m)*> — m* = 35nm? yielding p = (35)"/?m. System momentum is
twice this: p e = 2 (35)"2 m. The mass of the system is

Mopsen = {Especn’ ™ Doy 372 = [(12m)* — (2 (35)"2m}?}2
= [144 — 140]V2m = [41/2m = 2m

In this one special case the mass of the system equals the sum of masses of the objects
that make up the system. We could have seen this result immediately by observing the
system from a reference frame that moves along with the particles. In this frame the
particles are at rest and have zero total momentum; the total energy is identical to the
sum of the individual rest energies (the individual masses). So in this case the mass of
the system is equal to its energy, which is equal to the sum of masses. Moreover, system
mass is an invariant. Thus 2 is the mass of the system as reckoned in all reference
frames, including the one in which System b is pictured.

System c: Total energy = system energy = E  on = 7m + m = 8m. System
momentum equals the momentum of the moving particle: py e’ = E> — m? =
(7m)? — (3m)* = 49m* — 9m* = 40m?. Hence the systemn mass is

My = [64m2 — 40m2)'/2 = [2412m = 4.899m

System d: This part of the problem serves as a reminder that momentum is a
Euclidean 3-vector. The squared momentum of each particle is p? = F2 — m? = 36m?
— m* = 35m?. Their total momentum is not the algebraic sum of the momenta,
because they are vectors pointing in perpendicular directions. This perpendicular
orientation allows us to equate the squared system momentum to the sum of the
squares of the individual momenta: pyem’> = 3572 + 35m* = 70m?. System energy is
the sum of the energies (energy is a scalar and adds like a scalar!): E, .., = 6m + 6m =
12m. Hence system mass is

Mopern = [144m2 — T0m2)/2 = [741/2m = 8.602m

Compare this result with that of System b, which also contained two particles, each of
total energy 6m.

_-= We do! We can draw the dashed line around any collection of objects whatever,
~  subject to this one restriction: no object in our system may interact with any external
object or experience a force from outside the system. Our system must be isolated.
With that single limirtation, the system we choose is arbitrary, has a conserved toral
energy, a conserved total momentum, and a system mass that is invariant—a mass

that has the same value no matter in which free-float frame it is reckoned.

I can't believe the story you tell. Those two mass-8 objects, you say, may fly past each
other. Then your talk about the system mass is just talk, terminology. Or they may whang
into each other and amalgamate. Then your talk is all wrong, and for an obvious reason.
As the objects collide they slow and come to vest relative to each other. At that instant
and in that “rest frame’ (the frame of Figure 8-3), each has zero momentum, and
energy equal to its mass. So the total momentum of the system is zero, and its total energy
is 8+ 8 = 16. That means a mass of 16. Yet you claim 20.
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TABLE 8-1

\-..________________/

CLEOPATRA’S VASE, HER BATH, AND INTERSTELLAR VACUUM:
ILLUSTRATIVE FRACTIONAL CHANGES IN MASS OF SYSTEMS

Fractional increase

in system mass
System before System after (to nearest power of 10)
One-kilogram vase Vase smashed into so many fragments that 100 10718
centimeters of glass-to-glass bonds are broken
Bath water at 15° C Bath water at 40° C 10712
Water (H,0) Aromic hydrogen (H) and oxygen (O) 107*
Earth All molecules of Earth lifted against the pull of their 107°
murual gravity to infinite separation from one another
Hydrogen atom in lowest Electron withdrawn to infinite separation from nucleus 107#
energy srare
Deuteron Deuteron separated into proton and neutron 10732
Neutron star Widely separated iron atoms ar rest with respect to 107!
each other
A vacuum, before it is zapped Electron — positron pair bound as a positronium arom Infinite fractional
by converging photons increase
.= Slow and come to rest? Yes. But that means force: “'elastic,” gravirational, electro-
~ magnetic, or nuclear force. That's the new and valuable point you make here. And
those particles, pushing against thar force, store up energy. This energy, too, has to
D A be put into the bookkeeping. When amalgamating particles come to rest relative to

System energy increase?
System mass can increase.

one another, the energy of interaction “‘balances the books™ — it so happens—and
leads to a final mass of 20, greater than the sum of masses of the original objects. For
the figuring of system mass, however, we really don’t have to get into this detail. It is
enough for us to know that total momentum is conserved, py e, = 0 in Figure 8-3,
and total energy— in whatever way it is apportioned between the objects and the
fields of force that act between them — is also conserved, E, e, = 20. The length, in
the sense of interval, of the 4-vector of momenergy for the system remains un-
changed: M ..., = 20.

What about a system that is zo# isolated? A system that has—and keeps — zero
momentum, but receives an increment of energy? Then its mass rises by an amount
exactly equal to that inpurt of energy. The increase in mass is the same whether that

energy goes into altering the relative motion of the parts of the system or increasing the
energy of interaction between them or some combination of motion and interaction.
Supply energy to a system by heating it or setting it into internal vibration or fracturing
the bonds between its parts? Each is a guaranteed way to increase the mass of the
system (Table 8-1)! w=~

8.4

ENERGY WITHOUT MASS: PHOTON

A striking example of the primacy of momenergy over mass is furnished by a
quantum of light colliding with an electron.
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Quantum? A quantum of luminous energy of a given color or, in more technical
terms, light of a given wavelength or frequency of vibration. Max Planck discovered in
1900 that light of a given color comes only in quanta— “*hunks’”” — of energy of a
standard amount, an amount completely determined by the color (Table 8-2). We can
have one quantum, one hunk, one photon, of green light, or two, or fifteen, but never
two and a half.

Nothing did more to raise the light quantum, the hunk of luminous energy, the
photon, to the status of a particle than experiments carried out by 28-year-old Arthur
Holly Compton at Washington University, St. Louis, in 1920. Shining X-rays of
known wavelength (and hence of known frequency and known quantum energy) on a
variety of different substances, he measured the wavelength (and hence the quantum
energy) of the emergent “scattered’” X-rays. He got identical changes in wavelength at
identical angles of observation from many kinds of materials. There was no way he
could explain this result except to say that the scattering object was in every case the
same, an electron, whatever the atom in which the electron happened to reside.

But why did the change of wavelength have a unique value, the same for all
materials at a given angle of scattering? Every idea of classical physics failed to fit,
Compton found. “‘Compton arrived at his revolutionary quantum theory for the
scattering process rather suddenly in late 1922, a biographer tells us. “He now
treated the interaction as a simple collision between [an X-ray quantum} and a free
electron . . . [He} found that [this hypothesis gave results] which agreed petfectly
with his data . . . When Compton reported his discovery at meetings of the American
Physical Society, it aroused great interest and strong opposition . . .” By 1927,
however, his finding was generally accepted and in that year won him the Nobel Prize.

What does it mean to treat a photon on the same footing as a particle? It means this:
attribution to the photon of an enetgy and a momentum, in other words momenergy.

AT R O
TABLE 8-2
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Compton demonstrates quantum
of radiation — photon!

\___/

MOMENTUM AND ENERGY CARRIED BY ONE PHOTON, ONE QUANTUM,

ONE HUNK OF LUMINOUS ENERGY OF VARIOUS “COLORS™

(Unit of energy used in this table: electron-volt or €V, the amount of energy given
to an electron by accelerating it through an electrical potential difference of one volt)

Source of Momentum (and Frequency in
electromagnetic energy) of a vibrations Wavelength

radiation single quantum per second in meters
KDKA, Pittsburgh: wotld’s first radio broadcast station 422X 107%eV 1.02 X 108 294
A sample infrared beam 1.24X 1072 eV 3 X 10" 1074
Yellow radiation from a sodium arc lamp 2.11eV 5.09 X 10 5.90 X 1077
Ultraviolet light from a mercury arc lamp 4.89 eV 1.18 X 10% 2.54 X'1077
Ultraviolet star radiation of just barely sufficient quantum 13.6 eV 3.29 X 10¥ 0.91 X 1077
energy to strip a hydrogen atom of its electron
Each of two gamma rays given off in the mutual annihilation 5.11 X 10° eV 1.23 X 10% 2.43 X 10712
of a slow positron and a slow electron
Each of two gamma rays given out when a neutral pi meson, 6.75 X 107 eV 1.63 X 10% 1.84 X 10714
at rest, decays
Each of two gamma rays given off in the mutual annihilation 0.938 X 10° eV 2.27 X108 1.32 X 107"

of a slow proton and a slow antiproton
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Photon momenergy points
in lightlike direction

Photon momenergy:
magnitude zero
(photon mass = 0)
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In what direction in spacetime does the photon’s arrow of momenergy point? In a
lightlike ditection, because the photon—a quantum of light —travels with light
speed!

When we turn from spacetime to a particular free-float frame of reference and
observe a pulse of light at one event along its worldline and then observe it at a second
event (Figure 8-5), we know in advance something important about the interval
between the two events: It equals zero.

(interval)? = (distance between two events)? — (time between two events)?
= (difference between two quantities of identical magnitude)
0

A photon in a pulse of light has a momenergy arrow with a tip and a tail, like the
momenergy vectot for any other particle. Between the tip and tail there is a magnitude.
The magnitude for the photon, however, has the value zero— zero because this arrow
points in the same direction in spacetime as the worldline of the light pulse (Figure
8-5). For that reason its space component (momentum) and its time component
(energy) are equal. And, of course, we express the square of this magnitude as we
express the square of any interval, as a difference between the squared timelike and
spacelike separations between the two ends of the arrow:

(magnitude of momenergy arrow of photon)?
= (photon energy)? — (photon momentum)?
= (photon mass)? = 0

In brief, the lightlike character of the arrow of photon momenergy tells us that (1)
photon mass equals zero and (2) the magnitude of momentum, or punch-delivering
power, of the photon is identical in value with the energy of the photon:

(photon energy) = (magnitude of photon momentum)
and

(photon mass) = 0

FIGURE 8-5. Worldline of a pho-
ton. Note its “unit slope in space-
time.”’ Insets: Unit slope of worldline
means equal space and time separa-
tions between events on this worldline,
hence zero interval between them—
and zero aging for the photon. Momen-
ergy of the same photon, also with unit
slope, symbolizing three properties of
the photon: it has zero mass (hence the
big zero as an invariant “bandle’’), it
travels with light speed, and it has a
momentum identical in magnitude
with its energy.

momentum

[ R p— Y

space ——>
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2 momentum 2 momentum
BEFORE SYSTEM AFTER
(before and after!)
0 v=1 1 ve] 6 lv=24f26

FIGURE 8-6. Backscattering of a photon by a free electron. The wiggly arrow symbol represents a
photon, Energy, momentum, and mass of all particles are expressed in units of electron mass. Before: The
electron at rest has an energy equal to its mass (vertical arrow); the photon has an energy (and a momentum)
of 2 electron maises (angled arrow). System: Arvow of total momenergy. (Whar is the mass of the system?)
After: Arvows of momenergy of knocked-on electron (labeled 1) and backscattered photon (labeled 0) after the
encounter. Arrow of total momenergy of the system remains the same (is conserved!) during this process.

Figure 8-5 summarizes these features of the elementary quanta of visible light and
other electromagnetic radiations. For a “handle” on the momenergy 4-vector of a
photon — representative of its magnitude — we choose a stylized zero, 0.

Nothing shows these revolutionary features of light to better advantage than the
very collision process studied by Arthur Compton: the encounter between a single
photon and a single electron. We take the electron, loosely bound though it may be in
one or another outer orbit of an atom, as essentially free and essentially at rest— at rest
compared to the swift motion in which it finds itself after the high-energy photon hits
it (Figure 8-6).

To simplify all numbers, we pick for the photon energy a value typical of gamma
rays, considerably greater than that of the X-rays with which Compton worked but
easily available today from various sources of radioactivity: 1.022 MeV (million
electron-volts). We pick this number because we want to express all energies in units of
electron mass, 9.11 X 1073! kilograms or 0.511 MeV. Our choice of photon energy
equals exactly two electron masses. Convenient!

Incoming photons of this energy, encountering an electron, are scattered by the
electron sometimes in one direction, sometimes in another, and sometimes straight
backward. In that most extreme of encounters—backward scattering—an inter-
change of momentum takes place that nevertheless preserves total momentum and
also total energy, as illustrated in Figure 8-6. The electron is kicked forward with a
momentum of 2.4=12/5 times the electron mass, and the photon bounces backward
with 2 momentum (and energy) of 0.4 = 2/5 times the electron mass, much less than
the two-electron masses of momentum (and enetgy) with which it approached. =~
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Compton collision analyzed
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MASS OF
INCLUDES PHOTONS

SAMPLE PROBLEM 8-2
A SYSTEM THAT A

COLLIDE. CREATE. ANNIHILATE,

A photon has no rest energy — that is, no mass of
its own. However, a photon can contribute energy
and momentum to a system of objects. Hence the
presence of one or more photons in a system can
increase the mass of that system. More: A system
consisting entirely of zero-mass photons can itself
have nonzero mass!

Find system mass M., for each of the follow-
ing systems. The particles that make up these sys-
tems do not interact with one another. Express the
system mass in terms of the unit mass  (or the
unit energy E in the photons-only systems). Use
only energy and mass in your answers: no mo-
menta or velocities.

System a
m O (at rest)
(photon) (E = 3m)
System b
(energy = 3E) (energy = E)
System ¢
aaVAYA
(energy = 3E) (energy = E)
System d
(energy = E)
(energy = 3E)
SOLUTION

System a: System energy equals the rest energy m of the material particle plus the
energy E= 3m of the photon: E .., = m+ 3m=4m. The momentum of the system is
equal to the momentum of the photon, which is equal to its energy: p, o, = 3m. The
mass of the system is reckoned from the difference of the square of energy and
momentum:

Moo ™ (B — P’ 12 = [(4m)? — (Om)?]/2 == [ 16m* — Om?] V2
= [71"%m = 2.646m
System b: System energy equals the sum of the energies of the two photons: E, .., =
3E + E = 4E. System momentum equals sum of momenta of the two photons

—which in this case also equals the sum of the energies of the two photons: p, ..., =
3E + E = 4E. Therefore system mass equals zero:

Mopaes = [Eop? — Poyuac/2 = {(4E)2 — (4EVP2 =0

We could have predicted this result immediately. Two photons moving along in step
are, as regards momentum and energy, completely equivalent to a single photon of



85 PHOTON USED TO CREATE MASS 233

energy equal to the sum of energies of the separate photons. And a single photon has,
of coutse, zero mass.

System c: Total energy = system energy = E, ., = 3E + E = 4E. System
momentum equals the difference between the rightward momentum of the first
particle and the leftward momentum of the second particle: p, e = 3E — E= 2E.
Hence the system mass is

Mo = [16E2 — 4E2}1/2 = [12]2E = 3.464m

Why can’t we simply make a single photon by adding the energies of the two photons,
as in system b? Because energies add as scalars, and momenta add as 3-vectors. In this
case the total energy is 4E and the total momentum is 2E. No way to make a single
photon out of this; for a photon, energy and momentum must have equal magnitudes!

System d: This part serves as an additional reminder that momentum is a 3-vector.

The system enetgy equals E, ..., = E + 3E = 4E. The squared momentum of the

system equals the sum of squares of the momenta of the separate particles, since they

move in perpendicular directions in this frame: p, ., = E* + (3E)* = 10E2
Hence system mass is:

M, e = [16E? — 10E?}'/2 = [6}'/’E = 2.449E

8.5 PHOTON USED TO CREATE MASS

photon hits electron, creates electron—positron
pair

It should not be surprising that a photon can deliver energy without having any mass
of its own. After all, an electron does have mass of its own; yet an electron traveling
sufficiently close to light speed can impart to its target an amount of energy ten, a
hundred, or a thousand times as great as its own mass. Not mass but momentum
governs the size of punch that either photon or electron can deliver.
Incredibly, however, a photon in the presence of an electron can create matter out of Matter is born

empty space. To bring about this process, double the energy of the quantum of radiant
energy shown in Figure 8-6. When a photon with energy equal to four electron masses
hits an electron art rest, the photon most often recoils; in other words, it suffers
backward scattering, an instance of the Compton process. Occasionally, however, the - -
impacting photon produces out of empty space, near the struck electron, a new pair of . .
electrons, one with a negative electric charge like all everyday electrons, the other with y
an identical amount of positive charge. The electron with positive charge has the name ) ® . ( )
positron (Box 8-1). - + - — +
. This process goes on all the time high in E‘arth’s aunqsphere, where cosmic rays pour NOURE 87, Comparivn iawd contrest;
in from outer space. There, however, energies of cosmic-ray photons often far exceed Left: Two protons and an electron forming the
four electron masses. In consequence, the struck electron and the two newly created bydrogen molecule ion of chemistry. (A proton is
electrons go off in slightly different directions and at different speeds. However, when ~ much more massive than an electron bus can be
the energy of the incoming photon is sufficiently finely tuned, in the immediate ~ visioned as occupying less volume.) Right:

. : - Two electrons and a positron, forming a polye-
vicinity of an energy of four electron masses, the three particles can stick together as a Eactvoss ceind Iy inbiist of 4 raposly tuied
supet-light molecule, a polyelectron, a system analogous to what chemists call the  phoron (about 4 MeV of energy) on an electron at
hydrogen molecule ion (Figure 8-7). rest.
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System momentum means
not all system energy available
to create particles

Any energetic particle can create
other particles

CHAPTER 8 COLLIDE. CREATE. ANNIHILATE.

4 momentum

BEFORE

0O ANNN 9 ) 3 .
v=1 : .

mass mass mass

ST

FIGURE B-8. Conservation of energy and momentum in the process of creating a pair (a positive
and a negative electron) in the field of an electron, Before: A photon that has energy (and momentum)
equal to four electron masses (sloping arrow) sivikes an electron essemtially at rest (vertical arvow). After:
The photon has ceased to exist, and the two newly created particles bave gone off in company with the original
electron at 80 percent of light speed— a combined “'particle” of three electron masses.

Why does it take a light quantum with an energy of foxr electron masses to create
(Figure 8-8) a polyelectron, a super-light hydrogen molecule ion, an object with a
mass of three electron masses (in truth, a tiny bit less than three electron masses
because of the negative binding energy among the three particles)? The question
becomes all the more insistent when we recall that the electron that got hit already
brought to the consummation of the deal a rest energy equal to one electron mass.

In brief, why do we have to put in five electron masses of energy to get out a
three-electron-mass product? Simply asking this question points out where the expla-
nation lies. The incident photon brings in a great momentum, and the electron with
which it reacts has no momentum. So all thar momentum has to go into the output
product, the polyelectron. Since the polyelectron must have momentum, it must also
have kinetic energy—energy not available for creating additional mass. In conse-
quence, that object has so much energy of motion that only a much diminished part of
the energy of the incident photon is available for the creation process itself.

8.6 MATERIAL PARTICLE USED TO
CREATE MASS

proton hits proton, creates proton—antiproton
pair

Particles other than the photon can also create particles. A particle of any type can carry
enough energy to create particles similar to or different from itself. Each such creation
must not only follow momenergy conservation laws of special relativity, but it is also
subject to the law of conservation of total electric charge and other conservation laws,
as described in elementary particle physics.
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BACKYARD ZOO OF PARTICLES

This is not a textbook of particle physics, but our examples include interac-
tions between common particles. Here are brief descriptions of some of
them.

Electron

Electrons form the outer structure of every atom and rattle around in approx-
imately 99.99999999999 percent of its volume. The mass of the electrons of
an atom, however, accounts for only about one two-thousandth of its mass or
less. The electron carries a negative “‘elementary’’ electrical charge. Every
accepted theory of particle physics treats the electron itself as an elementary
particle — itis not made up of anything more fundamental. The positronis the
antiparticle of the electron, with the same mass but a positive elementary
charge. When positron and electron meet, sooner or later they mutually
annihilate, yielding two or more high-energy photons (gamma rays). This will
be the fate of the positron and one of the electrons in the polyelectron
discussed in Section 8.5 soon after they begin to orbit one another.

Proton

The proton (Greek for “'the first one’’) is, with the neutron, the most massive
constituent of atomic nuclei. The simplest atom, hydrogen, in its most abun-
dant form has a single proton as nucleus. The proton has a positive charge
equal in magnitude to that of the electron, but a mass almost two thousand
times as great as that of the electron. As far as we know the proton is stable;
experiments have shown its lifetime to be greater than 10*' years —very
much longer than the current age of the universe (about 10" years). Particle
physicists postulate that protons (and neutrons) are composed of still-more-
elementary particles called quarks. The antiproton, antiparticle of the pro-
ton, has mass equal to that of the proton but negative unit charge. When it
encounters a proton, the two particles annihilate, sometimes creating gamma
rays but more often other particles not listed in this box.

Neutron

The neutron (from Latin neuter— ‘*neither''; neither positively nor negatively
charged) is similar to the proton but has no charge and has slightly greater
mass. It is a constituent of all nuclei except for the most abundant form of
elementary hydrogen. When not in a nucleus, the neutron decays into a
proton, electron, and neutrino with half-life of about 10 minutes.

Photon
The photon, the quantum of light, has zero mass. Its properties are described
in Section 8.4.

Neutrino

There are several kinds of neutrinos, all of which appear to have zero mass
and to move at light speed. The neutrino (Italian for “'little neutral one’’) has
no charge and interacts only weakly with ordinary matter: Neutrinos of
certain energies can pass through a block of lead one light-year thick with
only a 50-50 chance of being absorbed! An immense flux of neutrinos
passes continually through our bodies without injuring us. *‘Ten million trillion
[10'] neutrinos will speed harmlessly through your brain and body in the
time it takes to read this sentence. By the time you have read this sentence,
they will be farther away than the moon.”



236

Threshold energy defined

"“Efficiency’ of particle production
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(48)' /2 romentum

BEFORE AFTER
1 & ———— s 1 &y _CJ*-.
mass ® B {48}”2 @ mass mass +.+. ) (48}”2
7 -

FIGURE 8-9. Conservation of energy and momentum in the process of creation of a protorn—
antiproton pair by the impact of a proton on another proton, Before: The incoming proton (sloping
arvow) moves with a speed (48)'2]7 = 99 percent that of light. The target proton initially stands at rest
(vertical arrow). After: The resulting three protons and one antiproton are kicked to the right at (48)'2/8
= 87 percent of light speed.

Figure 8-9 shows “the creation of a proton—antiproton pair by a proton in the
presence of another proton.”” The antiproton has mass equal to that of the proton but
carries a negative unit charge (Box 8-1). The interaction shown leaves all four resulting
particles moving along together. The resulting particles stay together when the incom-
ing particle has the lowest energy that can create the additional pair. This minimum
energy is called the threshold energy. We don’t want the three particles to move
apart after their creation. If we did, we would have to supply the incoming particle
with additional kinetic energy. It would have to carry an energy greater than the
threshold energy. We discuss here the threshold energy of the incoming proton.

Magnitudes of the momenergy vectors displayed in Figure 8-9 are expressed in
“natural units’ for the proton, namely the mass of the proton itself, 1.67 X 10™%7
kilograms or 938.27 MeV. This time the numbers are not all integers: the momentum
of the system has a value equal to the square root of 48, or 6.928 proton masses.

The creadion of a proton —antiproton pair by a PROTON requires a toral of eight
proton units of energy to create two proton units of mass. In contrast the creation of an
electron —antielectron pair by a PHOTON requires a total of only four electron units
of energy to create two electron units of mass. Why is the photon process so much more
efficient (in units of mass of the struck particle) than the proton process? Answer: The
phorton is annihilated in the creation process. In contrast, the incoming proton is not
annihilated; the bookkeeper must keep the incoming proton on the payroll, providing
momenergy after the collision to keep the proton in step with the other three particles.
This after-collision momenergy of the proton is not available to be applied to other
products of the collision. Therefore a proton of given total energy can create less mass
than a photon of the same energy when each strikes a stationary target. ==~
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8.7 CONVERTING MASS TO USABLE
ENERGY: FISSION, FUSION, ANNIHILATION

. DTon

For a final perspective on the evanescence of mass and the preservation of momenergy,
turn from processes where mass is created to three processes in which mass is destroyed:
fission, fusion, and annihilation.

Anyone who first hears about the splitting of a nucleus (fission) as a source of
energy, and the joining of two nuclei (fusion) also as a source of energy might gain the
mistaken impression that a perpetual motion machine has been invented. Could we
split and join the same nucleus over and over again, each time releasing energy? No.
Here's why. Fission occurs in the splitting of uranium, for instance when a neutron
strikes a uranium nucleus:

In + 23U —> 26U —> P$Rb + 41Cs

In this equation the lower-left subscript tells the number of protons in the given
nucleus and the upper-left superscript shows number of protons plus neutrons in the
nucleus. The process described by this equation rearranges the 236 nucleons, that is,
92 protons plus 144 neutrons, into a configuration that comes a bit closer to that most
stable of all available nuclear configurations, the iron nucleus:

3¢Fe

But fusion too, for example the process of uniting two rather light nuclei such as heavy
hydrogen or deuterons to form a helium nucleus,

D + 2D —> $He

can also be regarded as one step along the way toward rearranging nucleons (protons
and neutrons) to achieve the iron configuration or something like it.

In brief, we can get energy out of nucleon rearrangement processes that move from
looser binding of both heavier and lighter nuclei toward tighter binding of the
(intermediate-mass) iron nucleus (Figure 8-10). In neither fission nor fusion, how-
ever, is the fraction of mass converted into energy as great as one percent. (For an
example of fusion reaction in Sun, see Sample Problem 8-5, especially c.)

Annihilation is interesting because it can convert 100 percent of matter into
radiation. Annihilation is interesting, too, because it has been demonstrated on the
microscopic scale. A slow positive electron, a positron, joining up by chance to orbit
with an everyday negative electron, eventually unites with it to annihilate them both
and produce sometimes two, sometimes three light quanta (photons— called
gamma rays in the case of these high energies):

¢t + ¢~ — 2 or 3 photons

Figure 8-11 displays the balance of energy and momentum in the two-quantum
annihilation process.

237

Fission and fusion: Both go from
looser to tighter binding

Annihilation converts 100%
of matter into radiation
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1.00705 |—® deuterium

Mass per nucleon

(in units of }2C = 12 as reference standard)

1.00065 ‘o helium

1.00019 e
iron il
079884 FIGURE 8-10. Both the conversion of deute-
rium to the more massive belium in fusion and
2 4 56 236 the conversion of uranium to lighter nuclei in
Mass number of the nucleus fission decrease the mass per nmucleon, both
(not a linear scale)

toward the most stable of nuclei, iron.

Why 2 or 3 photons? Why can't just a single photon be emitted in this process?

.~ Brief answer: Conservation of momentum. Fuller answer: Look at Figure 8-11.
~ Before annihilation, the system has zero total momentum. A single photon remain-
ing after the annihilation could not have zero momentum, no matter in which
direction it moved! The presence of a single photon after the collision could not

satisfy conservation of momentum. So annihilation never does and never can end up
giving only a single photon. =~

JLi A
nl energy, |
mass | | | momentum, O :
: [sum]
|
A :
1 energy, |1 :

mass | || momentum, 0

n 1 momentum
BEFORE

o O
:‘IU 55 mass mass
O

ANNNN>
0.1

FIGURE 8-11. Momenergy conservation in the two-photon electron—positron annibilation pro-
cess. Before: Before annibilation each oppositely charged particle bas rest energy and no momentum. After:

The two particles have annibilated, creating two high-energy photons (gamma rays). The two photons fly
apart in opposite directions; total momentum remains zero.
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ANALYZING A PARTICLE ENCOUNTER

Conservation of total momenergy! In any given free-float frame that means
conservation of total energy and conservation of each of three components
of total momentum. In no way does the power and scope of this principle
make itself felt more memorably than the analysis of simple encounters of
this, that, and the other kind in an isolated system of particles. ‘‘Analyzing an
encounter’’ means using conservation laws and other relations to find un-
known masses, energies, and momenta of particles in terms of known quanti-
ties. Sometimes a complete analysis is not possible; the information provided
may be insufficient. Here are suggested steps in analyzing an encounter.
Sample Problems 8-3 and 8-4 illustrate these methods.

1. Draw a diagram of particles before and particles after the interaction.
Label particles entering with numbers or letters and particles leaving with
different numbers or letters (even if they are the same particles). Use
arrows to show particle directions of motion and label with symbols their
masses, energies, and momenta, whether initially known or unknown.

2. Write down algebraically the conservation of total energy. Do not forget
to include the rest energy — the mass m— of any particle not moving in
the chosen free-float frame.

3. Write down algebraically the conservation of total momentum. Do not
forget that momentum is a vector. In general this means demanding con-
servation of each of three components of total momentum.

4. Try to solve for unknowns in terms of knowns, still using symbols.

a. Make liberal use of the relation m? = E? — p?, where p? =p,2 + p,2 +
p,2. For a photon or neutrino, mass equals zero and E = p (in magni-
tude: Pay attention to the direction of the momentum vector p—or its
sign if motion is in one space dimension).

b. Do NOT use speed v of a particle unless forced to by requirements of
the problem. Relativistic particles typically move with speeds very
close to light speed, so speed proves to be a poor measure of signifi-
cance. Increase by one percent the speed of a particle moving at v =
0.99 and you increase its energy by a factor of almost 10.

c. Substitute numerical values into resulting equations as late as possible.
Before substituting numerical values, check that all values are ex-
pressed in concordant units.

5. Check your result. Check units of the solution. Is the order of magnitude of
numerical results reasonable? Substitute limiting values, for example let-
ting energy of an incoming particle become very large (and very small). Is
the limiting-case result reasonable?

Is there any general conclusion you can draw from your specific solution?

Does this exercise illustrate a deep principle or lead to an even more inter-
esting application of conservation laws?
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SAMPLE PROBLEM 8-3
SYMMETRIC ELASTIC COLLISION
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A proton of mass 7 and kinetic energy K in the
laboratory frame strikes a proton initially at rest in
that frame. The two protons undergo a symmetric
elastic collision: the outgoing protons move in di-
rections that make equal and opposite angles 0/2
with the line of motion of the original incoming
particle. Find energy and momentum of each out-
going particle and angle € between their outgoing
directions of motion for this symmetric case.

Historical note: When impact speed is small
compared to the speed of light, this separation of
directions, 0, is 90 degrees, according to Newto-
nian mechanics. Early cloud-chamber tracks
sometimes showed symmetric collisions with
angles of separation substantially less than 90 de-
grees, thereby giving evidence for relativistic me-
chanics and providing the first reliable measure-
ments of impact energy.

SOLUTION, following steps in Box 8-2
1. Draw a diagram and label all four particles with letters:

Ec.r Pr.
pb=0
Ep=m
m m
O Ea, Po O o
a b

Ed, pd
BEFORE

Symmetry of this diagram implies that the two outgoing particles have equal
energy and equal magnitude of momentum; that is, E, = E,and (in magnitude)
be = Pa

2. Conservation of energy: Energy of each particle equals mass plus kinetic
energy. And the masses don't change in this reaction. Therefore total kinetic
energy after the encounter (divided equally between the two particles) equals the
(known) total kinetic energy before the encounter, all localized on one particle. In
brief: K. = K; = K,/2 = K/2. Simple answer to one of the three questions we
were asked!

AFTER

3. Conservation of momentum: By symmetry, the vertical components of
momenta of the outgoing particles cancel. Horizontal components add, leading
to the relation

Pox = Pa = P €05(0/2) + pg cos(6/2) = 2p, cos(0/2)
or, in brief,
[conservation of momentum]

Pa= 2ps cos(6/2)

4. Solve for the unknown angle 6: Along the way find the other requested
quantity, the magnitude p, = p, of the momenta after the collision. To thar end,
first find the momentum p, before the collision, using the general formula for the
momentum of an individual particle:
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p=1[E? — m?}'2 = [(K+ m? — m?}/2 = (K2 + 2mK + 2 — m?)\/2
= (K2 + 2mK)\2

Therefore
p.= (K2 + 2mK)\/?

From conservation of energy, K, = K; = K/2. Therefore
pa=[(K/2)* + 2m(K/2)}'/?

Substitute these expressions for p, and p, into the equation for conservation of
momentum:

(K2 + 2mK)2 = 2{(K/2)* + 2m(K/2)]"/%c0s(6//2)
Square both sides and solve for cos(6/2) to obrain

K+ 2m
K+ 4m

cos(0/2) =

Now apply to this result the trigonometric identity

(cos @+ 1)

cos?(6/2) = >

After some manipulation, obtain the desired result:

___(K/m)
(K/m) + 4

Here K is the kinetic energy of the incoming particle, m the mass of either particle,
and 0 the angle between outgoing particles. This result assumes (1) an elastic
collision (kinetic energy conserved), (2) one particle initially at rest, (3) equal
masses of the two particles, and (4) the symmetry of outgoing paths shown in the
diagram.
5a. Limiting case: Low energy. In the case of low energy (Newtonian limit), the
incoming particle has a kinetic energy K very much less than its rest energy m, so
the ratio K/m approaches zero. In the limit, cos € becomes zero and 6 = 90
degrees. This is the accepted Newtonian result for low velocities (except for an
exactly head-on collision, in which case the incoming particle stops dead and the
struck particle moves forward with the same speed and direction as the original
incoming particle).
5b. Limiting case: High energy. For extremely high-energy elastic collisions, the
incident particle has a kinetic energy very much greater than its rest energy, so the
ratio K/m increases without limit. In this case the quantity 4 in the denominator
becomes negligible compared with K/m, so numerator and denominator both
approach the value K/m, with the result cos @ — 1 and @ — 0. This means that
in the special symmetric case discussed here both resulting particles go forward in
the same direction as the incoming particle, sharing equally the kinetic energy of
the incoming particle.
For an incoming particle of very high energy, the elastic collision described here
is only one of several possible outcomes. Alternative processes include creation of
new particles.




SAMPLE PROBLEM 8S8-4
ANNIHILATION ( )

A positron of mass 7 and kineticenergy equal toits  with respect to the direction of the incident posi-
mass strikes an electron at rest. They annihilate,  tron. What are the energies of both photons (in
creating two high-energy photons. One photon  units of mass of the electron) and direction of
enters a detector placed at an angle of 90 degrees  motion of the second photon?

SOLUTION, following steps in Box 8-2
1. Draw a diagram and label the particles with letters.

pb=0

Ep=m E., pc
m m > 0
Eu.r PC .---s
Oannd©) -
a b d"
S;Ed. Pd
BEFORE AFTER

2. Conservation of energy expressed ig the symbols of the diagram, and includ-
ing the rest energy of the initial stationary particle:

Em=E¢+m=E:+ EJ
3. Conservation of each component of total momentum:

pxux:Pc:Pccos 9 [horizontal momentum]

4. Solve: First of all, the problem states thar the kinetic energy K of the incoming
positron equals its rest energy m. Therefore its total energy E,=m+ K=m+m
= 2m. Second, the outgoing particles are photons, for which p, = E, and p,= E,
in magnitude, respectively. With these substitutions, the three conservation

equations become
E,+m=2m+m=3m=E. +E, [conservation of energy]
p.=E, cos 0 [conservation of horizontal momentum]
E,=E,sin 0 I ion of vertical tum]
ey ﬁ
SAMPLE PROBLEM 8-5
CONVERSION OF MASS TO ()

ENERGY IN SUN

Luminous energy from Sun pours down on the  stant. The radius of Earth equals approximately
outer atmosphere of Earth at a rate of 1372 watts 6.4 X 10¢ meters and the Earth-Sun distance
per square meter of area that lies perpendicular to  equals 1.5 X 10! meters. The mass of Sun is
the direction of this radiation. The figure 1372  approximately 2.0 X 10%° kilograms.

watts per square meter has the name solar con-
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These are three equations in three unknowns E, and E;and 6. Square both sides of
the second and third equations, add them, and use a trigonometric identity to get
rid of the angle 6
2+ E2 = EXcos? 0 +sin? 0) = E?

Substitute p,2 = E,2 — m? on the left side of this equation and again use E, = 2m
to obtain a first expression for E2:

E2=E2—m?+E? = 4m* — m* + E} = 3m* + E?

Now solve the equation of conservation of energy for E, and square it to obtain a
second expression for E2:

E2 = (3m — E)? = 9m* — 6mE, + E}
Equate these two expressions for E,? and subtract E/ from both sides to obtain

Solve for unknown E;:

This yields our first unknown, Use this result and conservation of energy to find
an expression for E:

E,=3m—E;=3m—m=2m

Finally, angle 6 comes from conservation of vertical momentum. For a photon p
=E, so

sin 6=—-=—.=.——=_
from which @ = 30 degrees. We have now solved for all unknowns: E, = 2m, E,
=m, and 6 = 30 degrees.

5. Limiting cases: There is no limiting case here, since the energy of the incoming
positron is specified fully in terms of the mass 7 common to electron and positron.

a. How much mass is converted to energy every second m Sun to supply the
luminous energy that falls on Earth?

b. What fotal mass is converted to enetgy every second in Sun to supply luminous
energy?

c. Most of Sun’s energy comes from burning hydrogen nuclei (mostly protons) into
helium nudei (mostly a two-proton—two-neutron combination). Mass of the
proton equals 1.67262 X 107 kilogram, while the mass of a helium nucleus of
this kind equals 6.64648 X 10~?” kilogram. How many metric tons of hydrogen



must Sun convert to helium every second to supply its luminous output? (One
metric ton is equal to 1000 kilograms, or 2200 pounds.)

d. Estimate how long Sun will continue to warm Earth, neglecting all other processes
in Sun and emissions from Sun.

SOLUTION

a. One watt equals one joule per second = one kilogram meter? /second?. We want
to measure energy in units of mass—in kilograms. Do this by dividing the
number of joules by the square of the speed of light (Section 7.5 and Table 7-1):

1372 joules _ 1.372 X 10 kilogram meters?/second”
2 9.00 X 106 meters?/second?
= 1.524 X 10~ kilograms

Thus every second 1.524 X 10~ kilogram of luminous energy falls on each
square meter perpendicular to Sun's rays. The following calculations are based on
a simplified model of Sun (see last paragraph of this solution). Therefore we use
the approximate value 1.5 X 10~ kilogram per second and two-digit accuracy.

What total luminous energy falls on Earth per second? It equals the solar
constant (in kilograms per square meter per second) times some area (in square
meters). But what area? Think of a huge movie screen lying behind Earth and
perpendicular to Sun’s rays (see the figure). The shadow of Earth on this screen
forms a circle of radius equal to the radius of Earth. This shadow represents the
zone of radiation removed from that flowing outward from Sun. Call the area of
this circle the cross-sectional area A of Earth. Earth’s radius = 6.4 X 106 meters,
so the cross-sectional area A seen by incoming Sunlight equals A = 112 = 1.3 X
10'* meters?. Hence a total luminous energy equal to (1.5 X 10~ kilograms/
meter?) X (1.3 X 10" meters?) = 2.0 kilograms fall on Earth every second. This
equals the mass converted every second in Sun to supply the light incident on
Earth.

8.8 SUMMARY

mass: the magnitude of the 4-vector called
momenergy

*‘Mass can be converted into energy and energy can be converted into mass”’ —thisisa
loose and sometimes misleading way to summarize some consequences of the two



b. Assume that Sun delivers sunlight at the same ‘‘solar-constant rate” to every part
of a sphere surrounding Sun of radius equal to the Earth —Sun distance. The area
of this large sphere has the value 477R? where R = 1.5 X 10! meters, the average
distance of Earth from Sun. This area equals 2.8 X 10?3 meters?. Therefore Sun
converts a total of 2.8 X 10?3 meters? X 1.5 X 10~ * kilograms/meter? (from a)
= 4.2 X 10° kilograms of mass into luminous energy every second, or about 4
million mettic tons per second.

c.  Through a series of nuclear processes not described here, four protons transform
into a helium nucleus consisting of two protons and two neutrons. The four
original protons have a mass 4 X 1.67262 X 107%7 = 6.69048 X 10~%
kilogram. The helium nucleus has a mass 6.64648 X 10~?7 kilogram. The
difference, 0.04400 X 10~?7 kilogram, comes out mostly as light. (We cannot
use two-digit accuracy here, because the important result is a difference between
nearly equal numbers.)

The ratio of hydrogen burned to mass converted equals 6.69048/0.04400 =
150 (back to two-digit accuracy!). So for each kilogram of mass converted to
electromagnetic radiation, 150 kilograms of hydrogen burn to helium. In other
words, about 0.7 percent of the rest energy (mass) of the original hydrogen is
converted into radiation. Hence in order to convert 4.2 X 10° kilograms per
second into radiation, Sun burns 150 X 4.2 x 10° kilograms per second = 6.3 X
10! kilograms of hydrogen into helium per second —about 630 million metric
tons each second.

d. We can reckon Sun’s mass by figuring how much Sun gravity it takes to guide our
planet around in an orbit of 8 light-minute radius and one year time of circuit.
Result: about 2.0 X 103 kilograms. If Sun were all hydrogen, then the process of
burning to helium at the present rate of 6.3 X 10! kilograms every second would
take (2.0 X 10%° kilograms)/(6.3 X 10! kilograms/second) = 3.2 X 10'8
seconds. At 32 million seconds per year, this would last about 10! years, or 100
billion years.

Of course the evolution of a star is more complicated than the simple conver-
sion of hydrogen into helium-plus-radiation. Other nuclear reactions fuse helium
into more massive nuclei on the way to the most stable nucleus, iron-56 (Section
8.7). These other reactions occur at higher temperatures and typically proceed at
faster rates than the hydrogen-to-helium process. Sun emits a flood of neutrinos
(invisible; detected with elaborate apparatus; amount presently uncertain by a
factor of 2, carry away less than 1 percent of Sun’s output). Sun also loses mass as
particles blown away from the sutface, called the solar wind. And stars do not
convert all their hydrogen to helium and other nuclei—or live for 100 billion
years. According to current theory, the lifetime of a star like Sun equals approxi-
mately 10 billion years (101 years). We believe Sun to be 4 to 5 billion years old.
The remaining 6 billion years (6 X 10° years) or so should be sufficient time for
our descendants to place themselves in the warmth of nearby stars.

principles that are basic and really accurate: (1) The total momenergy of an isolated
system of particles remains unchanged in a reaction; (2) The invariant magnitude of
the momenergy of any given particle equals the mass of that particle.

How much sound information about physics can be extracted from these basic
principles? What troubles sometimes arise from accepting a too loose formulation of
the “principle of equivalence of mass and energy’’? Some answers to these questions

appear in the dialog that follows, which serves also as a summary of this chapter.
-
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COLLIDE. CREATE. ANNIHILATE.

DIALOG: USE AND ABUSE OF THE

CONCEPT OF MASS

Does an isolated system have the same mass as
observed in every inertial (free-float) reference
frame?

Does its energy have the same value in every inertial
frame?

Does energy equal zero for an object of zero mass,
such as a photon or neutrino or graviton?

Can a photon — that has no mass — give mass to an
absorber?

Invariance of mass: Is that feature of nature the same
as the principle that all electrons in the universe have
the same mass?

Invariance of mass: Is that the same idea as the
conservation of the momenergy of an isolated sys-
tem?

Yes. Given in terms of energy E and momentum by
m? = E?— p?in one frame, by m* = (E’)* — (p’)?in
another frame. Mass of an isolated system is thus an
invariant.

No. Energy is given by E = (m? + p?)'/2 or
E=m/(1 — v?)1/2
or
E = (mass) + (kinetic energy) = m + K

Value depends on the frame of reference from which
the particle (or isolated system of particles) is ob-
served. Value is lowest in the frame of reference in
which the particle (ot system) has zero momentum
(zero tota! momentum in the case of an isolated
system of particles). In that frame, and in that frame
only, energy equals mass.

No. Energy has value E = (02 + p?)/2 = p (or in
conventional units E ., = ¢p,,,,). Alternatively one
can say — formally — that the entire energy resides
in the form of £inetic energy (K = p in this special
case of zero mass), none at all in the form of rest
energy. Thus,

E = (mass) 1 (kinetic energy) =0+ K=K=p
(case of zero mass only!).

Yes. Light with energy E transfers mass m = E (=
E nv/c?) to a heavy absorber (Exercise 8.5).

No. It is true that all elementary particles of the
same kind have the same mass. However, that is a
fact totally distinct from the principle that the mass
of an isolated system has identical value in whatever
free-float frame it is figured (invariance of system
mass).

No. Conservation of momenergy — the principle
valid for an isolated system — says that the momen-
ergy 4-vector figured before the constituents of a
system have interacted is identical to the momen-
ergy 4-vector figured after the constituents have
interacted. In contrast, invariance of mass— the
magnitude of the momenergy 4-vector —says that
that mass is the same in whatever free-float frame it
is figured.
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Momenergy: Is that a richer concept than mass?

Conservation of the momenergy of an isolated sys-
tem: Does this imply that collisions and interactions
within an isolated system cannot change the sys-
tem’s mass?

Conservation of the momenergy of an isolated sys-
tem: Does this say that the constituents that enter a
collision are necessarily the same in individual mass
and in number as the constituents that leave that
collision?

Can I figure the mass of an isolated system composed
of a number, #, of freely-moving objects by simply
adding the masses of the individual objects? Exam-
ple: Collection of fast-moving molecules.

Can we simplify this expression for the mass of an
isolated system composed of freely moving objects
when we observe it from a free-float frame so chosen
as to make the total momentum be zero?
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Yes. Momenergy 4-vector reveals mass and more:
the motion of object or system with the mass

Yes. Mass of an isolated system, being the magni-
tude of its momenergy 4-vector, can never change
(as long as the system remains isolated).

No! The constituents often change in a high-speed
encountet.

Example 1: Collision of two balls of putty that
stick together— after collision hotter and therefore
very slightly more massive than before.

Example 2: Collision of two electrons (¢7) with
sufficient violence to create additional mass, a pair
consisting of one ordinary electron and one positive
electron (positron: ¢*):

¢ (fast) + ¢~ (at rest) = ¢t + 3¢,

Example 3: Collision that radiates one or more
photons:

¢ (fast) + ¢ (at rest) —
electromagnetic
+ energy (photons)
emitted in the
collision process

electrons of
2| intermediate
speed

In all three examples the systerz momenergy and
system mass are each the same before as after.

Ordinarily NO, but yes in one very special case: Two
noninteracting objects move freely and in step, side
by side. Then the mass of the system does equal the
sum of the two individual masses. In the general
case, where the system parts are moving relative to
each other, the relation between system mass and
mass of parts is not additive. The length, in the sense
of interval, of the 4-vector of total momenergy is not
equal to the sum of the lengths of the individual
momenergy 4-vectors, and for a simple reason: In
the general case those vectors do not point in the
same spacetime direction. Energy however, does add
and momentum does add:

n n
Esystem = 2 Ei and Px,system = 2 Px,i
i=1 i=1
From these sums the mass of the system can be
evaluated:
2 = — p2 — 52 — p2

Msystem Ezsystem P X, system P ¥, system P z,system
Yes. In this case the mass of the system has a value
given by the sum of energies of individual particles:

[in zero-total
momentum frame]

Msystem = Esystem = E Ei
i=1
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What's the meaning of mass for a system in which
the particles interact as well as move?

How do we find out the mass of a system of particles
(Table 8-1) that are held— or stick— together?

Does mass measure ‘‘amount of matter’’?

Does the explosion in space of a 20-megaton hydro-
gen bomb convert 0.93 kilogram of mass into en-
ergy (fusion, Section 8.7)? [Am = AE,e, o/ =
(20 X 106 tons TNT) X (106 grams/ton) X (103
calories/gram of “TNT equivalent”) X (4.18
joules/calorie)/c2 = (8.36 X 10 joules)/(9 X
106 meters?/second?) = 0.93 kilogram}

COLLIDE. CREATE. ANNIHILATE.

Moreover, the energy of each particle can always be

expressed as sum of rest energy m plus kinetic energy
K:

=m+K, (=123 ...,n

So the mass of the system exceeds the sum of the
masses of its individual particles by an amount equal
to the total kinetic energy of all particles (but only as
observed in the frame in which #ot2/ momentum
equals zero):

My = 2 mi+i K;

i=1 i=1

[in zero-total
momentum frame]

For slow particles (Newtonian low-velocity limit)
the kinetic energy term is negligible compared to the
mass term. So it is natural that for years many
thought that the mass of a system is the sum of the
masses of its parts. However, such a belief leads to
incorrect results at high velocities and is wrong as a
matter of principle at all velocities.

The energies of interaction have to be taken into
account. They therefore contribute to the total en-
ergy, Eqyem, that gives the mass

Msystem = (E szystem - P syseem) vz

Weigh it! Weigh it by conventional means if we ate
here on Earth and the system is small enough, other-
wise by determining its gravitational pull on a satel-
lite in free-float orbit about it.

Nature does not offer us any such concept as
“‘amount of matter.”” History has struck down every
proposal to define such a term. Even if we could
count number of atoms or by any other counting
method try to evaluate amount of matter, that
number would not equal mass. First, mass of the
specimen changes with its temperature. Second,
atoms tightly bonded in a solid weigh less—are less
massive— than the same atoms free. Third, many
of nature’s atoms undergo radioactive decay, with
still greater changes of mass. Moreover, around us
occasionally, and continually in stars, the number of
atoms and number of particles themselves undergo
change. How then speak honestly? Mass, yes;
“‘amount of matter,”’ no.

Yes and no! The question needs to be stated more
carefully. Mass of the system of expanding gases,
fragments, and radiation has the szme value imme-
diately after explosion as before; mass M of the
system has not changed. However, hydrogen has
been transmuted to helium and other nuclear trans-
formations have taken place. In consequence the
makeup of mass of the system
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The mass of the products of a nuclear fission explo-
sion (Section 8.7: fragments of split nuclei of ura-
nium, for example) — contained in an underground
cavity, allowed to cool, collected, and weighed — is
this mass less than the mass of the original nuclear
device?

T kinetic energy (heat) T

Bang!
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[in zero-total
momentum frame]

Mg = i m; + i K;

i=1 i=1

has changed. The first term on the right—sum of
masses of individual constituents—has decreased

by 0.93 kilogram:

(i m,) = (i m,) — 0.93 kilogram
i=1 after i=1 before

The second term — sum of kinetic energies, includ-
ing “kinetic enetgy” of photons and neutrinos
produced — has increased by the same amount:

(i K,) = (2 K,) + 0.93 kilogram
after before

i=1 i=1
The first term on the right side of this equation —
the original heat content of the bomb—is practi-
cally zero by comparison with 0.93 kilogram.
Thus part of the mass of constituents has been con-
verted into enetgy; but the mass of the syszem has not
changed.

Yes! The key point is the waiting period, which
allows heat and radiation to flow away until trans-
muted materials have practically the same heat con-
tent as that of original bomb. In the expression for
the mass of the system

M e = i m; + i K;

i=1 i=1

[in zero-total
momentum frame]

the second term on the right, the kinetic energy of
thermal agitation —whose value rose suddenly at
the time of explosion but dropped during the cool-
ing period —has undergone no net alteration as a
consequence of the explosion followed by cooling.

In contrast, the sum of masses

S

has undergone a permanent decrease, and with it the
mass M of what one weighs (after the cooling period)
has dropped (see the figure).

sum of masses
of individual particles

Smi|

—— time ————
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Does Einstein’s statement that mass and energy are
equivalent mean that energy is the seme as mass?

Then what s the meaning of Einstein’s statement
that mass and energy are equivalent?

Without delving into all fine points of legalistic
phraseology, how significant is the conversion factor
¢2 in the equation E,e o0, = m6??

If the factor ¢? is not the central feature of the
relationship between mass and energy, what is cen-
tral?

Is the mass of a moving object greater than the mass
of the same object at rest?

Really? Isn’t the mass, M, of a system of freely
moving particles given, not by the sum of the masses
m; of the individual constituents, but by the sum of

COLLIDE. CREATE. ANNIHILATE.

No. Value of enetgy depends on the free-float frame
of reference from which the particle (or isolated
system of particles) is regarded. In contrast, value of
mass is independent of inertial frame. Energy is only
the time component of a momenergy 4-vector,
whereas mass measures entire magnitude of that
4-vector. The time component gives the magnitude
of the momenergy 4-vector only in the special case in
which that 4-vector has no space component; that is,
in a frame in which the momentum of the particle
(or the total momentum of an isolated system of
particles) equals zero. Only as measured in this spe-
cial zero-momentum frame does energy have the
same value as mass.

Einstein's statement refers to the reference frame in
which the particle is at rest, so that it has zero
momentum p and zero kinetic energy K. Then E =
m~+ K—>m+ 0. In that case the energy is called the
rest energy of the particle:

Ee.=m

In this expression, recall, the energy is measured in
units of mass, for example kilograms. Multiply by
the conversion factor ¢? to express energy in conven-
tional units, for example joules (Table 7-1). The
result is Einstein’s famous equation:

E,

cest, cony — €7
Many treatments of relativity fail to use the sub-
script “‘rest’”’ — needed to remind us that this equiv-
alence of mass and energy refers only to the resz
energy of the particle (for a system, the total energy
in the zero-total-momentum frame).

The conversion factor ¢2, like the factor of conver-
sion from seconds to meters or miles to feet (Box
3-2), today counts as a detail of convention, rather
than as a deep new principle.

The distinction between mass and energy is this:
Mass is the magnitude of the momenergy 4-vector
and energy is the time component of the same 4-vec-
tor. Any feature of any discussion that emphasizes
this contrast is an aid to understanding. Any slurring
of terminology that obscures this distinction is a
potential source of error or confusion.

No. It is the same whether the object is at rest or in
motion; the same in all frames.

Ouch! The concept of “relativistic mass” is subject
to misunderstanding. That's why we don’t use it.
First, it applies the name mass— belonging to the



energies E; (but only in a frame in which total mo-
mentum of the system equals zero)? Then why not give
E; a new name and call it “‘relativistic mass’ of the
individual particle? Why not adopt the notation

mi'm=El'=m"+Ki -)
With this notation, can’t one then write

M= i Mi el ?

=

total
momE:I::'ﬁ:m]

In order to make this point clear, should we call
invariant mass of a particle its “‘rest mass’’?

Can any simple diagram illustrate this contrast be-
tween mass and energy?

pcrﬁcle

at rest:

p=0

E=8

mass
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magnitude of a 4-vector—to a very different con-
cept, the time component of a 4-vector. Second, it
makes increase of energy of an object with velocity or
momentum appear to be connected with some
change in internal structure of the object. In reality,
the increase of energy with velocity originates not in
the object but in the geometric properties of space-
time itself.

That is what we called it in the first edition of this
book. But a thoughtful student pointed out that the
phrase “‘rest mass”' is also subject to misunderstand-
ing: What happens to the “'rest mass” of a particle
when the particle moves? In reality mass is mass is
mass. Mass has the same value in all frames, is
invariant, no matter how the particle moves. [Gali-
leo: ““In questions of science the authority of a thou-
sand is not worth the humble reasoning of a single
individual."]

Yes. The figure shows the momentum-energy 4-
vector of the same particle as measured in three
different frames. Energy differs from frame to
frame. Momentum differs from frame to frame.
Mass (magnitude of 4-vector, represented by the
length of handles on the arrows) has the same value,
m = 8, in all frames.

SUPER-ROCKET
FRAME

Quotation from Count Rumford in Section 8.2: Sanborn C. Brown, Benjamin
Thompson, Count Rumford (MIT Press, Cambridge, Mass., 1979), page 220.

Reference to measurement of very small effects in Section 8.2: Vladimir Bra-
ginsky and A. B. Manukin, “Quantum non-demolition,” in Measurement of
Weak Forces in Physics Experiments, edited by David H. Douglas (University of

Chicago Press, 1977).
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Quotation from biography of A. H. Compton in Section 8.4: Robert S. Shank-
land, Dictionary of Scientific Biography, edited by Charles Coulston Gillespie,
Volume III (Charles Scribner’s Sons, New York, 1971).

Compton scattering reported in A. H. Compton, Physical Review, Volume 22,
pages 409-413 (1923).

The polyelectron mentioned in Section 8.5 has been independently generated,
through interaction of a slow positron with the electrons of a metal surface, by
Alan Mills, Jr., at Bell Telephone Laboratories, as reported in Physical Review
Letters, Volume 46, pages 717-720 (1981).

Final quotation in Box 8-1: Timothy Ferris, Coming of Age in the Milky Way
(Anchor Books, Doubleday, New York, 1988), page 344.

Sample Problem 8-5 was suggested by Chet Raymo’s science column in the
Boston Globe, May 2, 1988, page 35.

Galileo quote in final dialog: Galileo Galilei, Dialogo dei due massimi sistemi del
mundo, Landini, Florence. Translation by S. Drake, Galileo Galilei— Dialogne
Concerning the Two Chief World Systems — Ptolemaic and Copernican, University
of California Press, Berkeley and Los Angeles, 1953.
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You now have at your disposal the power of special
relativity to provide physical insight and accurate pre-
dictions about an immense range of phenomena,
from nucleus to galaxy. The following exercises give
only a hint of this range. Even so, there are too many
to carry out as a single assignment or even several
assignments. For this reason—and to anchor your
understanding of relativity—we recommend that
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you continue to enjoy these exercises as your study
moves on to other subjects. The following table of
contents is intended to help organize this ongoing
attention.

Reminder: In these exercises the symbol v (in
other texts sometimes called /) stands for speed as a
fraction of the speed of light ¢. Let 7, be the speed in

conventional units; then v = v, /c.
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MASS AND ENERGY

8-1 examples of conversion

EXERCISE 8-1

a How much mass does a 100-watt bulb dissi-
pate (in heat and light) in one year?

b The total electrical energy generated on Earth
during the year 1990 was probably between 1 and
2 X 10" kilowatt-houts. To how much mass is this
energy equivalent? In the actual production of this
electrical energy is this much mass converted to en-
ergy? Less mass? More mass? Explain your answer.

¢ Eric Berman, pedaling a bicycle at full throttle,
produces one-half horsepower of wseful power
(1 horsepower = 746 watts). The human body is
about 25 percent efficient; that is, 75 percent of the
food burned is converted to heat and only 25 percent
is converted to useful work. How long a time will Eric
have to ride to lose one kilogram by the conversion of
mass to enetgy? How can reducing gymnasiums stay
in business?

8-2 relativistic chemistry

One kilogram of hydrogen combines chemically with
8 kilograms of oxygen to form water; about 108 joules
of energy is released.

a Ten metric tons (10* kilograms) of hydrogen
combines with oxygen to produce water. Does the
resulting water have a greater or less mass than the
original hydrogen and oxygen? What is the magni-
tude of this difference in mass?

b A smaller amount of hydrogen and oxygen is
weighed, then combined to form water, which is
weighed again. A very good chemical balance is able
to detect a fractional change in mass of 1 partin 108.
By what factor is this sensitivity more than enough
—or insufficient— to detect the fractional change in
mass in this reaction?

PHOTONS

8-3 pressure of light

a Shine a one-watt flashlight beam on the palm
of your hand. Can you feel it? Calculate the total force
this beam exerts on your palm. Show/d you be able to
feel it? A particle of what mass exerts the same force
when you hold it at Earth’s surface?

b From the solar constant (1.372 kilowatts/
square meter, Sample Problem 8-5) calculate the
pressure of sunlight on an Earth satellite. Consider
both reflecting and absorbing surfaces, and also
“real” surfaces (partially absorbing). Why does the
color of the light make no difference?

EXAMPLES OF CONVERSION

¢ A spherical Earth satellite has radius r =1
meter and mass 7z = 1000 kilograms. Assume that
the satellite absorbs all the sunlight that falls on it.
What is the acceleration of the satellite due to the
force of sunlight, in units of g, the gravitational accel-
eration at Earth’s surface? For a way to reduce this
“disturbing’” acceleration, see Figure 9-2.

d It may be that particles smaller than a certain
size are swept out of the solar system by the pressure of
sunlight. This certain size is determined by the equal-
ity of the outward force of sunlight and the inward
gravitational attraction of Sun. Estimate this critical
particle size, making any assumptions necessary for
your estimate. List the assumptions with your answer.
Does your estimated size depend on the particle’s
distance from Sun?

Reference: For pressure of light measurement in an elementary labo-
ratory, see Robert Pollock, American_Journal of Physics, Volume 31,
pages 901-904 (1963). Pollock’s method of determining the pres-
sure of light makes use of resonance to amplify a small effect to an
easily measured magnitude. Dr. Pollock developed this experiment
in collaboration with the same group of first-year students at Prince-

ton University with whom the authors had the privilege to work out
the presentation of relativity in the first edition of thus book.

8-4 measurement of photon
energy

A given radioactive source emits energetic photons
(X-rays) or very energetic photons (gamma rays) with
energies characteristic of the particular radioactive
nucleus in question. Thus a precise energy measure-
ment can often be used to determine the composition
of even a tiny specimen. In the apparatus dia-
grammed in the figure, only those events are detected
in which a count on detector A (knocked-on electron)
is accompanied by a count on detector B (scattered
photon). What is the energy of the incoming photons
that are detected in this way, in units of the rest energy
of the electron?

8-5 Einstein’s derivation:
equivalence of energy and
mass — a worked example

Problem

From the fact that light exerts pressure and carries
energy, show that this energy is equivalent to mass
and hence — by extension — show the equivalence of
all energy to mass.

Commentary: The equivalence of energy and
mass is such an important consequence that Einstein
very eatly, after his relativistic derivation of this result,
sought and found an alternative elementary physical
line of reasoning that leads to the same conclusion. He
envisaged a closed box of mass M initially at rest, as
shown in the first figure. A directed burst of electro-
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EXERCISE 8-4. Measurement of photon energy.

magnetic energy is emitted from the left wall. It trav-
els down the length L of the box and is absorbed at the
other end. The radiation carries an energy E. But it
also carries momentum. This one sees from the fol-
lowing reasoning. The radiation exerts a pressure on
the left wall during the emission. In consequence of
this pressure the box receives a push to the left, and a
momentum, p. But the momentum of the system as a
whole was zero initially. Therefore the radiation
carries a momentum p opposite to the momentum of
the box. How can one use knowledge of the transport
of energy and momentum by the radiation to deduce
the mass equivalent of the radiation? Einstein got his
answer from the argument that the center of mass of
the system was not moving before the transport pro-
cess and therefore cannot be in motion during the
transport process. But the box obviously carries mass
to the left. Therefore the radiation must carry mass to
the right. So much for Einstein’s reasoning in broad
outline. Now for the details.

From relativity Einstein knew that the momentum
p of a directed beam of radiation is equal to the energy
E of that beam (Section 8.4; both p and E measured in
units of mass). However, this was known before Ein-
stein’s relativity theory, both from Maxwell’s theory
of electromagnetic radiation and from direct observa-

EXERCISE 8-5, first figure. Transfer of mass by radiation.

tion of the pressure exerted by light on a mirror
suspended in a vacuum. This measurement had first
successfully been carried out by E. F. Nichols and G.
F. Hull between 1901 and 1903. (By now the exper-
iment has been so simplified and increased in sensitiv-
ity that it can be carried out in an elementary labora-
tory. See the reference for Exercise 8-3.)

Thus the radiation carries momentum and energy
to the right while the box carries momentum and
mass to the left. But the center of mass of the system,
box plus radiation, cannot move. So the radiation
must carry to the right not merely energy but mass.
How much mass? To discover the answer is the object
of these questions.

a Whatis the velocity of the box during the time
of transit of the radiation?

b After the radiation is absorbed in the other end
of the box, the system is once again at rest. How far
has the box moved during the transit of the radiation?

¢ Now demand that the center of mass of the
system be at the same location both before and after
the flight of the radiation. From this argument, what
is the mass equivalent of the energy that has been
transported from one end of the box to the other?

Solution

a During the transit of the radiation the mo-
mentum of the box must be equal in magnitude and
opposite in direction to the momentum p of the radi-
ation. The box moves with a very low velocity v.
Therefore the Newtonian formula My suffices to cal-
culate its momentum:

My=—p=—E

From this relation we deduce the velocity of the
box,

v=—E/M

b The transit time of the photon is very rearly
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t = L meters of light-travel time. In this time the box
moves a distance

Ax = vt =—EL/M

¢ If the radiation transported no mass from one
end of the box to the other, and if the box were the
sole object endowed with mass, then this displace-
ment Ax would result in a net motion of the center of
mass of the system to the left. But, Einstein reasoned,
an isolated system with its center of mass originally at
rest can never set itself into motion nor expetience any
shift in its center of mass. Therefore, he argued, there
must be some countervailing displacement of a part of
the mass of the system. This transport of mass to the
right can be understood only as a new feature of the
radiation itself. Consequently, during the time the
box is moving to the left, the radiation must transport
to the right some mass 7, as yet of unknown magni-
tude, but such as to ensure that the center of mass of
the system has not moved. The distance of transport is
the full length L of the box diminished by the distance
Ax through which the box has moved to the left in the
meantime. But Ax is smaller than L in the ratio E/M.
This ratio can be made as small as one pleases for any
given transport of radiant energy E by making the
mass M of the box sufficiently great. Therefore it is
legitimate to take the distance moved by the radiation
as equal to L itself. Thus, with arbitrarily high preci-
sion, the condition that the center of mass shall not
move becomes

MAx+ mL=0
Calculate the mass 7 and find, using Ax from part b,
m=—AxM/L = —(—EL/M)(M/L)
or, finally,
m=E
In conventional units, we have the famous equation

E

conv = mcz
We conclude that the process of emission, transport,
and reabsorption of radiation of energy E is equivalent
to the transport of a mass » = E from one end of the
box to the other end. The simplicity of this derivation
and the importance of the result makes this analysis
one of the most interesting in all of physics.
Discussion: The mass equivalence of radiant en-
ergy implies the mass equivalence of thermal energy
and—by extension —of other forms of energy, ac-

EINSTEIN’S DERIVATION: EQUIVALENCE OF ENERGY AND MASS

cording to the following reasoning. The energy that
emerges from the left wall of the box may reside there
originally as heat energy. This thermal energy excites a
typical atom of the surface from its lowest energy state
to a higher energy state. The atom returns from this
higher state to a lower state and in the course of this
change sends out the surplus enetgy in the form of
radiation. This radiant energy traverses the box, is
absorbed, and is ultimately converted back into ther-
mal energy. Whatever the details of the mechanisms
by which light is emitted and absorbed, the net effect
is the transfer of heat energy from one end of the box
to the other. To say that mass has to pass down the
length of the box when radiation goes from one wall
to the other therefore implies that mass moves when
thermal energy changes location. The thermal energy
in turn is derived from chemical energy or the energy
of a nuclear transformation or from electrical energy.
Moreover, thermal energy deposited at the far end of
the tube can be converted back into one or another of
these forms of energy. Therefore these forms of
energy — and likewise all other forms of energy — are
equivalent in their transport to the transport of mass
in the amount 7 = E.

How can one possibly uphold the idea that a pulse
of radiation transports mass? One already knows that
a photon has zero mass, by virtue of the relation
(Section 8.4)

(mass)?> = (energy)? — (momentum)? = 0
gy.

Moreover, what is true of the individual photon is
true of the pulse of radiation made up of many such
photons: The energy and momentum are equal in
magnitude, so that the mass of the radiation necessar-
ily vanishes. Is there not a fundamental inconsistency
in saying in the same breath that the mass of the pulse
is zero and that radiation of energy E transports the
mass 7 = E from one place to another?

The soutce of our difficulty is some confusion be-
tween two quite different concepts: (1) energy, the
time component of the momentum —energy 4-vector,
and (2) mass, the magnitude of this 4-vector. When
the system divides itself into two parts (radiation
going to the right and box recoiling to the left) the
components of the 4-vectors of the radiation and of
the recoiling box add up to identity with the compo-
nents of the original 4-vector of the system before
emission, as shown in the second figure. However, the
magnitudes of the 4-vectors (magnitude = mass) are
not additive. No one dealing with Euclidean geome-
try would expect the length of one side of a triangle to
be equal to the sum of the lengths of the other two
sides. Similarly in Lorentz geometry. The mass of the
system (M) is not to be considered as equal to the sum
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of the mass of the radiation (zero) and the mass of the
recoiling box (less than M). But components of 4-
vectors are additive; for example,

(energy of ) _ (energy of ) i ( energy of )

system radiation recoiling box

Thus we see that the energy of the recoiling box is
M — E. Not only is the energy of the box reduced by
the emission of radiation from the wall; also its mass is
reduced (see shortened length of 4-vector in dia-
gram). Thus the radiation takes away mass from the
wall of the box even though this radiation has zero
mass. The inequality

mass of mass of mass of
#* - + .
system radiation{zero} recoiling box

is as natural in spacetime geometry as is the inequality
5 # 3 + 4 in Euclidean geometry.

What about the gravitational attraction exerted by
the system on a test object? Of course the redistribu-
tion of mass as the radiation moves from left to right
makes some difference in the attraction. But let the
test object be at a distance # so great that any such
redistribution has a negligible effect on the attraction.
In other words, all that counts for the pull on a unit
test object is the total mass M as it appears in New-
ton’s formula for gravitational force:

( force per) _oM

unit mass 72

Even so, will not the distant detector momentarily
experience a less-than-normal pull while the radiation
is in transit down the box? Is not the mass of the
radiation zero, and is not the mass of the recoiling box
reduced below the original mass M of the system? So
is not the total attracting mass less than normal during
the process of transport? No! The mass of the system
— one has to say again—is not equal to the sum of
the masses of its several parts. It is instead equal to the
magnitude of the total momentum —energy 4-vector
of the system. And at no time does either the total
momentum (in our case zero!) or the total energy of
the system change —it is an isolated system. There-
fore neither is there any change in the magnitude M of
the total momentum —energy 4-vectors shown in the
second figure. So, finally, there is never any change in
the gravitational attraction.

There is one minor swindle in the way this problem
has been presented: The box cannot in fact move as a
rigid body. If it could, then information about the
emission of the radiation from one end could be ob-
tained from the motion of the other end before the
arrival of the radiation itself —this information
would be transmitted at a speed greater than that of
light! Instead, the recoil from the emission of the
radiation travels along the sides of the box as a vibra-
tional wave, that is, with the speed of sound, so that
this wave arrives at the other end long after the radia-
tion does. In the meantime the absorption of the
radiation at the second end causes a second vibrational
wave which travels back along the sides of the box.
The addition of the vibration of the box to the prob-

A Radiation /
(zero rest mass) E
£ P
-p

M Recoiling box M

Energy
Momentum
BEFORE IN TRANSIT AFTER

EXERCISE 8-5, second figure. Radiation transfers mass from place to place even though the mass of the radiation is zero!
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lem requires a more complicated analysis but does not
change in any essential way the results of the exercise.
References. A. Einstein, Annalen der Physik, Volume 20, pages
627-633 (1906). For a more careful treatment of the box, see A. P.

French, Special Relativity (W. W . Norton, New York, 1968), pages
16-18 and 27-28.

8-6 gravitational red shift

Note: Exercises 8-6 and 8-7 assume an acquaintance
with the following elementary facts of gravitation.

(1) A very small object—or a spherically sym-
metric object of any radius—with mass M
attracts an object of mass 7z—also small or
spherically symmetric—with a force

GMm
F =

2

7

Here 7 is the distance between the centers of
the two objects and G is the Newtonian con-
stant of gravitation, G = 6.67 X 10~
(meter)? /(kilogram-second?).

(2) The work required to move a test particle of
unit mass from  to » + dr against the gravita-
tional pull of a fixed mass M is GM(dr/r?).
Translated from conventional units of energy
to units of mass this work is

GM dr dr

conv
c 2 1"2 1’2

per unit of mass contained in the test particle.

(3) The symbol M* = GM/c? in this formula
has a simple meaning. It is the mass of the
center of attraction translated from units of
kilograms to units of meters. For example, the
mass of Earth (Mg, = 5.974 X 10%* kilo-
grams) expressed in length units is M*g, , =
4.44 X 10~3 meters, and the mass of Sun
(Mg,, = 1.989 X 10%° kg) is M*g, =
1.48 X 103 meters.

(4) Start the test particle at a distance » from the
center of attraction of mass M and carry it to an
infinite distance. The work required is W =
M*/r in units of mass per unit of mass con-
tained in the test particle.

So much for the minitutorial. Now to business.

a What fraction of your rest energy is converted
to potential energy when you climb the Eiffel Tower
(300 meters high) in Paris? Let g* be the acceleration
of gravity in meters/meter? at the surface of Earth:

8 2

c2 1"2 2

GRAVITATIONAL RED SHIFT

b What fraction of one’s rest energy is converted
to potential energy when one climbs a very high lad-
der that reaches higher than the gravitational influ-
ence of Earth? Assume that Earth does not rotate and
isalone in space. Does the fraction of the energy that is
lost in either part a or part b depend on your original
mass?

¢ Apply the result of part a to deduce the frac-
tional energy change of a photon that rises vertically to
a height z in a uniform gravitational field g*. Photons
have zero mass; one can say formally that they have
only kinetic energy E = K. Thus photons have only
one purse—the kinetic energy purse — from which
to pay the potential energy tax as they rise in the
gravitational field. Light of frequency fis composed of
photons of energy E = Af/c? (see Exercise 8-31).
Show that the fractional energy loss for photons rising
in a gravitational field corresponds to the following
fractional change in frequency:

Af _

—_—= — *Z

7 &
Note: We use f for frequency instead of the usual
Greek nu, V, to avoid confusion with » for speed.

d Apply the result of part b to deduce the frac-
tional energy loss of a photon escaping to infinity. (To
apply b for this purpose is an approximation good to
one percent when this fractional energy loss itself is
less than two percent.) Specifically, let the photon
start from a point on the surface of an astronomical
object of mass M (kilograms) or M* (meters) =
GM /c? and radius ». From the fractional energy loss,
show that the fractional change of frequency is given
by the expression

ar_ e

f r

This decrease in frequency is called the gravitational
red shift because, for visible light, the shift is toward
the lower-frequency (red) end of the visible spectrum.

e Calculate the fractional gravitational red shifts
for light escaping from the surface of Earth and for
light escaping from the surface of Sun.

Discussion: The results obtained in this exercise
are approximately correct for light moving near Earth,
Sun, and white dwarf (Exercise 8-7). Only general
relativity correctly describes the motion of light very
close to neutron star or black hole (Box 9-2).

[uniform gravitational field]

[escape field of spherical object]

8-7 density of the companion of
e _ e
Sirius
Note: This exercise uses a result of Exercise 8-6.

Sirius (the Dog Star) is the brightest star in the
heavens. Sirius and a small companion revolve about
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one another. By analyzing this revolution using New-
tonian mechanics, astronomers have determined that
the mass of the companion of Sirius is roughly equal
to the mass of our Sun (M is about 2 X 103? kilo-
grams; M* is about 1.5 X 10? meters). Light from
the companion of Sirius is analyzed in a spectrometer.
A spectral line from a certain element, identified from
the pattern of lines, is shifted in frequency by a frac-
tion 7 X 10~* compared to the frequency of the same
spectral line from the same element in the laboratory.
(These figures are experimentally accurate to only one
significant figure.) Assuming that this is a gravira-
tional red shift (Exercise 8-6), estimate the average
density of the companion of Sirius in grams/centime-
ter3. This type of star is called a white dwarf (Box
9-2).

CREATIONS,
TRANSFORMATIONS,
ANNIHILATIONS

A nucleus of mass # initially at rest absorbs a gamma
ray (photon) and is excited to a higher energy state
such thart its mass is now 1.01 m.

a Find the energy of the incoming photon
needed to carry out this excitation.

b Explain why the required energy of the incom-
ing photon is greater than the change of mass of the
nucleus.

BEFORE N\N\N\N\> OB
A m

{at rest)

cC—>
1.01m

AFTER

EXERCISE B-8. Excitation of a nucleus by a gamma ray.

8-9 photon braking

A moving radioactive nucleus of known mass M emits
a gamma ray (photon) in the forward direction and
drops to its stable nonradioactive state of known mass
m. Find the energy of the incoming nucleus (BEFORE
diagram in the figure) such that the resulting mass m
nucleus is at rest (AFTER diagram). The unknown
energy E, of the outgoing gamma ray should not
appear in your answer.

PHOTOPRODUCTION OF A PAIR BY TWO PHOTONS
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BEFORE M( )———————> E, (tobe found)
A

MR O ANNN> E
D C {nolknown:l
(at rest)

EXERCISE 8-9. Stopping a nucleus by emission of a gamma ray.

8-10 photon integrity

Show that an isolated photon cannot split into two
photons going in directions other than the original
direction. (Hint: Apply the laws of conservation of
momentum and energy and the fact that the third side
of a triangle is shorter than the sum of the other two
sides. What triangle?)

8-11 pair production by a

onely photon?

A gamma ray (high-energy photon, zero mass) can
carry an energy greater than the rest energy of an
electron — positron pair. (Remember that a positron
has the same mass as the electron but opposite
charge.) Nevertheless the process

(energetic gamma ray) — (electron) + (positron)

cannot occur in the absence of other matter or radia-
ton.

a Prove that this process is incompatible with the
laws of conservation of momentum and energy as
employed in the laboratory frame of reference. Ana-
lyze the alleged creation in the frame in which electron
and positron go off at equal but opposite angles +¢
with the extended path of the incoming gamma ray.

b Repeat the demonstration—which then be-
comes much more impressive — in the center-of-mo-
mentum frame of the alleged pair, the frame of refer-
ence in which the total momentum of the two
resulting particles is zero.

8-12 photoproduction of a pair
by two photons

Two gamma rays of different energies collide in a
vacuumn and disappear, bringing into being an
electron— positron pair. For what ranges of energies of
the two gamma rays, and for what range of angles
between their initial directions of propagation, can
this reaction occur? (Hint: Start with an analysis of the
reaction at threshold; at threshold the electron and
positron are relatively at rest.)



260  EXERCISE 8-13

BEFORE m(O————

A

AFTER W W

EXERCISE 8-13. Decay of positronium in flight.

8-13 decay of positronium

A moving “‘atom’’ called positronium (an electron
and positron orbiting one another) of mass m and
initial energy E decays into two gamma rays (high-
energy photons) that move in opposite directions
along the line of motion of the initial atom. Find the
energy of each gamma ray, Ecand Ep, in terms of the
mass 7 and energy E, of the initial particle. Check
that E. = Ep, in the case that the initial particle is at
rest.

8-14 positron—electron
annihilation |

A positron et of mass m and kinetic energy K is
annihilated on a target containing electrons ¢~ (same
mass m) practically at rest in the laboratory frame:

et(fast) + e~(at rest) — radiation

a By considering the collision in the center-of-
momentum frame (the frame of reference in which
the total momentum of the initial particles is equal to
zero), show that it is necessary for at least two gamma
rays (rather than one) to result from the annihilation.

b Return to the laboratory frame, shown in the
figure. The outgoing photons move on the line along
which the positronium approaches, Find an expres-
sion for the energy of each outgoing photon. Let your
derivacion be free of any reference to velocity.

¢ Using simple approximations, evaluate the an-
swer to part b in the limiting cases (1) very small K
and (2) very large K. (Very small and very large
compared with what?)

BEFORE m(O——> (Om
A [cxt?er}

AFTER W W

LABORATORY FRAME

EXERCISE 8-14. Positron—electron annibilation.

DECAY OF POSITRONIUM

BEFORE m(—— (Om
A

AFTER

LABORATORY FRAME

EXERCISE 8-15, first figure. Positron—electron annibilation.

8-15 positron—electron
annihilation Il

A positron e* of mass m and kinetic energy K is
annihilaced on a rarger containing electrons ¢~ (same
mass ) practically at rest in the laboratory frame:

e*(fast) + e~ (at rest) — radiation

The resulting gamma rays go off ar different angles
with respect to the direction of the incoming positron,
as shown in the first figure.

a Derive an expression for the energy of one of
the gamma rays in the laboratory frame as a function
of the angle between the direction of emergence of
that gamma ray and the direction of travel of the
positron before its annihilation. The gamma ray en-
ergy should be a function of only the energy and mass
of the incoming positron and the angle of the outgo-
ing gamma ray. (Hint: Use the law of cosines, as
applied to the second figure.)

P> =pa+ P2 — 2bapccos P

b Show that for outgoing gamma rays moving
along the positive and negative x-direction, the results
of this exercise reduce to the resules of Exercise
8.14.

Pc Pp
oc

Pa

EXERCISE 8-15, second figure. Conservation of vector momen-
tum means that the momentum triangle is closed.



8-16 creation of proton—
antiproton pair by an
electron

What is the threshold kinetic energy K,, of the inci-
dent electron for the following process?

electron (fast) + proton (at rest) ——>
electron + antiproton + two protons

8-17 colliders

How much more violent is a collision of two protons
that are moving toward one another from opposite
directions than a collision of a moving proton with
one at rest?

Discussion: When a moving particle strikes a
stationary one the energy available for the creation of
new particles, for heating, and for other interactions
—or, in brief, the available interaction energy —is
less than the initial energy (the sum of the rest and
kinetic energies of the initial two particles). Reason:
The particles that are left over after the reaction have a
net forward motion (law of conservation of momen-
tum), the kinetic energy of which is available neither
for giving these particles velocity relative to each other
nor for producing more particles. For this reason
much of the particle energy produced in accelerators is
not available for studying interactions because it is
carried away in the kinetic energy of the products of
the collision.

However, in the center-of-momentum frame, the
frame in which the total momentum of the system is
equal to zero, no momentum need be carried away
from the interaction. Therefore the energy available
for interaction is equal to the total energy of the
incoming particles.

Is there some way that the laboratory frame can be
made also the center-of-momentum frame? One way
is to build two particle accelerators and have the two
beams collide head on. If the energy and masses of the
particles in each beam are respectively the same, then
the laboratory frame is the center-of-momentum
frame and all the energy in each collision is available
interaction energy. It is easier and cheaper to achieve
the same efficiency by arranging to have particles
moving in opposite directions in the same accelerator.
A magnetic field keeps the particles in a circular path,
“storing”’ them at their maximum energy for re-
peated tries at interaction. Such a facility is called a
collider. The figure on page 262 gives some details
of a particular collider.

a What is the total available interaction energy
for each encounter in the laboratory frame of the
Tevatron?

EXERCISE 8-17
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b Now transform to a frame in which one of the
incoming particles is at rest (transformation given in
Exercise 7-5). This would be the situation if we tried
to build an accelerator in which moving antiprotons
hit a stationary target of, say, liquid hydrogen (made
of protons and electrons). [Simplify: At 0.9 TeV what
is the effective speed v of the proton? What is its
momentum compared with its energy? What is the
value of the time stretch factor = E/m?} If the target
protons were at rest, what energy, in TeV, would the
incoming antiproton need to have in order to yield the
same interaction energy as that achieved in the Teva-
tron?

Wait @ minute! You keep telling us that
energy and momentum have different values
when measured with respect to different
reference frames. Yet bere you assume the
““interaction energy’’ is the same in the Te-
vatron laboratory frame as it is in the rest
[frame of a proton that moves with nearly the
speed of light in the Tevatron frame. Is the
energy of a system different in different
[frames, or is it the same?

There is an important distinction between
the total energy of a system and the
“available interaction energy,” just as
there is an important distinction between
your money in the bank and money in the
bank you can spend. If some of your
money in the bank has been put in escrow
for payment on a house you are buying,
then you cannot spend that part of your
bank money to buy a new cat. Similarly,
the total energy of the proton —antiproton
system is much smaller in the Tevatron
laboratory frame than in the frame in
which the proton is initially at rest, but all
of the Tevatron laboratory-frame energy
can be spent—used to create new parti-
cles, for example. In contrast, only a min-
ute fraction of the energy in the frame in
which the proton is initially at rest can be
spent to create new particles, since total
momentum must be conserved; most of
the total energy is kept “‘in escrow” for
this purpose. The number and kinds of
new particles created must be the same for
all observers! Therefore the “‘available in-
teraction energy’’ must be the same for all
observers. The central point here is that
the Tevatron collider design makes all of
the energy in the proton —antiproton sys-
tem ““available’’ for use in the laboratory.
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EXERCISE 8-17. Top: Aerial view of the Tevatron
ting at Fermi National Accelerator Laboratory in
Batavia, Ulinois. The ring is 6.3 kilometers in cir-
cumference. Bottom: View along the tunnel of the
Tevatron. Protons (positive charge) and antiprotons
(antiparticle of the protom: same mass, negative
charge) circulate in separate beams in opposite direc-
tions in the same vacuum chamber in the lower ring of
superconducting magnets shown in the photo. The
upper ring of regular magnets accelevates protons from
8 GeV 10 150 GeV. Some of these protons are injected
into the lower ser of magnets directly, roraring clock-
wise. Other protons strike a copper target and create
antiprotons at a lower energy that are accumulated
over approximately 15 hours in a separvate ring (not
shown) and then veaccelerated to 150 GeV and in-
serted into the lower ving, circulating counterclock-
wise. (Opposite charge, opposite motion yields same
magnetic force toward the center, bence counterrota-
tion around the same circle.) Then particles in both
beams in the lower ring of magnets are accelerated at
the same time from 150 GeV 1o a final energy of 0.9
TeV per particle. (1 teraelectron-volt = 10'2 electron-
volts, or approximately 1000 times the rest energy of
the proton or antiproton.) After acceleration, the
beams ave switched magnetically so that they cross
each other ar multiple intersection points around the
ring, allowing protons and antiprotons to collide in the
laboratory center-of-momentum frame. Detectors at
the points of intersection monitor products of the colli-
sions. Protons and antiprotons that do not interact at
one intersection are not wasted; they may interact at
another intersection point or on subsequent trips
around the ring. The particles are allowed to coast
around and around at full energy for as long as 24
bours as they interact. Question: Approximately bow
many revolutions around the ving does a given proton
or antiproton make in 24 hours? Photographs cour-
tesy of Fermi Laboratory.
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DOPPLER SHIFT

8-18 Doppler shift along the
x-direction

Note: Recall Exercise L-5 in the Special Topic on
Lorentz Transformation, following Chapter 3.

Apply the momenergy transformation equations
(Exercise 7-5) to light moving in the positive x-direc-
tion for which p, = p =E.

a Show that the relation between photon energy
E’ in the rocket frame and photon energy E in the
laboratory frame is given by the equation

_ , Q1+ F

E—)}(1+1/)E—m

__ a+9E  _Jito]e
(1 =21+ )2 1—v

[photon moves along
positive x-direction]

b Use the Einstein relation between photon en-
ergy E and classical wave frequency £, namely E_,, =

hf or E= hf/c? and E' = hf' /2, to derive the trans-
formation for frequency

+ o2
=

This is the Doppler shift equation for light waves
moving along the positive x-direction.

Note: We use f for frequency instead of the usual
Greek nu, V, to avoid confusion with » for speed.

¢ Show that for a wave moving along the nega-
tive x-direction, the equation becomes

1—ov |2 |
f_l:l-f-v] f

d Derive the corresponding equations that con-
vert laboratory-measured frequency f to rocket-mea-
sured frequency f” for waves moving along both posi-
tive and negative x-directions.

[wave motion along
positive x-direction]

[wave motion along
negative x-direction]

8-19 Doppler equations

A photon moves in the xy laboratory plane in a direc-
tion that makes an angle ¢b with the x-axis, so that its
components of momentum are p, = p cos ¢ and p, =
psin ¢ and p, = 0.

a Use the Lorentz transformation equations for
the momentum —energy 4-vector (Exercise 7-5) and
the relation E2 — p? = 0 for a photon to show that in
the rocket frame, moving with speed v, along the
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laboratory x-direction, the photon has an energy E’
given by the equation

E' = Ey(1 — v cos )

and moves in a direction that makes an angle ¢’ with
the x"-axis given by the equation

cos Y = c0s P — vy
1—1/,elcosq§

b Derive the inverse equations for E and cos ¢h as
functions of E’, cos ¢’, and v,,. Show that the results
are

E=Ey(1 + vy cos ¢)
b= cos ' + vy
o8 1 + v cos @’

¢ If the frequency of the light in the laboratory
frame is £, what is the frequency f” of the light in the
rocket frame? Use the Einstein relation between pho-
ton energy E and classical wave frequency f, namely
E ., = hfor E= hf/c?> and E' = hf’ /2, to derive the
transformations for frequency

[/ =Fp(l — vy cos (]5)
[=f71~+ v cos @)

This difference in frequency due to relative motion
is called the Doppler shift.

Note: We use f for frequency instead of the usual
Greek nu, V, to avoid confusion with » for speed.

d For wave motion along the positive and nega-
tive x-direction, show that the results of this exercise
reduce to the results of Exercise 8-18.

e Discussion question: Do the Doppler
equations enable one to determine the rest frame of
the source that emits the photons?

8-20 the physicist and the

traffic light

A physicist is arrested for going through a red light. In
court he pleads that he approached the intersection at
such a speed that the red light looked green to him.
The judge, a graduate of a physics class, changes the
charge to speeding and fines the defendant one dollar
for every kilometer /hour he exceeded the local speed
limit of 30 kilometers/hour. What is the fine? Take
the wavelength of green light to be 530 nanometers =
530 X 1072 meter) and the wavelength of red light to
be 650 nanometers. The relation between wavelength
A and frequency f for light is fA = ¢. Notice that the
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light propagates in the negative x-direction (¢p =
¢ =n.

A bulb that emits spectrally pure red light uniformly
in all directions in its rest frame approaches the ob-
server from a very great distance moving with nearly
the-speed of light along a straight-line path whose
perpendicular distance from the obsetver is 4. Both
the color and the number of photons that reach the
observer per second from the light bulb vary with
tme. Describe these changes qualitatively at several
stages as the light bulb passes the obsetver. Consider
both the Doppler shift and the headlight effect (Exet-
cises 8-19 and L-9).

Sun rotates once in about 25.4 days. The radius of
Sun is about 7.0 X 108 meters. Calculate the Doppler
shift that we should obsetve for light of wavelength
500 nanometers = 500 X 107 meter) from the edge
of Sun’s disk (the limb) near the equator. Is this shift
toward the red end or toward the blue end of the
visible spectrum? Compare the magnitude of this
Doppler shift with that of the gravitational red shift of
light from Sun (Exercise 8-6).

8-23 the expanding universe

Note: Recall Exercise 3-10.

a Light from a distant galaxy is analyzed by a
spectrometer. A spectral line of wavelength 730 nan-
ometers = 730 X 1072 meters is identified (from the
pattern of other lines) to be one of the lines of hydro-
gen that, for hydrogen in the laboratory, has the
wavelength 487 nanometers. If the shift in wave-
length is a Doppler shift, how fast is the observed
galaxy moving relative to Earth? Notice that the light
propagates in a direction opposite to the direction of
motion of the galaxy (¢ = ¢’ = 7).

b There is independent evidence that the ob-
served galaxy is 5 X 10° light years away. Estimate
the time when that galaxy parted company from our
own galaxy — the Milky Way — using the simplify-
ing assumption that the speed of recession was the
same throughout the past (that is, not slowed down
by the gravitational attractions between one galaxy
and another). The astronomer Edwin Hubble discov-
ered in 1929 that this time—whose reciprocal is
called the Hubble constant, and which may itself
therefore appropriately be called the Hubble time—
has about the same value for all galaxies whose dis-
tances and speeds can be measured. Hence the con-
cept of the expanding universe.

SPEEDING LIGHT BULB

¢ Will allowance for the past effect of gravitation
in slowing the expansion increase or decrease the esti-
mated time back to the start of this expansion?

Reference: E. Hubble, Proceedings of the U. S. National Academy of
Sciences, Volume 15, pages 168—173 (1929).

8-24 twin paradox using the
Doppler shift

The Twin Paradox (Chapter 4 and Exercises 4-1 and
5-8) can be resolved elegantly using the Doppler shift
as follows. Paul remains on Earth. His twin sister
Penny travels at a high speed, », to a distant star and
returns to Earth at the same speed. Both Penny and
Paul observe a distant variable star whose light gets
alternately dimmer and then brighter with a fre-
quency f in the Earth frame (f” in the rocket frame).
This variable star is very much farther away than the
length of Penny’s path and is in a direction perpen-
dicular to this path in the Earth frame. Both observers
will count the same total number of pulsations of the
variable star during Penny’s round trip. Use this fact
and the expression for the Doppler shift at the 90-de-
gree laboratory angle of observation (Exercise 8-19)
to verify that at the end of the trip described in
Chapter 4, Penny will be only 20 years older while
Paul will have aged 202 years.

Reference: E. Feenbetg, American Journal of Physics, Volume 27,
page 190 (1959).

The average kinetic energy of a molecule in a gas at
temperature T degrees Kelvin is (3 /2)£T. (The con-
stant £ is called the Boltzmann constant and has the
value 1.38 X 10723 joules/degree Kelvin). Molecules
of gas move in random directions. Calculate the aver-
age speed from the low-velocity approximation of
Newtonian mechanics. Estimate the fractional change
in frequency due to the Doppler shift that will be
observed in light emitted from a molecule in a gas at
temperature T. Will this shift increase or decrease the
observed frequency of the emitted light? This effect,
called Doppler broadening of spectral lines, is one
reason why a given spectral line from a gas excited in
an electric discharge contains a range of frequencies
around a central frequency.

8-26 E,,,, cony = mc? from the
Doppler shift

Einstein’s famous equation in conventional units,
E it conv = m¢?, and the relativistic expression for en-
ergy can be derived from (1) the relativistic expression
for momentum (derived separately, for example in

Exercise 7-12), (2) the conservation laws, and (3) the
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Doppler shift (Exercise 8-18). In conventional units,
a photon has energy E_,, = Af, where 4 is Planck’s
constant and f is the frequency of the corresponding
classical wave. (We use f for frequency instead of the
usual Greek nu, V, to avoid confusion with » for
speed.) Divide by ¢? to convert to units of mass: E =
Af/c?. Expressed in units of mass, a photon has equal
energy and momentum. Therefore the momentum of
a photon is also given by the equation p = Af/c2.
Momentum does differ from energy, however, in that
itis a 3-vector. In one dimensional motion, the sign of
the momentum (positive for motion to the righe,
negative for motion to the left) is important, as in the
analysis below.

A particle of mass 7. emits two photons in
opposite directions while remaining at rest in the lab-
oratory frame. Conservation of momentum requires
these two photons to have equal and opposite mo-
menta and therefore to cortespond to the same classi-
cal frequency f. In consequence, they also have the
same energy.

a First result: Energy released =Am. Now
view this process from a rocket frame moving at speed
¥ = /¢ along the direction of flight of the two
photons. The particle moves in this frame, but does
not change velocity on emitting the photons. The
photon emitted in the same direction as the rocket
motion will be upshifted in energy (and in corre-
sponding classical frequency) as compared with the
energy observed in the laboratory; the other back-
ward-moving photon will be downshifted. We can
calculate this frequency shift using the Doppler for-
mulas (Exercise 8-18). Use the expression myv for
momentum of a particle, equation (7-8), to state the
conservation of momentum (notice the minus sign
before the second photon term, representing the pho-
ton moving to the left):

b 1 1/2
mbefotew = maﬁeryy + _f[ + 1/:|

2ll1—v
_bf 1—v |2
21+

Simplify this expression to

Mietore = Mageer T 251/ 2 m
ot
Mpetore — Mageer — Om = 2hf/c? = energy released
Conservation of momentum in both frames im-

plies a change in particle mass equal to the total
energy of the emitted photons. Multiply the mass-
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units result by ¢? to convert to conventional units and
the equation in the well-known form

energy released (conventional units) = (Az)c?

b Second result: E,.,, = m. Now add the con-
dition that energy is conserved in the laboratory
frame:

Epiore = Eugee + 25/ @

Compare equations (1) and (2). These two equa-
tions both describe a particle at rest. Show that they
are consistent if Epegore = Mpetore A0d Epgrer = 2,66 and
that therefore in general

E

rese

or, in conventional units,

E

rest conv = m[z

¢ Third result: At any speed, E = my. Next
add the condition that energy be conserved in the
rocket frame. Place primes on expressions for rocket-
measured energy of the particle and use the Doppler
equations to transform the classical frequency back to
the laboratory value f. Show that the result is

E;:-efote = E;fter + (be/fz))’ (3)

The salient difference between equations (2) and
(3) is that in the rocket frame the particle is in motion.
Deduce that the general expression for energy of a
particle includes the stretch factor gamma:

E=my
or, in conventional units,

E

conv

= myc2

Reference: Fritz Rohtlich, American_Journal of Physics, Volume 58,
pages 348349 (April 1990).

8-27 everything goes forward

“Everything goes forward” is a good rule of thumb
for interactions between highly relativistic particles
and stationary targets. In the laboratory frame, many
particles and gamma rays resulting from collisions
continue in essentially the same direction as the in-
coming particles.

The first figure (top) shows schematically the colli-
sion of two protons in the center-of-momentum
frame, the frame in which the system has zero total
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momentum. A great many different particles are cre-
ated in the collision, including a gamma ray (the
fastest possible particle) that by chance moves per-
pendicular to the line of motion of the incoming
particles: ¢’ = 7/2 radians.

The first figure (bottom) shows the same interac-
tion in the laboratory frame, in which one proton is
initially at rest. At what angle ¢ does the product
gamma ray move in this frame?

a From the Doppler equations (Exercise 8-19),
show that the outgoing angle ¢ for the gamma ray in
the laboratory frame is given by the expression

cos b = v, m

b What is the speed 7 Of the rightward-
moving proton in the laboratory frame? We define
the laboratory frame by riding at speed v, on the
lefeward-moving proton in the centet-of-momentum
frame. Therefore the rightward-moving proton also
moves with speed v, in the center-of-momentum
frame. Use the law of addition of velocities to find the
speed of the rightward-moving proton in the labora-
tory frame (Section L.7 and Exercise 3.11).

20
v

= (2)
proton 1+ 'erl

EVERYTHING GOES FORWARD

¢ Inorder to solve equation (1) for q[), we need to
know the value of #,y. Equation (2) is a quadratic in
V- Show that the solution is

1 1
Vrel = 1— (&)
vptoton yproton

Here Yp,oe0n 18 the stretch factor Y using the proton
velocity ¥peocon-

d  We are interested in finding the angle ¢b when
the incoming proton is highly relativistic. In this case
Vproron = 1. From the approximation for small angles
(¢ expressed in radians)

cosp=1—¢?/2 | << 1

show that the angle ¢ is given approximately by the

expression
2 T2
b= 4)
yProton

e What is the value of ¢ in radians and in de-
grees for incident protons of energy E = 200 GeV?
For incident protons of enetgy 2 X 10* GeV? (1 GeV
= 10° electron-volts. Mass of the proton is approxi-
mately 1 GeV.)

BEFORE

AFTER

CENTER-OF-MOMENTUM FRAME

O > O

BEFORE

LABORATORY FRAME

EXERCISE 8-27, first figure. In the center-of-momentum frame fwo incoming protons collide,
creating many particles, among them a gamma ray that moves perpendicular to the original line of motion. In
the laboratory frame, in which one proton is initially at rest, in what direction does the gamma ray move?



EXERCISE 8-29

8-28 decay of 7°-meson

A 7° meson (neutral pi-meson) moving in the x-dir-
ection with a kinetic energy in the laboratory frame
equal to its mass m decays into two photons. In the

E' £
&
ROCKET FRAME LABORATORY FRAME

EXERCISE B-28. Two photons resulting from the decay of a °-
meson, as observed in rocket and laboratory frames.

. -
oy 4
7 - /
. '.-' ’
- P lt’

- . A &,

4

P
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rocket frame in which the meson is ar rest these pho-
tons are emitted in the positive and negative y'-direc-
tions, as shown in the figure. Find the energies of the
two photons in the rocket frame (in units of the mass
of the meson) and the energies and directions of prop-
agation of the two photons in the laboratory frame.

COMPTON SCATTERING

8-29 Compton scattering

Analyze Compton scattering of an incident photon
that collides with and recoils from an electron that is
initially at rest. Compton scattering in one dimension
was discussed in Section 8.4. Here we analyze Comp-
ton scattering in two dimensions. The goal is to deter-
mine the reduced energy of the photon that has been
scattered with a change of direction measured by the

EXERCISE 8-27, second figure. Forward spray of particles created in collisions near the middle of the
Ppicture. An incident particle, probably a charged T-meson, enters from the left with energy approximately
100 to 200 times its rest energy and strikes a nucleus of neon or hydrogen. Curving paths in the imposed
magnetic field are probably knock-on electrons. These and the cascade of other particles move initially in the
same direction as the incoming T-meson: “Everything goes forward!” Photograph courtesy of Fermi
Laboratory.
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EXERCISE 8-29, first figure. Compton scattering of a photon from
an electron initially at rest. The angle b is called the scattering

angle.
Pc Po
¢ o
P, -

EXERCISE 8-29, second figure. Conservation of vector momen-
tum means that the momentum triangle is closed.

angle ¢b. The angle ¢b is called the scattering angle.
Use the notation in the first figure. Do not use fre-
quency or wavelength or Planck’s constant or speed in
your analysis—only the laws of conservation of mo-
mentum and energy plus equations:

B — p = m?
B —p=0

[for an electron]
[for a photon]

Discussion: The conservation of momentum is a
vector conservation law. This means thar the vector
sum of the momenta after the collision equals the
momentum of the photon before the collision. In
other words, the vectors form a triangle, as shown in
the second figure. Apply the law of cosines to this

figure:
PP =D+ PE —2pabccos P

a Now replace all momenta with energies (easy
for photons, more awkward for the electron), com-

Detector at ¢p = 0° m

Detector at p = 45°

Detector at ¢h = 90°

——
[

Number of scattered photons

Energy of scattered photons

EXERCISE 8-29, third figure. Results of the Compton experiment
in which photons were scattered from the electrons in a graphite
target. At each angle of the detector except (b = 0 there are some
photons scattered with loss of energy (electron recoils by itself) and
other photons scattered with little or no loss of energy (electron and

atom recoil as a unit).
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bine with the conservation of energy, and derive the
Compton scattering formula:

Eincident
Escattered = E
] + —naden (1 — cos @)
m

Exercise 8-30 gives some examples of this result.

b Compton’s original experiments showed that
some photons were scattered without a measurable
change of energy. These photons were scattered by
electrons that did not leave the atom in which they
were bound, so that the entire atom recoiled as a unit.
Assume that the energy of the incoming photon is at
most a few times the rest energy of the electron. In this
case, show that the energy change is negligible for
photons scattered by electrons tightly bound to an
atom of average mass (say 10 X 2000 X mass of an
electron). See the third figure.

Reference: A. H. Compton, Physical Review, Volume 22, pages
409-413 (1923).

8-30 compton scattering
examples

a A gamma ray photon of energy equal to twice
the mass of the electron scatters from an electron
initially at rest. Provide the following answers in units
of MeV. (Mass of the electron is 0.511 MeV.) From
the Compton scatteting formula find the energy of the
scattered photon for scattering angles 0, 90, and 180
degrees. If you have access to a computer, calculate
this energy at 10-degree increments between zero and
180 degrees and plot the resulting cutve of energy vs.
angle.

b In a new set of experiments, the incident
gamma ray has energy equal to five times the rest
energy of the electron. Repeat the calculations of part
a for this case.

8-31 energy of a photon and
frequency of light

Planck found himself forced in 1900 to recognize that
light of frequency f (vibrations/second) is composed
of quanta (Planck’s word) or photons (Einstein’s later
word), each endowed with an energy E = Af/c? (en-
etgy in units of mass) where 4 is a universal constant of
proportionality called Planck’s constant. How can
Planck’s formula possibly make sense when—as we
now know—not only E but also f depend upon the
frame of reference in which the light is observed? (We
use ffor frequency instead of the usual Greek nu, v, to
avoid confusion with » for speed.)

INVERSE COMPTON SCATTERING
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a A photon moves along the positive x-axis. Re-
sults of Exercise 8-18 show the relation between the
energy of this photon measured in the rocket frame
and its energy measured in the laboratory frame. A
classical electromagnetic wave moves along the posi-
tive x-axis. Results of Exercise L-5 (at the end of the
Special Topic following Chapter 3) show the relation
between the frequency of this wave measured in the
rocket frame and its energy measured in the labora-
tory frame. Compare these two results to show that if
we associate photons with a light wave in one coordi-
nate system, this association will hold in all coordinate
systems.

b The theory of relativity does not tell us the
value of Planck’s constant 4 in the formula E =
(b/c?)f that relates photon energy (in units of mass) to
classical wave frequency. Experiment shows the con-
stant 4 to have the value 6.63 X 10734 joule-second.
Show that if energy is measured in conventional units,
the relation between energy and frequency has the
form

—d

[energy in conventional units]

¢ Show that the formula for Compton scattering
(Exercise 8-29) becomes

f inddent

e
1+M(1_COS¢)
mc?

fsemeted=

In the 1920s there was great resistance to the idea
that when the electron is “‘shaken’” by the electric field
of wave at one frequency it should scatter (reemit) this
radiation at a lower frequency.

8-32 inverse Compton

In Compton’s original experiment an X-ray photon
scattered with reduced energy from an electron ini-
tially at rest. In contrast, a photon scattered from a
moving electron can increase the energy of the pho-
ton. Such an interaction is called inverse Compton
scattering. The figure (page 270) shows an exam-
ple.

When a high-energy electron collides head on with
a low-energy photon, what is the energy of the outgo-
ing photon? Answer this question using parts a—e or
by some other method.

a Write down equations of conservation of en-
ergy and momentum, using subscripts A through D
from the figure.

b Recall that the energy of a photon is equal to
the magnitude of its momentum. Use this to simplify
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EXERCISE 8-32. Inverse Compton scattering. A low-energy photon
is scattered by a bigh-energy electyon.

the conservation equations, taking leftward momen-
tum to be negative.

¢ We are not interested in the energy or the
momentum of outgoing electron C. Therefore solve
the energy equation for E¢and the momentum equa-
tion for p, square and subtrace the two sides, and use
EZ2 — p? = m. What happens to E4? and p,? on the
other side of the resulting equation? For now keep
terms in the first power of p, without substituting the
awkward equivalent p, = (E,? + m?)'/2.

d Solve the resulting equation for the energy of
the outgoing photon.

e Now consider an important special case in
which the incoming electron is extremely energetic,
with an energy of, say, thousands of times its rest
energy as measured in the laboratory. Show that this
case the incoming electron behaves in essential re-
spects as a photon: p, = + E,,. Simplify your equation
of part d to show that under these circumstances the
outgoing photon has the energy of the incoming elec-
tron no matter what the energy of the incoming photon.

TESTS OF RELATIVITY

Note: Exercises 8-33 through 8-39 form a connected
tutorial on tests of relacivity. Some of these exercises
depend on each other and on earlier exercises, espe-
cially Exercise 8-6.

8-33 photon energy shift dve
to recoil of emitter

Note: This exercise uses the results of Exercise 8-25.
A free particle of initial mass 2, and inidally at rest

emits a photon of energy E. The particle (now of mass

m) recoils with velocity v, as shown in the figure.

BEFORE ()™

\__/ lat resi)

AR <N\ NSNS (O— v
E

m

EXERCISE 8-33. Recoil of a particle that emits a photon.

PHOTON ENERGY SHIFT DUE TO RECOIL OF EMITTER

a Write down the conservation laws in a form
that makes no reference to velocity. Consider the case
in which the fractional change in mass in the emission
process is very small compared to unity. Show that for
this special case the photon has an energy E, = m, —
m. For the general case show that

E,
E=ED(1- )
2m,

or

b Show thar this shift in energy for visible light
(E, cony — 3 €V) emitted from atoms (mc2 ~ 10 X 10°
eV) in a gas is very much less than the Doppler shift
due to thermal motion (Exercise 8-25) even for tem-
peratures as low as room temperature (£ ~ 1/40
eV).

8-34 recoilless processes

a A free atom of iron *’Fe—formed in a so-
called “excited state”” by the radioactive decay of
cobalt 3’Co—emits from its nucleus a gamma ray
(high-energy photon) of energy 14.4 keV and trans-
forms to a “normal” 3’Fe atom. By what fraction is
the energy of the emitted ray shifted because of the
recoil of the atom? The mass of the 37Fe atom is about
equal to that of 57 protons.

b That not all emicted gamma rays experience
this kind of frequency shift was the important discov-
ery made in 1958 by R. L. Méssbauer at the age of
29. He showed that when radioactive nuclei embed-
ded in a solid emic gamma rays, some significant
fraction of these atoms fail to recoil as free atoms.
Instead they behave as if locked rigidly to the resc of
the solid. The recoil in these cases is communicated to
the solid as a whole. The solid being heavier than one
atom by many powers of 10, these events are called
recoilless processes. For gamma rays emitted in
recoilless processes, the 7, in Exercise 8-33 is the mass
of ‘the entire chunk in which the iron atoms are em-
bedded. When this chunk has a mass of one gram, by
what fraction is the frequency of the emitted ray
shifted in this “‘recoilless’ process?

¢ The gamma rays emitted from excited >Fe
atoms do not have a precisely defined energy but are
spread over a narrow energy range—or frequency
range — or natural line width, shown as a bell-shaped
curve in the figure. (The physical basis for this curve is
explained by quantum physics.) The full width of this
curve at half maximum is denoted by Av. R. V.
Pound and G. A. Rebka selected >’Fe for experiments



EXERCISE 8-36

A
Number

of AF=full width at
photons half maximum

b

Frequency ——>

EXERCISE 8-34. Natural line width of photons emitted from >"Fe.

with recoilless processes because the fractional ratio
Af/f, has the very small value 6 X 1073 for the
14.4 keV gamma ray from >’Fe. How much is the
natural line width, Af, of ’Fe expressed in cycles /sec-
ond? Compare the fractional natural line width with
the fractional shift due to recoil of a free iron atom.
And compare it with the fractional shift of a gamma
ray from a recoilless process.

Reference: For a more detailed account of Mdssbauer’s discovery —
for which the German scientist was awarded the Nobel prize in
1961 —see S. DeBenedetti, “The Mossbauer Effect,” Scientific
American, Volume 202, pages 7280 (April 1960). For the selec-
tion of >’Fe, see R. V Pound and G. A. Rebka, Jr., Physical Review
Letters, Volume 3, pages 439-441 (1959).

Pound and Rebka's application of recoilless processes thus
put into one’s hands a resonance phenomenon sharp in
frequency to the fantastic precision of 6 parts in 1073
Exercise 8-35 deals with detection of this radiation.
Exercise 8-36 uses motron (Doppler shift) as a means for
producing controlled changes of a few parts in 1083 — or
mauch larger changes— in the effective frequency of source
or detector or both. To what uses can radration of precisely
defined frequency be put? There are many uses. For in-
stance, the effect is the basis of important techniques in
solid-state physics, molecular physics, and biophysics. One
can detect the change in the natural frequency of radia-
tion from >'Fe atoms caused by other atoms in the
neighborbood— and by external magnetic fields— and
in this way analyze the interaction between the ivon atom
its survoundings. Here we aim at detection of various
effects predicted by relativity.

8-35 resonant scattering

The nucleus of normal >’Fe absorbs gamma rays at
the resonant energy of 14.4 keV much more strongly
than it absorbs gamma rays of any nearby energy. The
energy absorbed in this way is converted to internal
energy of the nucleus and transmutes the 37Fe to the
“excited state.”” After a time this excited nucleus
drops back to the “normal state,”” emitting the excess
energy in various forms in all directions. Therefore the
number of gamma rays transmitted through a thin
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sheet containing >’Fe will be less at the 14.4 keV
resonance energy than at any neatby energy. This
process is called resonant scattering.

a Show that when a gamma ray of the resonant
energy E, is incident on a free iron atom initially at rest
then the free nucleus cannot absorb the gamma ray at
its resonant energy, because the process cannot satisfy
both the law of conservation of momentum and the
law of conservation of energy.

b Show that both consetvation laws are satisfied
when an iron atom embedded in a one-gram crystal
absorbs such a gamma ray by a recoilless process, in
which the entire crystal absorbs the momentum of the
incident gamma ray. (“Satisfied”’? For momentum,
yes; for energy, no. However, the fractional discrep-
ancy in energy — equivalent to the fractional discrep-
ancy in frequency —is less than 6 pares in 103 and
therefore small enough so that the iron nucleus is
“‘unable to notice” the discrepancy and therefore ab-
sorbs the gamma ray.)

8-36 measurement of Doppler
shift by resonant
scattering

In the experimental arrangement shown in the figure,
a source containing excited >’Fe nuclei emits (among
other radiations) gamma rays of energy E, by a recoil-
less process. An absorber containing >’Fe nuclei in the
normal state absotbs some of these gamma rays by
another recoilless process and reemits this energy in
various forms in all directions. Thus the counting rate
on a gamma ray counter placed as shown is less for an
absorber containing normal *’Fe than for an equiva-
lent absorber without normal 3’Fe. Now the soutce is
moved toward the absorber with speed v.

a What must be the velocity of the source if the
gamma rays are to artive at the absorber shifted in
frequency by 6 parts in 10'3? Express your answer in
centimeters/second.

Source

;S? Absorber Counter

EXERCISE 8-36. Resonant scattering of photons.
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b Will the counting rate of the counter increase
or decrease under these circumstances?

¢ What will happen to this counting rate if the
source is moved away from the absorber with the
same speed?

d Make a rough plot of counting rate of the
counter as a function of the source velocity toward the
absorber (positive velocity) and away from the ab-
sorber (negative velocity).

e Discussion question: Does this method
allow one to measure the “‘absolute velocity” of the
source, in violation of the Principle of Relativity
(Chapter 3)?

8-37 test of the gravitational
red shift 1

A 14.4-keV gamma ray emitted from 37Fe without
recoil travels vertically upward in a uniform gravita-
tional field. By what fraction will the energy of this
photon be reduced in rising to a height z (Exercise
8-6)? An absorber located at this height must move
with what speed and in what direction in order to
absorb such gamma rays by recoilless processes? Cal-
culate this velocity when the height is 22.5 meters.
Plot the counting rate as a function of absorber veloc-
ity expected if (a) the gravitational red shift exists, and
(b) there is no gravitational red shift. A frequency
shift of Af/f, = (2.56 & 0.03) X 107" was deter-
mined in an experiment conducted by R. V. Pound
and J. L. Snider. You will notice that this shift is very
much smaller than the natural line width Af/f, =
6 X 10713 (see the figure for Exercise 8-34). There-
fore the the result depended on a careful exploration
of the shape of this line and was derived statistically
from a large number of photon counts.

References: Original experiment: R. V Pound and G. A Rebka, Jr.,
Physical Review Letters, Volume 4, pages 337—-341 (1960). Im-

proved experiment: R. V. Pound and J. L. Snider, Physical Review,
Volume 140, pages B788-B803 (1965).

8-38 test of the gravitational
red shift II

On June 18, 1976, a Scout D rocket was launched
from Wallops Island, Vitginia, catrying an atomic
hydrogen-maser clock as the payload. It achieved a
maximum altitude of 107 meters. By means of mi-
crowave signals, its clock was compared with an iden-
tical clock at the sutface of Earth. The experiment
used continuous comparison of these two clocks as the
payload rose and fell. Simplifying (and somewhat
mistepresenting) the experiment, we report their re-
sult as a fractional frequency red shift at the top of the

trajectory due to gravitational effects of Af/f =
0.945 X 10710 £ 6.6 X 1071,

TEST OF THE GRAVITATIONAL RED SHIFT |

Modify the analysis of Exercise 8-6 to make a

prediction about this experiment and compare your
prediction with the results of the Scout D rocket
experiment.
References: Description of experiment and preliminary results:
R. F. C. Vessot and M. W. Levine, General Relativity and Gravita-
tion, Volume 10, Number 3, pages 181—204 (1979). Final results:
R. F. C. Vessot, M. W. Levine, and others, Physical Review Letters,
Volume 45, pages 2081 -2084 (1980). Popular explanation: Clif-
ford M. Will, Was Einstein Right? (Basic Books, New York, 1986),
pages 42-64.

8-39 test of the twin paradox

For Penny to leave her twin brother Paul behind in the
laboratory, go away at high speed, return, and find
herself younger than stay-at-home Paul is so contrary
to everyday experience that it is astonishing to find
that the experiment has already been done and the
prediction upheld! Chalmers Sherwin pointed out
that the twins can be identical iron atoms just as well
as living beings. Let one iron atom remain at rest. Let
the other make one forth-and-back trip. Or many
round trips. The percentage difference in aging of the
twin atoms is the same after a million round trips as
after one round trip—and it is easier to measure.
How does one get the second atom to make many
round trips? By embedding it in a hot piece of iron, so
that it vibrates back and forth about a position of
equilibrium (thermal agitation!). How does one mea-
sure the difference in aging? In the case of Penny and
Paul the number of birthday firecrackers that each
sets off during their separation are counted. In the
experiment with iron atoms one compares not the
number of flashes of firecrackers up to the time of
meeting but the frequency of the photons emitted by
recoilless processes, and thus—in effect— the num-
ber of ticks from two identical nuclear clocks in the
course of one laboratory second. In other words, one
compares the effective frequency of INTERNAL nu-
clear vibrations (not to be confused with the back-
and-forth vibration of the iron atom as a whole!) as
observed in the laboratory for (a) an iron nucleus at
rest and (b) an iron nucleus in a hot specimen.

It is difficult to obtain an iron nucleus at rest.
Therefore the actual expetiment compared the effec-
tive internal nuclear frequency two crystals of iron
with a difference of temperature AT. R. V. Pound
and G. A. Rebka, Jr., measured that a sample
warmed up by the amount AT = 1 degree Kelvin
underwent a fractional change in effective frequency
of Af/f, = (—2.09 %+ 0.24) X 10 (fewer vibra-
tions; fewer clock ticks; fewer birthdays; more youth-
ful!). (We use f for frequency instead of the usual
Greek nu, v, to avoid confusion with » for speed.)



EXERCISE 8-40

To simplify thinking about the experiment, go
back to the idea that one iron atom is at rest and the
other is in thermal agitation at temperature T; predict
the fractional lowering in number of internal vibra-
tions in the hot sample per laboratory second; and
compare with experiment.

Discussion: The figure compates the effective
“ticks” of the two “internal nuclear clocks™ in the
laboratory time 4¢. Note that the speed of thermal
agitation is about 1073 the speed of light. What
algebraic approximation suggests itself for the dis-
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EXERCISE 8-39. Comparison of nuclear clock at rest with nuclear
clock in thermal motion.

MOMENTUM WITHOUT MASS?
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crepancy factor 1 — (1 — +?)/2? How much is the
deficit in number of “‘ticks’” (for hot atom versus
atom at rest) in the lapse of laboratory time 4#? Show
that the cumulative deficit in number of ““ticks”” from
the hot atom in one second is f(#2/ 2),44(1 second)
where (¢%),,, means “‘the time average value of the
square of the atomic speed’’ (relative to the speed of
light). Note that the mean kinetic enetgy of thermal
agitation of a hot iron atom (mass 72g, = 57 Mpyoeq) 15
given by the classical kinetic theoty of gases:

1/2 mp (1) = 3/2 kT

Here 4 is Boltzmann’s factor of conversion be-
tween two units of energy, degrees and joules (or
degrees and ergs); £ = 1.38 X 1072 joule/degree
Kelvin (£ = 1.38 X 1076 erg/degree Kelvin). How
does the experimental result of Pound and Rebka
compare with the result of your calculation?
References: Chalmers W. Sherwin, Physical Review, Volume 120,

pages 17-21 (1960). R. V. Pound and G. A. Rebka, Jr., Physical
Review Letters, Volume 4, pages 274-275 (1960).

FREE-FOR-ALL!

8-40 momentum without mass?

A small motor mounted on a board is powered by a
battery mounted on top of it, as shown in the figure
on page 274. By means of a belt the motor drives a
paddlewheel that stits a puddle of water. The paddle-
wheel mechanism is mounted on the same boatd as
the motor but a distance x away. The motor petforms
work at a rate JE/d.

a How much mass is being transferred per sec-
ond from the motor end of the boatd to the paddle-
wheel end of the board?

b Mass is being transferred over a distance x at a
rate given by your answer to part a. What is the
momentum associated with this transfer of mass?
Since this momentum is small, Newtonian momen-
tum concepts are adequate.

¢ Let the mounting board be initially at rest and
supported by frictionless rollers on a horizontal table.
The board will move! In which direction? What hap-
pens to this motion when the battery runs down? How
far will the board have moved in this time?

d Show that an observer on the board sees the
energy being transferred by the belt; an observer on
the table sees the energy being transferred partly by
the belt and partly by the board; an observer riding
one way on the belt sees the energy being transferred
partly by the belt moving in the other direction and
partly by the board. Evidently it is not always possible
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THE PHOTON ROCKET AND INTERSTELLAR TRAVEL

X

EXERCISE 8-40. Transfer of mass without net transfer of particles or radiation.

to make a statement satisfactory to all observers about
the path by which energy travels from one place to
another or about the speed at which this energy moves
from one place to another!

8-41 the photon rocket and
interstellar travel

The “perfect’”” rocket engine combines matter and
antimatter in a controlled way to yield photons (high-
energy gamma rays), all of which are directed out the
rear of the rocket. Suppose we start with a spaceship
of initial mass M,, initially ac rest. At burnout the
remaining spaceship moves with speed » and has a
mass equal to the fraction fof the original mass. Fora
given fraction f, we want to know the final rocket
speed v or, better yet, the time stretch factor y =
1/(1 — v»)2, (Note: Here, fis not frequency.)

a  What is the total energy of the system inidally?
Let E,,, stand for the total energy of radiation after
burnout. Find an expression for the total energy of the
system after burnout and set up the conservation of
energy equation.

b Similarly, set up the conservation of momen-
tum equation. What is the total momentum of the
system initially? The momentum of the radiation at
burnout? The momentum of the spaceship at burn-
out?

¢ Eliminate E_; between the two conservation
equations. Show that the result can be written

W+ pufe=1

d From the definition of ¥, show that yr =

(»* — 1)"/2 and hence that the equation of part ¢ can
be written in the form

f=2+1=0

e Whar is the value of the fraction f = (final
spaceship mass)/(initial spaceship mass) for a time
stretch factor Y = 10? In your opinion, is it possible to
construct a spaceship whose shell and payload is this
small a fraction of takeoff mass?

f Substitute the result of part e into the conser-
vation of energy equation in part a. Show that the
total energy of emitted radiation is less than the mass
of fuel consumed. Why?

g Does your analysis apply to takeoff from
Earth’s surface? From Earth orbit? From somewhere
else? What safety precautions apply to the backward
blast of gamma rays?

h You are the astronaut assigned to this space-
ship. Do you want to stop at your distant destination
star or fly past at high speed? Do you want to return to
Earth? Do you want to stop at Earth on your return or
merely wave in passing? Must all fuel for the entire
trip be on board at takeoff or can you refuel at your
destination star? From your answers to these ques-
tions, plan your trip and find the resulting fractions of
spaceship mass to initial mass for different stages of
your trip,

i Discussion question: From your results for
this exercise, what are your conclusions about the
technical possibilities of human flight to the stars?
References: Adapted from A. P. French, Special Relativity (W.W.
Norron, New York, 1968), pages 183 —184. See also J. R Pierce,
Proceedings of the IRE, Volume 47, pages 10531061 (1959)



9.1 GRAVITY IN BRIEF

the mutval grip of mass and spacetime

Gravity, as we see it today, does not count as a foreign force transmicred #hrough space
and time. Gravity manifests the curvature of spacetime.

Ten years after his special relativity, Einstein gave us his 1915 battle-tested and still
standard theory of gravitation. Its message comes in a single simple sentence: Space-
time grips mass, telling it how to move; and mass grips spacetime, telling it how to curve.

The grip of spacetime on mass enforces a central principle of special relativity:
conservation of energy and momentum in a smash (Figure 9-1). The coupling of mass
and spacetime geometry, far from being the weakest force in nature, is the strongest.

Now for the back-reaction, the grip mass exerts on spacetime! What curvature does
that grip impose on spacetime? And how does that curvature give an account of gravity
unrivaled for scope and accuracy? -

9.2 GALILEO, NEWTON, AND EINSTEIN

Only historical judgment liberates the spirit
from the pressure of the past; it maintains its
neutrality and seeks only to furnish light.

— Benedetro Croce

Galileo and Newton viewed motion as properly described with respect to a rigid
Euclidean reference frame that extends through all space and endures for all time. This
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Spacetime tell mass how to move

Mass to spacetime: *‘Curvel!”
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\\‘/ BEFORE

FIGURE 9-1. Spacetime grips mass, keeping an object moving straight when free. By its power, it enforces
conservation of energy and momentum in a smash.

supposed reference frame stands high above the battles of matter and energy. Within
this ideal space of Galileo and Newton there acts a mysterious force of gravity, an
interloper from the world of physics, a foreign influence not described by geometry.

In contrast, Einstein says that there exists no mysterious ‘‘force of gravity,” only the
structure of spacetime itself. Climb into an unpowered spaceship, he says, and see for
yourself that there is no gravity there. Physics is locally gravity-free (Chapter 2). Every
free particle moves in a straight line at uniform speed. In a free-float (inertial) frame,
physics looks simple. But such a frame rates as free-float in only a limited region of
spacetime (Section 2.3) — a fact emphasized here by repeated use of the word ““local”
in describing a free-float frame.

Complications arise in describing the relation between (1) the direction of motion of
a particle in one local frame and (2) the direction of motion of the same particle as
observed from a nearby local frame. Any difference between the two directions is
described in terms of the ““curvature of spacetime,”’ Einstein tells us. The existence of
this curvature destroys the possibility of describing motion with respect to a single
ideal Euclidean reference frame that pervades all space. What is simple is the geometry
in a region small enough to look flat.

How did the views of Galileo, Newton, and Einstein develop? And what is the
concrete substance of the strange phrase ‘‘curvature of spacetime’? -

Newton: One global frame.
Einstein: Many local frames.
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9.3 LOCAL MOVING ORDERS FOR MASS

moving orders from the local commander

spacetime!

Navigation satellites near Earth drift away from “perfect” orbits because thin air and
solar radiation pressure affect their motion. Figure 9-2 shows an experimental satellite
that carries a ““conscience’’ designed to assure that the same motion will be maintained

proof mass

- proof mass

sphere

proof
mass

FIGURE 9-2. “Conscience-guided’ satellite, A satellite in orbit around Earth is subject to small
accelerations due to solar radiation pressure and residual atmospberic drag. Uncorrected, these accelerations
are between 10~ % and 10, where g is the acceleration of gravity at Earth’s surface. The acceleration
was reduced to 5 X 10™"g for more than a year in orbit by use of a conscience or proof mass and the
Disturbance Compensation System (DISCOS) mounted on a TRIAD U.S. Navy satellite. The conscience, a
gold— platinum sphere 2,2 centimeters in diameter, floats freely inside a spherical bousing. Any nongravita-
tional force results in an incremental velocity change. The floating proof mass continues in its original state of
motion in an ideal friction-free environment. Observing the proof mass through capacitor sensing devices, the
satellite becomes aware that it is not keeping up with the motion demanded by the proof mass. An opposite
vernier rocket fires long enough to bring the spaceship back into concord with its proof mass— its conscience.
To reduce gravitational effects of the satellite itself on the proof mass, fuel for the vernier vockets is stored in
donut-shaped tanks placed symmetrically above and below the proof mass; power supply and radio transmit-
ter are each beld at the end of a boom 2.7 meters long on either side of the control unit. For an Earth-based
microgravity environment, recall Figure 2-3. (Used with permission of AIAA. Journal of Spacecraft.)
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ISAAC NEWTON
Woolsthorpe, December 25, 1642— Kensington (London), March 20, 1727

“The marble index of a mind forever
Voyaging through strange seas of thought, alone.” — Wordsworth

* * *
*“I do not know what I may appear to the world; but to myself I seem to have been only
like a boy, playing on the sea-shore, and diverting myself, in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.”—Newton

* * *
“Why do I call him a magician? Because he looked on the whole universe and all that
is in it as a riddle, as a secret which could be read by applying thought to certain
evidence, certain mystic clues which God had laid about the world to allow a sort of
philosopher’s treasure hunt to the esoteric brotherhood. He believed that these clues
were to be found partly in the evidence of the heavens and in the constitution of
elements (and that is what gives the false suggestion of his being an experimental
natural philosopher), but also partly in certain papers and traditions handed down by
the brethren in an unbroken chain back to the original cryptic revelation in Babylonia.
He regarded the universe as a cryptogram set by the Almighty—just as he himself
wrapt the discovery of the calculus in a cryptogram when he communicated with
Leibnitz. By pure thought, by concentration of mind, the riddle, he believed, would be
revealed to the initiate.” — Keynest

tReprinted by permission of the publisher, Horizon Press, from Essays in Biography by
John Maynard Keynes. Copyright 1951.
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when it encounters these disturbances as when it moves through perfect emptiness.
The “conscience”” — called a proof mass — is a separate sphere that floats inside the
larger ship. The proof mass undergoes no acceleration relative to the ship as long as the
ship moves freely. When relative motion does occur, the error in the tracking must be
due to the satellite. By small rockets the satellite gives itself a brief spurt of acceleration
and comes back into step with the inner proof mass—the satellite’s conscience.
Though resistance is present, the rocket thrust overcomes it. The satellite takes the
same course it would have taken had both resistance and thrust been absent.

As satellite and proof mass come to empty space, they fly through it in perfect step,
without use of rockets or sensing devices. What a rematkable harmony they present!
The inner proof mass does not see outer space. It does not touch, feel, or see the ship
that surrounds it on every side. Yet it faithfully tracks the ship’s route through
spacetime. Moreover, this tracking is as perfect when the proof mass is made of
aluminum as when it is made of gold. How do proof masses— of whatever atomic
constitution and whatever construction —know enough to follow a standard world-
line? Where does mass get its moving orders?

Locally, answers Einstein. From a distance, answers Newton.

Einstein says that the proof mass gets its information in the simplest way possible. It
responds to the structure of spacetime in its immediate vicinity. It moves on a straight
line in the local free-float frame. No simpler motion and no straighter motion can be
imagined.

Newton says that the inner proof mass gets its information about how to move from
a distance, via a “‘force of gravity.”” Motion relative to what? Motion relative to an
ideal, God-given, never-changing Euclidean reference frame that spans all of space
and endures for all time. He tells us that the proof mass would have moved along an
ideal straight line in this global frame had not Earth deflected it. How can this ideal
line be seen? How sad! There is nothing, absolutely nothing, that ever moves along this
ideal line. It is an entirely imaginary line. But it nevertheless has a simple status,
Newton tells us, in this respect: Every satellite and every proof mass, going at whatever
speed, is deflected away from this ideal line at the same acceleration (Figure 9-3).

Einstein says: Face it; there is no ideal background Euclidean reference frame that
extends over all space. And why say there is, when even according to Newton no
particle, not even a light ray, ever moves along a straight line in that ideal reference
frame. Why say spacetime is Euclidean on a large scale when no evidence directly
supports that hypothesis? To tty to set up an all-encompassing Euclidean reference
frame and attempt to refer motion to it is the wrong way to do physics. Don'’t try to
describe motion relative to faraway objects. Physics is simple only when analyzed
Jocally. And locally the worldline that a satellite follows is already as straight as any
worldline can be. Forget all this talk about ‘““deflection” and ““force of gravitation.”
I'm inside a spaceship. Or I'm floating outside and near it. Do I feel any ‘‘force of
gravitation?” Not at all. Does the spaceship “‘feel” such a force? No. Then why talk
about it? Recognize that the spaceship and I are traversing a region of spacetime free of
all force. Acknowledge that the motion through that region is already ideally straight.

How can one display the straightness of the motion? Set up a local lattice of meter
sticks and clocks, a local free-float (inertial) reference frame —also called a Lorentz
reference frame (Chapter 2). How does one know the frame is free-float? Watch every
particle, check every light ray, test that they all move in straight lines at uniform speed
relative to this frame. And having thus verified that the frame is free-float, note that
the proof mass too moves at a constant speed in a straight line—or remains at
rest— relative to this local free-float frame. What could be simpler than the moving
orders for mass: ‘‘Follow a straight line in the local free-float reference frame.” Does a
proof mass have to know the location of Earth and Moon and Sun before it knows how
to move? Not at all! Surrounded on all sides by the black walls of a satellite, it has only
to sense the local structure of spacetime — right where it is—in order to follow the
correct track. -=ee-
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**Conscience-guided’’ satellite.
What guides the conscience?

Physics is simple only when
analyzed locally
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FIGURE 9-3. In Newtonian mechanics different particles going at different speeds are all deflected away
from the ideal straight line with equal acceleration. In this respect there is no difference in principle between
the fall of a projectile and the motion of a satellite. In this picture of Newton's published in 1686, cannon of
successively greater power mounted on a mountaintop fire out their balls horizontally. The more powerful
cannon launches a satellite. The outer two curves show other possible satellite orbits. In brief, Newton has one
global reference frame, but within this reference frame no satellite is ever gravity-free, and no particle ever
moves in a straight line at constant speed. Einstein, in contrast, makes use of many local regions in each of
which the geomerry is Lorentzian (as in special relativity); the laws of gravitation arise from the lack of
ideality in the relation between one local region and the next (gravitation; spacetime curvature; general
relativity).

9.4 SPACETIME CURVATURE

not one but two particles witness to gravitation

Splendid! And also simple! But isn’t Einstein’s view of motion #o0 simple? We started
out interested in the motion of a spaceship around Earth and in “graviradion.” We
seem to have ended up talking only about the motion of the satellite—or the proof
mass — relative to a strictly local inertial reference frame, a trivially simple straight-
line motion. Where is there any evidence of *‘gravitation” to be seen in that? Nowhere.



9.5 PARABLE OF THE TWO TRAVELERS

This is the great lesson of Einstein: Spacetime is always and everywhere locally
Lorentzian. No evidence of gravitation whatsoever is to be seen by following the
motion of a single particle in a free-float frame.

One has to observe the relative acceleration of two particles slightly separated from
each other to have any proper measure of a gravitational effect. Separated by how
much? That depends on the tegion of spacetime and the sensitivity of the measuring
equipment. Two ball bearings with a herizontal separation of 20 meters, dropped
from a height of 315 meters above Earth’s surface with 0 initial relative velocity, hit
the ground 8 seconds later (24 X 10® meters of light-travel time later) with a
separation that has been reduced by 10~ meter (Section 2.3). Two ball bearings with a
vertical separation of 20 meters, dropped from a height of 315 meters with 0 initial
relative velocity, in the same 8 seconds increase their separation by 2 X 107 meter. To
measuring equipment unable to detect such small relative displacements the ball
bearings count as moving in one and the same free-float reference frame. No evidence
for gravitation is to be seen. More sensitive apparatus detects the tide-producing
action of gravity— the accelerated shortening of horizontal separations parallel to
Earth’s surface, the accelerated lengthening of vertical separations. Each tiny ball
bearing still moves in a straight line in its own local free-float reference frame. But
now— with the new precision— the region of validity of the one free-floac reference
frame does not reach out far enough to give a proper account of the motion of the other
steel ball. The millimeter or two discrepancy is the way “gravity’" manifests itself.

Tidal acceleration displays gravity as a local phenomenon. No mention here of the
distance of the steel balls from the center of Earth! No mention here of acceleration
relative to that center! The only accelerations that come into consideration are those of
nearby particles relative to each other, the tidal accelerations described in the preceding
paragraph.

These relative accelerations double when the separations are doubled. The true
measute of the tide-producing effect has therefore the character of an acceleration per
unit of separation. Let the acceleration be measured in meters of distance per meter of
light-travel time per meter of light-travel time; that is, in units meters/meter? or
1/meter [x = 1/2a#?, so @ = 2x/#*]. Then the measure of the tide-producing effect
(different for different directions) has the units (acceleration/distance) or (1/meter?).
In the example, in the two horizontal directions this quantity has the value [2(— 0.001
meter) /(24 X 108 merer)?]/20 meter = — 17.4 X 1072* meter 2 and in the vertical
direction twice the value and the opposite sign: +34.6 X 1072* meter 2, The
tide-producing effect is small but it is real and it is observable. Further, it is a locally
defined quantity. And Einstein tells us that we must focus our attention on locally
defined quantities if we want a simple description of nature.

Einstein says more: This tide-producing effect does not require for its explanation
some mysterious force of gravitation, propagated through spacetime and additional to
the structure of spacetime. Instead, it can and should be described in terms of the
geometry of spacetime itself as the curvarure of spacetime.

Though Einstein speaks of four-dimensional spacetime, his concepts of curvature
can be illustrated in terms of two-dimensional geometry on the surface of a sphere.

-_

9.5 PARABLE OF THE TWO TRAVELERS

space curvature on a sphere accounts for
relative acceleration of travelers

One traveler, A, stands at the equator, ready to travel straight north. A’s companion B,
standing against him shoulder to shoulder, wheels 90 degrees and marches straight
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Einstein's railway coach in free fall,
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Curvature of Earth demonstrated
by change in separation of two
originally parallel paths
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i _-19.990 kilometers

..‘: /

FIGURE 9-4. Travelers A and B,
starting out parallel and deviating nei-
ther to the left nor to the right, neverthe-
less find themselves approaching each
other after they have traveled some dis-
tance. Interpretation 1: Some mysterious
force of “'gravitation” is at work. Inter-
pretation 2: They are traveling on a
curved surface. Figure not drawn to
scale.

east. She paces off 20 kilometers along the equaror. There she again turns a sharp 90
degrees and faces straight north. Both travelers now start north and travel 200
kilometers (Figure 9-4). In the beginning their tracks are strictly parallel. Moreover,
no travelers could be more conscientious than they are in continuing precisely in their
original directions. Each of them deviates neither to the right nor to the left. Yet an
umpire sent out to measure their separation after their 200-kilometer treks finds it to
be less than the original 20 kilometers. Why? We know perfectly well: The surface of
the globe is curved. If they continue north, their paths will meet at the north pole.

Already at this early stage of their trip the travelers are approaching each other,
although they had started out not approaching at all. Initially their velocity relative to
one another was zero; now they move toward one another with a small relative
velocity. In this sense they are slowly accelerating toward each other.

The travelers accelerate toward each other as surely as two tiny ball bearings in a
free-fall horizontal railway coach accelerate toward each other (Figure 9-5). We
ascribe the relative acceleration of ball bearings in the railway coach to the “‘tidal”
effects of nonuniform gravitation near Earth. To be sure, the relevant picture for the
travelers is the two-dimensional curved space of the surface of Earth, whereas whart
counts for the ball bearings is curvature of spacetime. This parallelism between the
geometrical concept of curvature and the gravitational concepr of tde-producing
effect foreshadows Einstein’s geometrical interpretation of gravity.

The two travelers, who started out so conscientiously on parallel tracks and deviated
neither to the left nor to the right, have been told by the umpire of distances that
despite all precautions they are now slowly accelerating toward one another. They
blame this development on the existence of some mysterious ““gravitational force” that
deflects their paths. They explore the nature of this “‘gravitational force.” Repeating
the travel with bicycdes, motorcycles, light cars, and heavy trucks all moving north-
ward with the same speed, they find always the same relative acceleration toward one
another. They conclude that the *“gravitational force”” leads to the same acceleration of
all objects, no matter what they are made of or how massive they are.

Learned would-be pundits analyze the motion of travelers. They say, in words
utterly mysterious to us, “See here. You find the same acceleration for every vehicle
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TRAVELERS HEADED “NORTH" ON EARTH

FIGURE 9-5. Comparison of the paths of northward travelers on Earth’s surface with the
worldlines of ball bearings released side by side from rest near Earth’s surface. In both cases the
“path” of each “‘traveler'’ starts parallel with that of the second traveler (zero initial relative velocity). In
both cases this “path”’ gradually inclines toward the centerline (“‘relative acceleration”). In both cases the
paths can be accounted for in terms of the local curvature of geometry (curvature of Earth’s surface for the
travelers; curvature of spacetime geometry— gravitation! — for the ball bearings). In each diagram,
vertical distances are drawn— for vividness— to a different scale than horizontal distances. Both dia-
grams suffer from this additional imperfection: they attempt to show, on the flat Euclidean surface of this
Dpage, trajectories that can be correctly vepresented only in terms of a curved geometry.

you try. This means that the ratio of gravitational mass to inertial mass is the same for
all sorts of objects. You have made a great discovery about mass.”

All this time we and our space-traveler friends are looking down from on high. We
see the many treks. We watch the many measurements of distance. Through our
intercommunication system we hear and approve as our friends on the ground
interpret distance shortening as relative acceleration—and relative acceleration as
“gravitation.” But then they get into weighty discussions. They start speaking of
“‘gravitation”’ as action at a distance. We smile. What is at issue— we know —is not
action at a distance at all, but the geometry of curved space. All this talk about the
identity of “‘gravitational mass’’ and “‘inertial mass” completely obscures the truth.
Curvature and nothing more is all that is required to describe the increasing rate at
which A and B approach each other. s
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Curvature alone accounts for
relative acceleration
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CHAPTER 9 GRAVITY: CURVED SPACETIME IN ACTION

9.6 GRAVITATION AS CURVATURE OF
SPACETIME

Einstein smiles, too, as he hears gravitation described as action at a distance. Curvature
of spacetime and nothing more, he tells us, is all that is required to describe the
millimeter or two change in separation in 8 seconds of two ball bearings, originally 20
meters apart in space above Earth, and endowed at the start with zero relative velocity.
Moreover, this curvature completely accounts for gravitation.

“What a preposterous claim!”" is one’s first reaction. “How can such minor—and
slow — changes in the distance between one tiny ball and another offer any kind of
understanding of the enormous velocity with which a falling mass hits Earth?”” The
answer is simple: Many local reference frames, fitted together, make up the global
structure of spacetime. Each local Lorentz frame can be regarded as having one of the
ball bearings at its center. The ball bearings all simultaneously approach their neigh-
bors (curvature). Then the large-scale structure of spacetime bends and pulls nearer to
Earth (Figure 9-6). In this way many local manifestations of curvature add up to give
the appearance of long-range gravitation originating from Earth as a whole.

In brief, the geometry used to describe motion in any local free-float frame is the
flat-spacetime geometry of Lorentz (special relativity). Relative to such a local free-
float frame, every nearby electrically neutral test particle moves in a straight line with
constant velocity. Slightly more remote particles are detected as slowly changing theit
velocities, or the directions of their worldlines in spacetime. These changes are de-
scribed as tidal effects of gravitation. They are understood as originating in the local
curvature of spacetime.

From the point of view of the student of local physics, gravitation shows itself not at
all in the motion of one test particle but only in the change of separation of two or more
nearby test particles. ‘‘Rather than have one global frame with gravitational forces we
have many local frames without gravitational forces.” However, these local dimension
changes add up to an effect on the global spacetime structure that one interprets as
“gravitation” in its everyday manifestations.

In contrast, Newton supposed the existence of one ideal overall reference frame. For
him, “Absolute space, in its own nature, without relation to anything external,
remains always similar and immovable.” The ball bearing or spaceship is regarded by
Newton as actually accelerated with respect to this ideal frame. The “gravitational
force” that accelerates it acts mysteriously across space and is produced by distant
objects. That the man in the spaceship finds no evidence either of the acceleration or
the force is an accident of nature, according to the Newtonian view. Pundits used to
interpret this accident of nature as the fortuitous equality of *‘gravitational mass’’ and
“inertial mass”" or in other “learned’” ways.

In conversations with one of the authors of this book at various times over the years,
Einstein emphasized his great respect for Newton and, in particular, his admiration for
Newton’s courage and judgment. He stressed that Newton was even better aware than
his seventeenth-century critics of the difficulties with the ideas of absolute space and
time. To postulate those ideas was nevertheless the only practical way to get on with
the task of describing motion in Newton's century. In effect, Newton chopped the
problem of motion into two parts: (1) space and time and their meaning: ideas that
were puzzling but usable and that were destined to be clarified only 230 years later and
(2) the laws of acceleration with respect to that idealized spacetime: laws that Newton
gave the world.
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Distance AB, originally
20 meters, shortens
1 millimeter

FIGURE 9-6. Local curvature adding up to the appearance of long-range gravitation, The
shortening of distance between any one paiv, A and B, of ball bearings is small when the distance isself is
small. However, small separation between each ball bearing and its partner demands many pairs to
encompass Earth. The totalized shortening of the circumference in any given t1me— the shortening of one
separation times the number of separations — is independent of the fineness of the subdivision. That totalized
pulling in of the civcumference carvies the whole necklace of masses inward. This is free fall, this is gravity,
this is a large scale motion interpreted as a consequence of local curvature, Example:

Original separation between A and B— and every other pair: 20 meters
Time of observation: 8 seconds
Shortening of separation in that time: 1 millimeter
Fractional shortening: 1 millimeter]20 meters = 1/20,000
Circumference of Earth (length of airy necklace of ball bearings): 4.0030 X 107 meters
Shrinkage of this circumference in 8 seconds: 1/20,000 X 4.0030 X 107 meters = 2001.5 meters
Decrease in the distance from the center of Farth (drops by the same factor 1/20,000):
1/20,000 X 6.371 X 10° meters = 315 meters.

This apparently large-scale effect is caused—in Einstein's picture— by the addition of a multitude of
small-scale effects: the changes in the local dimensions associated with the curvature of geometry ( failure of B
to remain at vest as observed in the free-float frame associated with A).

What is the source of the curvarure of spacetime? Momenergy is the source. In
Chapter 8 we saw the primacy of momenergy in governing interactions between
particles. Crash of mass on mass, no matter how elastic or how destructive, leaves the
total momenergy of the system quite unaltered. By what miracle does this come about?
Education of momenergy from birth onward to good behavior? Goodness of heart?
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HOW SPACETIME CURVATURE CARRIES INFLUENCE FROM

The necklace of ball bearings (Figure 9-6) as they ap-
proach Earth, examined more closely, reveals a re-
markable feature of spacetime curvature outside a

What do these descriptive terms mean, and how do
we verify that they apply? We look at a cluster of ball
bearings dotted here and there over the surface of an
imaginary small sphere, all momentarily at rest relative
to each other and relative to Earth. That shape, how-
ever, as the seconds tick by, changes from sphere to
ellipsoid. How come? First let's look at the two dimen-
sions of the sphere that lie perpendicular to each other
but parallel to Earth's surface. Both these dimensions of
the sphere shrink as the ball bearings converge toward
Earth’s center. The up-down dimension of the pattern,
however, lengthens, and twice as much. Why? Newton
says because of the greater gravitational acceleration
of the one nearer Earth. Einstein says because two-per-
cent stretch in that dimension compensates one-percent
shrinkage in the other two dimensions and keeps the
volume of the pattern unchanged. Spacetime curvature,

ONE MASS TO ANOTHER

great, essentially uniform, essentially isolated sphere
of mass. The curvature in its character is totally *‘tide-
producing,”” totally “‘noncontractile.”

An arvay of test masses covering the surface of a bollow sphere
freely floating above the Earth's surface will shrink in two
dimensions and lengthen in one, The volume remains constant;
only the shape changes. This change is evidence of the noncon-
tractile, tide-driving spacetime curvature outside Earth.

yes; but a totally noncontractile curvature. Einstein's
famous equation, stated in simple terms, tells us how
spacetime curvature responds to mass:

appropriate measure of
spacetime contractile curvature
at any place, any time,
in any Lorentz frame
density of energy
at that locale
perceived in that
Lorentz frame

(0 universal
constant

Outside, no mass, no energy, a spacetime curvature
that is totally noncontractile. Inside Earth, however,
there is mass, therefore there is energy —or in a mov-

Obedience to the eyes of a corps of bookkeepers? No, Einstein raught us. The

Spacetime controls momenergy

enforcing agency does not lie far away. It’s close at hand. It’s the geometry of spacetime
right where the crash takes place. Not only does spacetime grip isolated mass, telling it

how to move. In addition, in a crash it sees to it that the participants neither gain nor
lose momenergy. But there is more! Spacetime, in so acting, cannot maintain the



9.6 GRAVITATION AS CURVATURE OF SPACETIME

ing frame, energy plus energy flow—and therefore
spacetime curvature there has a contractile character.
The ball bearings — when shafts are drilled for them so
that not one of them encounters any obstacle to free-
float motion— start to converge vertically as well as
horizontally. The volume shrinks. That, overlooking de-
tails, is what we mean when we say that ““mass grips
spacetime, telling it how to curve."

There is no Earth mass out at Moon's orbit. How then
does Einstein's spacetime geometry account for
Moon’s motion? Answer: Earth’'s mass imposes on
spacetime a contractile curvature throughout Earth's in-
terior, as a jumper's feetimpose a contractile curvature
on a trampoline. That contractile curvature, where the
feet push, forces on the surrounding nontear fabric a
corresponding lateral stretch. That effect transmits itself
in ever more dilute measure to the ever more remote
regions of the trampoline.

The deformation of the nontear trampoline fabric under the jumper’s feet and
elsewhere is analogous to the nontear curvature of spacetime geometry inside

Earth and elsewbere.
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Likewise spacetime does not tear. Its fabric just above
Earth’s surface experiences the same lateral contractil-
ity as it does just below the surface. Not so with the
curvature in the two-dimensional domain defined by
time and by direction perpendicular to Earth’s surface.
In that one plane, curvature within Earth is contractile
but suddenly jumps just above Earth's surface to the
opposite character. Hence the tide-producing charac-
ter of spacetime curvature outside Earth. A point twice
as far from Earth’s center lies on an imaginary Earth-
centered sphere that encompasses eight times the vol-
ume. There the tide-producing curvature experiences
eight times the dilution and has one eighth the strength.
Despite this rapid dilution of tide-producing power with
distance, it has strength enough at Moon, 60 Earth radii
away from Earth’s center, to deform Moon from sphere
to ellipsoid, 1738.35 kilometers in radius along the
Earth—Moon direction, 1738.15 kilometers in radius
for each of the other two perpendicular directions.

Easy as it is to regard Earth as running the whole show,
Moon too has its part. Like an infant standing on the
trampoline some distance from its mother, itimposes its
own small curvature on top of the curvature evoked by
Earth. That additional curvature, contractile in Moon's
interior, has tide-driving character outside. Were the
Earth an ideal sphere covered by an ideal ocean of
uniform depth, then Moon would draw that ocean’s
surface 35.6 centimeters higher than the average in two
domains, one directly facing Moon, one directly oppo-
site to it— simultaneously lowering those waters 17.8
centimeters below the average on the circle of points
midway between the two. (These low figures show how
important are funneling and resonant sloshing in deter-
mining heights of actual ocean tides on Earth.)

The local contractile curvature of spacetime at Moon's
location added up along Moon'’s path yields the ap-
pearance of long-range gravitation, similar to that il-
lustrated in Figure 9-6. Box 2-1 tells a little of the many
influences that have to be taken into account in any
fuller treatment of the tides.

petfection assumed in textbooks of old. To every action there is a corresponding

reaction. Spacetime acts on momenergy, telling it how to move; momenergy reacts back on
spacetime, telling it how to curve. This “*handshake’” between momenergy and space-

Momenergy tells spacetime
how to curve

time is the origin of momenergy conservation — and the source of spacetime curvarure

thar leads to gravitation (Box 9-1). -
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9.7 GRAVITY WAVES

In the depths of an ill-fated, collapsing star, billions upon billions of tons of mass cave

Cravity waves from ., 504 crash together. The crashing mass generates a wave in the geometry of

collopsing metier space—a wave that rolls across a hundred thousand light-years of space to “jiggle”
the distance berween two mirrors in our Earthbound gravity-wave laboratory.

A cork floating all alone on the Pacific Ocean may not reveal the passage of a wave.

But when a second cork is floating near it, then the passing of the wave is revealed by

the fluctuating separation between the two corks. So too for the separation of the two

mirrors. There is, however, this great difference. The cork-to-cork distance reveals a

momentary change in the two-dimensional geometry of the surface of the ocean. The

Ny

COMPACT STELLAR OBJECTS

Three kinds of astronomical objects exist comparable in mass to Sun but very
much smaller. Two of these have been observed; the third seems an inevita-
ble result of Einstein's theory.

A white dwarf star is a star of about one solar mass, with radius about 5000
kilometers. (The radius of Earth is 6371 kilometers.) This gives the white dwarf
a density of approximately 10° kilograms/meter? (or one metric ton per cubic
centimeter). As of 1990, approximately 1500 white dwarfs had been identi-
fied.

White dwarfs were observed and studied astronomically long before they
were understood theoretically. Today we have come to recognize that a
white dwarf is a star that quietly used up its fuel and settled gently into this
compact state. The electrons and nuclei that make up the body of a white
dwarf are not separated into atoms. Instead, the electrons form a gas in
which the nuclei swim. The pressure of this “‘cold" electron gas keeps the
white dwarf from collapsing further.

S. Chandrasekhar calculated in 1930 that no white dwarf can be more mas-
sive than approximately 1.4 solar masses (*'Chandrasekhar limit"") without
collapsing under its own gravitational attraction. His analysis assumed the
mix of electrons and nuclei to be unaltered under compression by a load so
heavy, an assumption that had to be modified in later years. Today we
recognize that enormous compressions squeeze electrons into combining
with protons to make neutrons. At compressions near the Chandrasekhar
limit, the electron gas transforms into a neutron gas, the interior of the star
becomes a giant nucleus, and the whole nature of the compact object
changes to that of a neutron star.

A neutron star has roughly the same density as an atomic nucleus, of the

order of 10'7 kilograms/meter®, or one Earth mass per cube of edge length
400 meters. The radius of a neutron star is approximately 10 kilometers.
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mirror-to-mirror distance reveals a momentary change in the three-dimensional ge-
ometry of space itself.

The idea of extracting energy from ocean waves is old. After all, the ability of a
water wave to change a distance lets itself be translated into the ability to do work. The
same reasoning applies to a gravity wave. Because it can change distance, it can do
work. It carries energy. Energy once resident as mass in the interior of a star has
radiated out to us and to all the universe.

Of all the workings of the grip of gravity, none is more fascinating or opens up for
exploration a wider realm of ideas than a gravity wave. None pushes to a higher pitch
the art of detecting a small effect, and none gives more promise of providing an
unsurpassable window on cataclysmic events deep inside troubled stars. Nevertheless,
no other great prediction of Einstein’s geometric theory of gravity stands today so far
from triumphant exploitation. As of this writing, not one of the nine ingenious

How to detect gravity waves

How often is a neutron star formed? Towards answering this still open ques-
tion we have one important lead: In our own galaxy we see one supernova
explosion on average about every 300 years [most recent supernova in the
Large Magellanic Cloud, a satellite of our galaxy, on February 23, 1987; one
seen by Kepler, October 13, 1604; one seen by Tycho Brahe, November 6,
1572; earlier ones: 1181 A.p.; July 4, 1054 A.p.; 1006 A.D. (the brightest); 185
A.D.; and two possibles in 386 A.p. and 393 A.p.]. In such an event a star
teetering on the edge of instability finally collapses. The Niagara Falls of
infalling mass in some cases go too far and overcompress the inner region of
the star. That region thereupon acts like a spring, or explosive charge, and
drives off the outer portions of the star. This explains the spectacular lumi-
nosity that is such a prominent feature of a supernova. The core that remains
becomes a neutron star in some events, it is believed, in others a black hole.

Neutron stars were predicted in 1934 but not observed until 1968. Many
neutron stars spin rapidly — with a period as short as a few milliseconds. A
neutron star typically has an immense magnetic field. When that field is
aligned at an angle relative to the axis of spin of the star (as in Earth, for
example), it sweeps around like a giant whisk brush through the plasmain the
space around the star. The periodic shock to the electrons of the plasma from
the periodic arrival of this field excites those electrons to radiate periodic
pulses of radio waves and visible light — both observed on Earth. Because of
this behavior, such neutron stars are called pulsars. As of 1990, nearly 500
pulsars were identified.

A black hole is an object created when a star collapses to a size so small that
strong spacetime curvature prevents it from communicating outward with the
external universe. Even light cannot escape from a black hole, whence its
name. No one who accepts general relativity has found any way to escape
the prediction that black holes must exist in our galaxy. Strong evidence for
the existence of black holes has been found, but it is not yet convincing to all
astrophysicists. A black hole can have a mass as small as a few times the mass
of our Sun. A black hole of three solar masses would have a ‘‘radius’ of
about 9 kilometers. There is no theoretical upper limit to its mass.
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detectors built to this day has proved sensitive enough to secure any generally agreed
detection of an arriving gravity wave.

Does any truly simple line of reasoning assure us that gravity will inescapably carry
energy away from two masses that undergo rapid change in relative position? Yes is the
conclusion of a little story that savors of mythology. The Atlas of our day, zooming
through space in free float, insists as much as ever on maintaining physical fitness. He
pumps iron, not by raising iron against the pull of Earth’s gravity, but by throwing
apart two identical great iron spheres, Alpha and Beta. He floats between those minor
moons and plays catch with them. Each time they fall together under the influence of
their mutual gravity, he catches them, absorbs their energy of infall in his springlike
muscles, and flings them apart so that they always travel the same distance before
returning. It’s an enchanting game, but Atlas finds that it’s a losing game. When the
masses fly back together, they never yield up to him as much energy as he must supply
to throw them apart again. Why not?

Say the central point in two words: time delay. Like any force that makes itself felt
through the emptiness of space, the force of gravity cannot propagate faster than the
speed of light. This limitation imposes a delay on the attraction between the two iron
spheres. Alpha, on each little stretch of its outbound path, feels a pull that originated
from Beta when the two were a tiny bit c/oser than they are now. The actual force that’s
slowing Alpha is therefore a tiny bit bigger than we would judge from thinking of
them as stationary at their momentary separation. On its return trip inbound along the
same little stretch of path, Alpha experiences a helping pull that originated from Beta
when the two had a separation slightly greazer than its present value. The actual force
that’s speeding Alpha inward is therefore a tiny bit less than we would judge from
thinking of them as stationary at their momentary separation. In each stretch of their
outbound trip, the two masses have to do more work against the pull of gravity than
they get back — in the form of work done on them by gravity — on the same stretch of
path inbound. A calculable amount of energy disappears from the local scene on each
out-in cycle of Atlas’s exercise. Yet the total energy must somehow be conserved.
Therefore the very gravity that steals energy from Atlas and his iron, or from any two

2
O ()
N
N
— _2_
o
£
w
K —4
=3
-]
)
-
3 -6
&
)
B
s °r
]
»n
—12 [ 1 11 ! | l | | | | |
1975 1980 1985 1990
Year

FIGURE 9-7. Two whirling neutron stars furnish a giant clock, whose time-keeping hand is the line,
ever-turning, that separates the centers of those two stars. That hand does not today keep the “‘slow”’ schedule
(straight horizontal line) one might have expected from its timing as measured in 1974. The downward
sloping curve shows gravity-wave theory's prediction of the shortening in the time required to accumulate any
specified number of revolutions. The dots show the actual observed shortening in that time.
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masses that rapidly change their relative position, must somehow all the time be
transporting the stolen energy to the far-away. That inescapable theft of energy is in its
quality, its directional distribution, and its magnitude none other than what Einstein
had treated long before under the head of gravity radiation and what we now call
gravity waves.

Atlas couldn’t “‘see”” those gravity waves. Neither have we today yet succeeded in
detecting directly the gravity waves we feel sure must be radiating from sources dotted
here and there in the galaxy and in the universe. However, we have an exciting indirect
confirmation that gravity waves exist— not through their action on any receptor, but
through the energy they carry away from a whirling pair of neutron stars. That
particular “‘binary pulsar’ first revealed itself to Joseph H. Taylor, Jr., and Russell A.
Hulse by periodic pulses of radio waves picked up on the huge disklike antenna at
Arecibo in Puerto Rico. As one of these neutron stars spins on its axis, its magnetic field
spins with it, giving timing comparable in accuracy to the best atomic clock ever built
(Box 9-2). Thanks to this happy citcumstance, Taylor and his colleagues have been
able to follow the ever-shortening separation of the two stars and the ever-higher speed
they attain as they slowly spiral in toward an ultimate catastrophe some 400 million
years from now. The timing of the orbits gives us a measure of energy lost as the stars
spiral in. No reasonable way has ever been found to account for the thus observed loss
of energy except gravitational radiation. As of September 1989, 14 years after first
observation, this loss of energy agtees with the rate predicted by theory to better than
one percent (Figure 9-7).

Gravity waves and pulses of gravity radiation are sweeping over us all the time from
sources of many kinds out in space. Detecting them, however, we are no better than
the primitive jungle dweller unable to detect and even totally unaware of the radio
waves that carry past her every minute of the day music, words, and messages.
However, experimentalists are working out ingenious technology and building detec-
tor instrumentation of ever-growing sensitivity (Figures 9-8 and 9-9). Few among
them have any doubt of their ability to detect pulses of gravity radiation from one or
another star catastrophe by sometime in the first decade of the twenty-first century.
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FIGURE 9-8. The proposed MIT— Caltech gravity-wave detector will (1) use the beam from a laser (left),
(2) split it by a device (center) analogous to a half-silvered mirror, (3) send one half-sirength beam to one
[faraway mirvor (top) and the other to the other faraway mirror (right), (5) allow these beams to undergo
many many veflections (not shown), and (6) recombine them at the detector (bottom). A gravity-wave
incident on Earth will slightly shorten the 4-kilometer distance to the one mirvor and slightly lengthen the
4-kilometer distance to the other mirvor. This relative alteration in the path length of the laser beams, if big
enough, amplified enough, and picked up by detectors sensitive enough, will reveal the passage of the gravity
wave.
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FIGURE 9-9. Prototype gravity-wave de-
tector, California Institute of Technology,
Pasadena. The laser beam is tailored (lower
right) for entry into the beam splitter (located
where the two long light pipes meet, just to the
left of center in the photograph). The mirrors at
the ends of these two evacuated light pipes lie
outside the boundary of the photograph.

“‘Escape velocity ¢’ implies
black hole

Black hole still exerts
“pull” of gravity

CHAPTER 9 GRAVITY: CURVED SPACETIME IN ACTION

Astronomy uses signals of many kinds— light, radio waves, and X-rays among
them —to reveal the secrets of the stars. Of all signals from a star, none comes out
from deeper in the interior than a gravity wave. Among all violent events to be probed
deeply by a gravity wave, none is more fascinating than the dance of death of two
compact stars as they whirl around each other and undergo total collapseinto . . . a
black hole! <

9.8 BLACK HOLE

over the edge with a scream of radiation

A black hole is a domain whose mass is so tightly compacted that nothing can escape
from it, not even light. Everything that falls in is caught without hope of escape
(Figure 9-10).

To fire a missile from Moon's surface so that it escapes that satellite’s attraction
demands a speed of 2.38 kilometers per second or greater. The critical speed for escape
from Earth—in the absence of drag from the atmosphere—is 11.2 kilometers per
second. When the object does not rotate and is so compact that even light cannot
escape, the “effective radius” or so-called “"horizon radius’ is

circumference of region
out of which
light cannot escape

2n

(effective radius) =

mass of black hole
= 2 X (1.47 kilometers) X expressed in

number of Sun masses

When a star or cloud of matter collapses to a black hole it disappears from view as
totally as the Cheshire cat did in Alice in Wonderland. The cat, however, left its grin
behind; and the black hole—via the effect of spacetime curvature thar we call
gravity —exerts as much “pull” as ever on normal stars in orbit around it. They are
like participants in a formal dance with lights turned low. Only the white dress of the
girl is visible as she whirls around in the arms of her black-suited companion. From the



98  BLACGKHOLE 293

g »

! | ; ky
J particles as yet . )
charge y undetected known e

particles  gravitational and

momenfum 3
\ / electromagnetic
mass , waves

angular

mass
charge
angular momentum

FIGURE 9-10. Whatever objects fall into a black hole, they possess at the end— as seen from outside— only
mass, angular momentum, and electvic charge. Not one other characteristic of any in-falling object remains to
betray its past— not a hair. This leads to the saying, A black bole has no bair.”

speed of the girl and the size of the circle in which she swirls, we know something of the
mass of the invisible companion. By such reasoning it was possible to conclude by
1972 that that the optically invisible companion of one long-known star has a mass of
the order of 9.5 solar masses.

This remarkable object came first to attention because in December 1971 the
Uhuru orbiting X-ray observatory detected X-ray pulsations with time scales from one
tenth to tens of seconds from an object located in the Cygnus region close to the known
star. Why does it give off X-rays? And why does the intensity of the X-rays vary
rapidly from instant to instant? The gas wind from the visible companion varies from
instant to instant like the smoke from a factory chimney. This gas, falling on a compact
object, gets squeezed. To picture the how and why of this squeeze, look from a
low-flying plane at the streams of automobiles converging from many directions on a
football stadium for a Saturday afternoon game. The particles and the gas are pushed
together as surely as the cars in the traffic. The compression of the traffic raises the
temper of the driver, and the compression of the gas raises its temperature as air is
heated when pumped in a bicycle pump. However, because the gas falls froman object
of millions of kilometers in size to one a few kilometers across, the compression is so
stupendous that the temperature rises far above any normal star temperature, and
X-rays come off.

The time scale of the fluctuations in X-ray intensity depends on the size of the object -

that is picking up the star smoke, a size less by a fantastic factor than that of any normal
star. Could the object be a white dwarf (Box 9-2)? No, because such a star would be

Cygnus X-1: A black hole?
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C TARTIE OIS
_ TABLE 9-1_>

BLACK HOLES FOR WHICH THERE WAS
SUBSTANTIAL EVIDENCE AS OF SEPTEMBER 1989

(Uncertainties in masses are of the order of 20 to 50 percent.)

Astronomical designation Mass
of black hole (in solar masses)

Cygnus X-1 9.5
LMC X-1 2.6
AO 620-00 3.2
LMC X-3 7.0
SS 433 4.3
Black hole at center of our galaxy 3.5 X 108

visible. A neutron star? No, because even matter compressed so tightly that it is
transformed to neutrons cannot support itself against gravity if it has a mass much over
two solar masses. No escape has been found from concluding that Cygnus X-1 is a
black hole. This great discovery transformed black holes from pencil-and-paper
objects into a lively and ever-growing part of modern astrophysics (Table 9-1).
Much attention went in the 1980s to a presumptive black hole with a mass of about
Black hole at center of three and a half million times the solar mass and a horizon radius of about ten million
our galaxy? kilometers. It floats at the center of our galaxy, the Milky Way. Around it buzz visible
stars of the everyday kind, most of them fated to fall eventually into that black hole
and increase its mass and size. That stars close to the center of our galaxy go around as
fast as they do is one of the best indicators we have for the presence, and one of the best
measures we have for the mass, of the central black hole, which is itself invisible.
In contrast to dead solitary black holes, the most powerful source of energy we know
or conceive or see in all the universe is a black hole of many millions of solar masses,
gulping down enormous amounts of matter switling around it. Maatten Schmide,
working at the Mount Palomar Observatory in 1956, was the first to uncover evidence
for these quasistellar objects, or quasars, starlike sources of light located not billions of
Quasar energy output from matter kilometers but billions of /ight-years away. Despite being far smaller than any galaxy,
swirling into black hole? the typical quasar manages to put out more than a hundred times as much energy as
our own Milky Way, with its hundred billion stars. Quasars, unsurpassed in brilliance
and remoteness, we call lighthouses of the heavens.

Observation and theory have come together to explain in broad outline how a
quasar operates. A black hole of some hundreds of millions of solar masses, itself built
by accretion, accretes more mass from its surroundings. The incoming gas, and
stars-converted-to-gas, does not fall in directly, any more than the water rushes
directly down the bathtub drain when the plug is pulled. Which way the gas switls is a
matter of chance or past history or both, but it does switl. This gas, as it goes round and
round, slowly makes its way inward to regions of ever-stronger gravity. Thus com-
pressed, and by this compression heated, the gas breaks up into electrons— that is
negative ions—and positive ions, linked by magnetic fields of force into a gigantic
accretion disk. Matter little by little makes its way to the inner boundary of this
accretion disk and then, in a great swoop, falls into the black hole, on its way crossing
the horizon, the sutface of no return. During that last swoop, hold on the particle is
relinquished. Therefore, the chance is lost to extract as enetgy the full 100 percent of
the mass of each infalling bit of matter. However, magnetic fields do hold onto the
ions effectively enough for long enough to extract, as enetgy, several percent of the

High-efficiency conversion of
gravitational energy to radiation
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Hal Mcdlntosh. Courtesy of The Saturday Review.

ALBERT EINSTEIN
Ulm, Germany, March 14, 1879— Princeton, New Jersey, April 18, 1955

“Newton himself was better aware of the weaknesses inherent in his intellectual
edifice than the generations which followed him. This fact has always roused my
admiration."

B . *
“Only the genius of Riemann, solitary and uncomprehended, had already won its
way by the middle of the last century to a new conception of space, in which space
was deprived of its rigidity, and in which its power to take part in physical events
was recognized as possible.”

* * *
“All of these endeavors are based on the belief that existence should have a
completely harmonious structure. Today we have less ground than ever before for
allowing ourselves to be forced away from this wonderful belief.”

mass. In contrast, neither nuclear fission nor nuclear fusion is able to obtain a
conversion efficiency of more than a fraction of a percent. Of all methods to convert
bulk matter into energy, no one has ever seen evidence for a more effective process than
accretion into a black hole, and no one has even been able to come up with a more
feasible scheme for one.

Of all the features of black hole physics in action, none is more spectacular than a
quasar. And no lighthouse of the skies gives more dramatic evidence of the scale of the

universe, we—
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Expanding universe: Evidence for
big bang beginning

“*Open'’ universe expanding
forever?

Or “closed"’ universe that
recontracts to crunch?

An open questionl

CHAPTER 9 GRAVITY: CURVED SPACETIME IN ACTION

9.9 THE COSMOS

The more distant quasars and galaxies are, the greater the speed with which they are
observed to be receding from us. This expansion argues that somewhere between ten
and twenty billion years ago the universe began with a big bang, a time before which
there was no time.

We see around us relics of the big bang, nor only today’s rapidly receding galaxies
but also today's abundance of the chemical elements—some among them still
radioactive, the “still warm ashes of creation” (V. F. Weisskopf)—and today’s
greatly cooled but still all-pervasive *‘primordial cosmic fireball radiation.” We now
believe that in the first instants of its life, the entire universe filled an infinitesimally
small space of enormous density and temperature where matter and energy fused in a
homogeneous soup. Immediately the universe began expanding. After about 1076
seconds it had cooled enough that subatomic particles condensed from the matter—
energy soup. In the firse three minutes after the big bang, neutrons and protons
combined to make heavier elements. Eons later stars and galaxies formed. Never since
has the universe paused in its continual spread outward.

Will the universe continue expanding forever? Or will its expansion slow, halt, and
turn to contraction and crunch (Table 9-2), a crunch similar in character but on a far
larger scale than what happens in the formation of a black hole? Great question! No
one who cares deeply about this question can fail to celebrarte each week thar week’s
astrophysical advances: instruments, observations, conclusions.

We have come to the end of our journey. We have seen gravity turned to float, space
and time meld into spacetime, and spacetime transformed from stage to actor. We
have examined how spacetime grips mass, telling it how to move, and how mass grips
spacetime, telling it how to curve. Of all the indications that existence at bottom has a
simplicity beyond anything we imagine today, there is none more inspiring than the
unsurpassed simplicity of gravity as we now see it. -
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CTARIE O S
_TABLE 9-2 >

THE COSMOS

A CLOSED-MODEL UNIVERSE
COMPATIBLE WITH OBSERVATION

Radius at phase of maximum
expansion

Time from start to maximum size

Radius today
Time from start to today’s size

Time it would have taken from start
to today’s size if the entire expansion
had occutred at today’s slowed rate of
expansion

Present expansion rate

Fraction of the way atound the 3-
sphere universe from which we can in
principle receive light today

Fraction of the matter in the 3-sphere
universe that has been able to
communicate with us so far

Number of new galaxies that come
into view on average every three days

Average mass density today

Average mass density at phase of
maximum expansion

Rate of increase of volume today

Amount of mass

Equivalent number of suns like ours
Equivalent number of galaxies like ours

Equivalent number of batyons
(neutrons and protons)

Total time, big bang to big crunch

18.9 X 10° light-yeats or
1.79 X 10?6 meters

29.8 X 109 years ot
2.82 X 10%¢ meters

13.2 X 10° light-years
10.0 X 109 years

20.0 X 10° years

An extra increment of recession
velocity of 15.0 kilometers/second for
every extra million light-years of
remoteness of the galactic cluster

113.2 degrees

= 62.9%
180 degrees 0%

74.4%

One!

14.8 X 1077 kilogram/meter?
5.0 X 1077 kilogram/meter?

1.82 X 1092 meters?/second

M, = 5.68 X 1073 kilograms
In geometric units:
M= GM,,,/c?=4.21 X 10%¢ meters

2.86 X 10%
1.6 X 1012
3.39 X 1080

59.52 X 107 yeats
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Figure 9-2: Figure and data from Journal of Spacecraft, Volume 11 (September
1974), pages 637 — 644, published by the American Institute of Aeronautics and
Astronautics. Data also from D. B. De Bra, APL Technical Digest, Volume 12:
pages 14-26.

Figure 9-3 from Philosophiae Naturalis Principia Mathematica (Joseph Streater,
London, July 5, 1686); Motte translation into English revised and edited by
Florian Cajoti and published in two paperback volumes (University of California
Press, Berkeley, 1962). This is also the soutce of the quote in Section 9.6:
“‘Absolute space, in its own nature, without relation to anything external, remains
always similar and immobile.”

Three quotations under the Einstein picture come from Albett Einstein, Essays in
Science (Philosophical Library, New York, 1934).

Quotation in Section 9.6: ‘‘Rather than have one global frame with gravitational
forces we have many local frames without gravitational forces.”” Steven Schutz, in
January 1966 final examination in course in relativity, Princeton University.

For an exciting and readable overview of the experimental proofs of Einstein’s
general relativity theory, see Clifford M. Will, Was Einstein Right? Putting
General Relativity to the Test (Basic Books, New York, 1986). In particular
(Chapter 10, pages 181-2006), he describes at some length the emission of
gravity waves by the binary pulsar system studied by Joseph H. Taylor, Jt., and
Russell A. Hulse.



ANSWERS TO ODD-NUMBERED EXERCISES AND PROBLEMS
chapter 1

1-1a 10.2 meters b 270 meters ¢ 103> meters d 10* kilometers = 2 times
Boston—San Francisco distance 1-32 2.6 X 10 meters b 5.3 X 107¢ sec-
ond ¢ 1.85X 107 hours d 52 weeks e 5.4 X 10° furlongs 1-5a 4 years
b 4/5 the speed of light = 2.4 X 10® meters/second 1-7a 4 meters b V7
meters = 2.65 meters ¢ V15 meters = 3.87 meters d 2 meters e 4 meters (same
as part a) 1-92 2 X 10° years b v =0.995 ¢ 6.33 X 10* years, v =
09995 dv=1—5 X 10711 = 0.99999999995 1-11a 2 X 10~ second
b 133 half-lives; (1/2)133 = 1074° ¢ 3 half-lives d zero space separation (creation
and decay occur at the same place in rocket frame) e 3 half-lives = 4.5 X 1076
second

2-1a hit the ceiling b same answer ¢ Rider cannot tell when elevator reaches
top. 2-3 Set clock to 10 meters of time, start when reference flash arrives.
2-5a Experiment in progress for 1/0.96 = 1.04 meters of time. In this time, test
particle falls 6 X 10717 meters, about 1072 diameter of a nucleus. b 3 X 1074
second, 10° meters 2-7 3.6 millimeters; 19.7 seconds. Spacetime region: 20
meters X 20 meters X 20 meters of space X 59 X 108 meters of time 2-9a de-
crease (think of each ball bearing in an elliptical orbit around the center of Earth)
b apart ¢ No, you cannot distinguish rising from falling. At the top you notice
nothing inside the coach. ~ 2-11 v, = 0.735 thespeed of light.  2-13a Effec-
tive time of fall: 4.67 seconds. Net velocity of fall: 1284 meters/second. b Angle of
deflection: 4.3 X 1076 radian = 2.5 X 10™* degree = 0.88 second of arc

chapter 3

3-1a 60 seconds b 45 seconds against the current, 22.5 seconds with the current,
67.5 seconds round trip ¢ No 3-3 If different kinds of clocks ran at different rates
in a free-float rocket frame, then this difference could be used to detect the relative
velocity of the laboratory from inside the rocket, which violates the Principle of
Relativity. This does not mean that the common rate of rocket clocks will be the same
as measured in rocket and laboratory frames. 3-5a 11.5 light-years b 9.43
years ¢ v = 0.6 d 8 years = the interval between the two events. 3-7 The
bullet misses. Coincidence of A and A’ (event 1) and firing of the bullet at the other
end of spaceship O (event 2) cannot be simultaneous in both rocket reference frames.
The right panel of the figure is wrong. Consistent with the Train Paradox (Section
3.4), spaceship O’ (standing in for the train frame) will observe the bullet to be fired
before coincidence of A and A’, thus accounting for the fact that bullet misses.
3-9a sin Y = g, (in meters/metet) b sin = y = 107* radian = 21 seconds
ofarc ¢ sin i and tan |/ are both approximately equal to ¥ for small . Therefore the
difference between the two predictions cannot be used to distinguish between relativ-
istic and nonrelativistic predictions. d in a direction 0.524 radians = 30 degrees
ahead of transverse  3-11g(1) v, = 1077, v{ e = 2 X 107¢. Their product is
2 X 10713, very small compared with 1; therefore we expect ¥y, to be the sum of
Veuee and 9, the form verified in everyday experience at low speeds.
(2) Vpuuee = 24/25 = 0.96 3) Voutee = Vigne = T 1 (4) Vpgpier = Viigne = — 1.
Yes, expected from the Principle of Relativity. 3-13a 0.32 meters = 1.1 nanosec-
ond b 6.0 X 10° periods ¢ No shift would imply the speed of light is the same for
the frame of Earth going one way around Sun as compared with frame of Earth going
the opposite direction around Sun. d dc=—(2/2?)(Al/T)dn and dc/c =—2
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dn/n For dn =3 X 1073 and » = 6.0 X 10°, we have the maximum value of
de/c =1 X 1078 (sign not important). Hence dc = 3 meters/second is the maxi-
mum change in the speed of light that could have escaped detection in this very
sensitive experiment. 3-15a visual distance apart = vAr; time lapse between
images = (1 — »)A¢; visual speed of approach = Vapproach — ¥/ (1 = ); Vaprroncn =
4 when v = 4/5; Vpppoan = 99 when v =0.99 b visual distance apart = vAt,
time lapse between images = (1 + »)A#; visual speed of recession = vy = v/
(1 + 9); for Vyppronn = 4 When v = 4/5, then veceqe = 4/9 = 0.44; for Vo =
99 when v = 0.99, then v, 4. = 0.497 3-17a Light leaves E one meter of time
eatlier than light from Gin order to enter the eye at the same time. In this time the cube
moves » meter of distance, equal to x in the top right figure. b The angle ¢ is given
by the expression sin ¢» = ». For v — 0, this visual angle of rotation gOes to zero, as
we experience in everyday life. For v — 1, this visual angle of rotation goes to 90
degrees, and the cube shows us its back side as it passes overhead. ¢ The word
“really” is not appropriate; each mode of observation is valid; some will be more
useful than others for different applications. (Requested speech to each observer not
included here.) d The “cube” will look sheared, with top EF pulled backward a
distance x with tespect to bottom GH in the left panel.

L-1a 4 = 3/17 = 0.176 for speed of Super 6 times speed of light b v,y =1/
3 = 0.333 for infinite speed of Super ~ L-3b 128 days e(1) 0.1 meter of time; too
small for either wristwatch or electronic clock  (2) about 10* meters of time; too small
for wristwatch but easily detected by electronic clock (3) distance is 10'2 meters, or
about 6.7 times the Earth-Sun distance. ~ L-5d v, = 0.944  L-11 The man-
hole is tilted, so it passes over the meter stick without collision. L-13a At the
beginning and the end of their trip (and all during their trip), Dick and Jane are
separated by 12 light-years as measured in the Earth frame. Final velocity: v = 3 /4.
Aging of each astronaut = proper time along either worldline = sum of the space-
time intervals along each segment of either worldline = V15 + V12 + V7 years =
10 years. b Yes. Yes. c(1) Jane stops accelerating 13.6 years earlier than Dick.
(2) 30 years (3) 30 years (4) 43.6 years (5) Dick: 50 years old. Jane: 63.6 years
old. (6) 18.1 lightyears, which is just y = 1.51 times their 12-light-year separation
measured in the Earth frame by Mom and Dad. (d)(1) Yes (2) Yes Yes
(3) Jane’s (4) Yes. No. (5) It’s the old story: relativity of simultaneity, in this case
the fact that Dick and Jane stop accelerating simultaneously only in the Earth frame.
e Then, by symmetry, Dick will be older than Jane in their final rest frame. All the
numbers will otherwise be the same. f Then they will start and stop simultaneously
in Earth frame and also in the final rocket frame; they will be the same age at these
stopping events in both frames. L-15c For the extreme relativistic case when
Vg —> 1, then v,_, — 1 also.

chapter 4

4-1a 11.6years b 18.6years c 30.2years d 7.67 years e 14.67 years f 22.34
years g 5.75 light-years h 7.67 years, 5.07 years i 14.67 years, 30.2 — 5.1 =
25.1years  4-3a The engineer is wrong. b Frequency of oscillation increases by
V2 when voltage doubles. c frequency in cycles/second = f=(qV,/8mL?»)'/?,
where 7 and ¢ are mass and charge of the electron, V, is the voltage applied, and L is
the width of the box = 1 meter. d Minimum round-trip time across box at the
speed of light is 2L/c 0 f,,, = ¢/2L. e For the Newtonian region, f/fua = [qV.,/
(2mc?)P/2, For the extreme relativistic region, f/f,.« = 1. The quantity 4V, is a
measure of electron potential energy at the wall or electron kinetic energy at the screen.
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We expect the Newtonian analysis to be correct when this energy of motion is very
much less than the rest enetgy mc2. The extreme relativistic analysis will be correct
when 4V, is very much greater than mc2. The crossover occurs (the two dashed curves
intersect) where gV, = 2mc? or V, = 106 volts. f For low speeds, the ratio fope:/
[onax Will follow the Newtonian curve. At extreme relativistic speeds, the proper time
for one period — 0 and the proper frequency — infinity.

5-1a(1) l1year (2) 1.94years (3) 0.87 year (4) 3.81years b 5.20 years c solid-
line traveler will be younger 5-3a event Aisat (x, ) = (0, 0); event Bisat (0, 1);
event Cisat(1.5,3.5)or (—1.5,3.5); event Disat (3, 6)or (—3,6) b event Disat
(x, ) = (0, 0); event C is at (0, — 2); event B is at (0, —4); event A is at (—0.75,
—5.25)or (+0.75,—5.25) c9q=7F0.6 dYes 5-5d 3136 cycles/sec-
ond e 31.4 cycles/second 5-7 Hint: As with most paradoxes in relativity, the
solution has to do with the relativity of simultaneity.

6-1a Events 1 and 2: (1) Proper time: 4 meters (2) Yes (3) Yes (4) No
Events 1 and 3: (1) Proper distance: 4 meters (2) No (3) No (4) Yes Events2
and 3: (1) zero (2) Yes (3) No (4) No by, =3/5 in + x-direction for
both 6-3a Set t’ = 0 in the first inverse Lorentz transformation equation (L-11)
and solve for 7. b Set x” = 0 in the second equation (L-11) and solve for .
(Why does the result look so funny?)  6-5a Yes, explosion. (Sorry!) b No change
in prediction. (The impact at A and activation of the detonation switch are spacelike
events; the laser pulse cannot connect them.)

chapter 7

7-1a {5m,V24m, 0,01 b {m, 0,0,0} c{V10m,0,0,3m} d[5m,0,—V24m,0}
e {10 m, 2.66 m, 532 m, 7.98 m}. 7-3a 0.05 milligram b 0.1 milligrtam
7-7a wristwatch time: 32 seconds; Earth time: 1000 centuries b E/m = 1036, 1.7
million metric tons. 7-92a Eg=9 units b pg= V32 units = 5.66 units
c mg = 7 units d greater: mc = 15 units > m, + my = 9 units 7-11a proton:
938 MeV; electron: 0.511 MeV b »,;. = 0.12. Proton kinetic energy at limit = 6
MeV. Electron kinetic energy at limit = 3.4 X 1072 MeV = 3.4 keV. Yes, designer
of color TV tubes (electron kinetic energy = 25 keV) must use special relativity.

8-1a approximately 35 X 1072 kilograms = 35 micrograms b approximately
600 kilograms. More. ¢ approximately 6 X 103 seconds or about 2 million years!
Chemical burning in Eric’s body produces large quantities of waste products. Elimi-
nation of these products carries away mass enormously faster than mass is carried away
as energy. 8-3a Force is approximately 3 X 1072 newtons, or the weight of
3 X 10710 kilograms. You should not be able to feel it. b pressute on a perfectly
absorbing satellite = 5 X 1076 newton/meter?; on a perfectly reflecting satellite =
9 X 1076 newton/meter?; somewhere in between for a partially absorbing surface.
Total energy absorbed/meter?, not color of the incident light, determines pres-
sure. c acceleration approximately 107 g d particle radius approximately 107¢
meter, independent of the distance from Sun 8-7 density approximately 5 X
10'° kilograms/metetr?> = 5 X 107 grams/centimeter?, or 50 million times the den-
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sity of water! 89 E, = (M2 + m?)/(2m) 8-11a From consetvation equa-
tions, show that cos ¢ > 1, which is impossible. b If the total momentum is zero
after the collision, it must be zero before the collision. But the alleged single photon
before the collision cannot have zero momentum. Therefore the reaction is
impossible. 8-13 2E.=E, + (E.2 — m?»)'? and 2Ep, = E, — (E,2 — m?)V/2,
If the particle is at rest, then E4, = m and Ec = Ep, = m/2. 8-15a E.=m(E +
m)/(E + m — (E2 — m®)'/2 cos ¢} 8-17a 1.8 TeV b E= 1.7 X 105 TeV
8-19¢ No  8-21 When the bulb is seen way ahead, its light is very intense and
radically blue-shifted. While still seen ahead, there is an angle of observation (de-
pending on the speed) at which the light is red, but dim. As the bulb is seen to pass the
observer, its light is infrared and very dim. As the bulb is seen to retreat into the
distance, its light is extremely dim and radically red-shifted. 8-23a v = 0.38
b 13 X 10° years ¢ Allowance for gravitational slowing will decrease the estimated
time back to the start of the expansion. 8-25 Af/f = [3kT/(mc?)}'/2. The
observed frequency will increase for molecules approaching the observer and decrease
for molecules receding from the observer. The overall effect—at temperatures for
which Newtonian expressions are valid—is to produce a spread of frequencies
approximated by the expression above (“Doppler line broadening’). 8-
27 E’ =m/2, E= m, ¢ = 30 degrees. 8-35a The incident gamma ray (with
excitation energy E) imparts a small kinetic energy K to the iron atom, for which
Newtonian expression is valid: K= p2/2m = E2/2m, since p = E for the gamma
ray. Then (energy of recoil)/(energy for excitation) = K/E = E/(2m) = 1.4 X
1077, But fractional resonance width (6 X 10™13) is smaller than this by a factor of
almost a million, so the iron nucleus cannot accept the gamma ray and conserve
energy. b One gram is about 10?2 atoms. If the 7 in the above equation increases by
the factor 10?2, then the energy of recoil is a factor 1022 smaller, and the nucleus will
not notice the residual mismatch in energy. 8-37 Af/ff=—gz/%, v=10.7 X
1076 meter/second towards emitter 8-39 Af/f,AT) = (3/2)k/(mc?) = 1.2 X
1071 per degtee.
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Abbotg, James, 135 (Exetcise 4-1)
aberration of starlight, 81 (Exercise 3-9)
absolute elsewhere, 181
“absolute” space and time (Newton), 160, 284
abuse of the concept of mass, 244—-251 (Section 8.8)
acceleration, relative, as witness to gravity, 30—36 (Sec-
tions 2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6)
acceleration-proof clocks, 152
active future, 182
addition of velocities, 82 —84 (Exercise 3-11), 103-110
(Section L.7)
Aging, Principle of Maximal, 150
Akihito, Emperor of Japan, 138
American Civil War, 25
Andromeda galaxy
Enterprise in, 106—107 (Box L-2)
trip to by rocket, 22 -23 (Exercise 1-9)
trip to by Transporter, 23 (Exercise 1-10)
angles, transformation of, 114—115 (Exercise L-6)
annihilation, positron—electron, 237 -238, 242-243
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15)
appearance, visual, of relativistic objects, 64, 92-93 (Ex-
ercise 3-17)
Arecibo radio antenna (Puerto Rico), 291
arrow of momenergy, 191-195 (Section 7.2)
autobiography of a photon, 184185 (Exercise 6-4)
available interaction energy, 261 (Exercise 8-17)

backyard zoo of particles, 235 (Box 8-1)
bad clock, 112-113 (Exercise L-2)
barn and pole paradox, 166 (Exercise 5-4)
Bartlett, Steven, 19
Bay of Fundy, tides in, 32-33 (Box 2-1)
Berman, Eric, 254 (Exercise 8-1)
beta (Greek f3), symbol for speed, 41, 253
Betrayal, Great, 108-109 (Box L-1)
black hole, 289 (Box 9-2), 292-295 (Section 9.8)
as source of neutrinos, 80 (Exercise 3-8)
bomb
fission, 249
hydrogen (fusion), 248 -249
Super, 108-109 (Box L-1)
bounce, free-float, 45 (Exercise 2-2)
Braginsky, Vladimir, 36, 223
broadening of spectral lines, Doppler, 264 (Exercise 8-25)
bulb
flickering, paradox of, 186—187 (Exercise 6-7)
speeding, 264 (Exercise 8-21)

¢ (speed of light), see light speed
Caesar, Julius, 106—107 (Sample Problem L-2)

cannonball, human, 45 (Exercise 2-1)
Canopus, trip to, 121-134 (Chapter 4)
cat, Cheshire, 292
causality, light speed limit on, 171 (Section 6.1), 180183
center of momentum frame, 246-251
Cerenkov radiation, 80—81 (Exercise 3-8)
Chandrasekhar, S., 288
Chandrasekhar limit, 288—-289 (Box 9-2)
chemistry, relativistic, 254 (Exercise 8-2)
Civil War, American, 25
Cleopatra, 228
clock
acceleration-proof, 152
atomic, test of twin effect, 131
bad, 112-113 (Exercise L-2)
construction of, 78 (Exercise 3-3)
light-flash, 12
reference, 37
clock paradox, see Twin Paradox
clocks
latticework of, 37 -39 (Section 2.6), 45-46 (Exer-
cises 2-3, 2-4)
plane of agreement of, 120 (Exercise L-15)
run at different rates in gravitational field, 118 (Ex-
ercise L-13)
“run slow?”’, 76-77 (Box 3-4)
collapse, gravitational, 288, 292 -295 (Section 9.8)
colliders, 261 —262 (Exercise 8-17)
collision, 221-252 (Chapter 8)
analyzing, 239 (Box 8-2)
elastic, 222, 240-241 (Sample Problem 8-3)
inelastic, 222-223
solving problems, 239 (Box 8-2)
comet, 35
communication, time delay in, 39-40
communications storm, 48 (Exercise 2-11)
compact stellar objects, 288-289 (Box 9-2)
components of momenergy, 195-199 (Section 7.3)
energy, 201 -206 (Section 7.5)
momentum, 199-200 (Section 7.4)
Compton, Arthur Holly, 229
Compton scattering, 229, 231, 267 -268 (Exercise 8-29)
examples of, 268 (Exercise 8-30)
inverse, 269—-270 (Exercise 8-32)
computer size, 22 (Exercise 1-8)
cone, light, partition in spacetime, 177 — 183 (Section 6.3)
conscience-guided satellite, 277 —279
conservation laws, see energy; momentum; momenergy
conserved, defined, 208 —209 (Box 7-3)
constant, defined, 208—-209 (Box 7-3)
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contracting train paradox, 187 —188 (Exercise 6-8)
contraction, Lorentz, 63 ~65 (Section 3.5), 126—-127
(Section 4.7)
for cosmic rays, 215-216 (Exercise 7-7)
described by stretch factor, 157
how it occurs, 119—120 (Exercise L-14)
or rotation?, 92-93 (Exercise 3-17)
conversion factors
for energy, 203, 250
miles to meters, 2, 16, 58—59 (Box 3-2)
for momentum, 200
seconds to meters, 6, 12, 16, 58-59 (Box 3-2)
conversion of mass to energy, 237 —244 (Section 8.7),
254 (Exercise 8.1)
cosmic rays, 160, 215-216 (Exercise 7-7)
cosmos, 296—-297 (Section 9.9)
creation of proton—antiproton pair by an electron, 261
(Exercise 8-16)
curvature
of Earth, 281-283 (Section 9.5)
equation, Einstein’s, 286
of spacetime, 280—287 (Sections 9.4, 9.5, 9.6)

Daytime surveyor, 1 -4 (Section 1.1), 16-17 (Box 1-1)
decay
mu meson, 23 —24 (Exercise 1-11)
pi-naught meson, 267 (Exercise 8-28)
pi-plus meson, 24 (Exercise 1-12)
positronium, 260 (Exercise 8-13)
deflection of starlight by Sun, 50-51 (Exercise 2-13)
density of companion of Sirius, 258 -259 (Exercise 8-7)
detonator paradox, 185- 186 (Exercise 6-5)
deuterium, combined with helium, 237
Dicke experiment, 36, 48—50 (Exercise 2-12)
dimension, transverse, invariance of, 65—67 (Section 3.6)
distance
invariance of, 4, 17
proper, 174
dog and passenger paradox, 25-26
Dog Star (Sitius), density of companion of, 258-259
(Exercise 8-7)
Doppler shift
along x-direction, 114 (Exercise L-5), 263 (Exercise
8-18)
at limb of Sun, 264 (Exercise 8-22)
E = m¢? from, 264—265 (Exercise 8-26)
equations, 263 (Exercise 8-19)
line broadening, 264 (Exercise 8-25)
measurement of by resonant scattering, 271-272
(Exercise 8-36)
Twin Paradox using, 264 (Exercise 8-24)
down with relativity!, 79 (Exercise 3-6)
DUMAND experiment, 80 (Exercise 3-8)
dwarf, white, 258-259 (Exetcise 8-7), 288 (Box 9-2)

E = mc?, 203, 206, 250
from Doppler shift, 264-265 (Exercise 8-26)
Earth
curved, 281-283 (Section 9.5)
mass in units of meters, 258
surface of as a free-float frame, 46 (Exercise 2-5)
Eigenzeit, 11; see also proper time
Einstein, Albert
admiration for Newton, 284, 295
curvature equation, 286
eliminate gravity, 28
epigram, iii
equivalence of energy and mass, 250, 254-258
(Exercise 8-5)
and Galileo and Newton, 275-276 (Section 9.2)
and gravity, 275-298 (Chapter 9)
happiest thought of life, 25, 44
picture and quotes, 295
special relativity, 5
Train Paradox, 62-63
Einstein puzzler, 78 (Exercise 3-2)
elastic collision, 222, 240—241 (Sample Problem 8-3)
electrodynamics, quantum, 185 (Exercise 6-4)
electron, 235 (Box 8-1)
creation of proton—antiproton pair by, 261 (Exercise
8-16)
electron — positron annihilation, 237-238, 242-243
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15)
electron—positron pair production, see photon
electrons, fast, 215 (Exercise 7-6)
elsewhere, absolute, 181
Emperor Akihito, 138
Emperor Hirohito, 137
emptiness of spacetime, 56-57 (Box 3-1)
encounter, particle, 239 (Box 8-2)
energy, 196, 213 (Table 7.1)
conserved in a collision, 189-190 (Section 7.1),
207, 222-223 (Section 8.2), 239 (Box 8.2)
conversion of mass to, 237 —244, (Section 8.7), 254
(Exercise 8-1)
interaction, 261 (Exercise 8-17)
kinetic, 201, 203, 206
Newtonian, low-velocity limit, 190, 203, 205 (Box
7-2)
and mass, 201, 203, 206, 250-251, 254-258
(Exercise 8-5)
production of in Sun, 242 -245 (Sample Problem
8-5)
quantities related to, 213 (Table 7-1)
rest, 201, 203, 250
shift of due to recoil of emitter, 270 (Exercise 8-33)
threshold, 236, 259 (Exercise 8-12), 261 (Exercise
8-16)
as “‘time” part of momenergy, 201 —206 (Section 7.5)



transformation of, 215 (Exercise 7-5)
in unit of mass, 190, 203
without mass (photon), 228—233 (Section 8.4),
273 -274 (Exercise 8-40)
energy of light, 230

energy of photon and frequency of light, 268 -269 (Exer-

cise 8-31)
Engelsberg, Stanley, 45—46 (Exercise 2-4)
Enterprise, Starship, 106—-107
Ebtvos, Baron Roland von, 36
equivalence of energy and mass, 250, 254-258 (Exercise
8-5)
ether theory of light propagation, 84, 88
Euclidean 3-vector, 192 (Box 7-1)
Euclidean geometry, 8, 11, 126, 143, 151, 172, 177,
192 (Box 7-1), 198, 279
event
as fundamental physics concept, 10, 16
and interval, 9—11 (Section 1.3)
locating, with latticework of clocks, 37 -39 (Section
2.6)
not owned by any frame, 43
reference, 38
events
relation between, 11, 172-177 (Section 6.2)
time of, 38, 137-139 (Section 5-1)
evidence, experimental, for Twin Paradox 131-134 (Sec-
tion 4.10)
expanding universe, 82 (Exercise 3-10), 264 (Exercise
8-23), 296-297 (Section 9.9)
experimental evidence for Twin Paradox, 131-134 (Sec-
tion 4.10), 272-273 (Exercise 8-39)

fast electrons, 215 (Exercise 7-6)
fast protons, 214-215 (Exercise 7-4)
faster than light?, see light, faster than?
Federation, 108—109 (Box L-1)
Feynman, Richard, 1
firing meson, 110 (Sample Problem L-3)
fission, 237-238

bomb, 249
Fizeau experiment, 120 (Exercise L-16)
flash, reference, 38
flickering bulb paradox, 186— 187 (Exercise 6-7)
floating to Moon, 25-26 (Section 2.1)
force of gravity, eliminate, 26—29 (Section 2.2)
four-vector, momenergy as, 191-195 (Section 7.2)
frame

center of momentum, 246-251

Earth, 46 (Exercise 2-5)

free-float, see free-float frame

inertial, see free-float frame

laboratory, 5, 41

local, see free-float frame
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Lorentz, see free-float frame
reference, 5; see also free-float frame
rocket, 41-43 (Section 2.9)
super-rocket, 69, 71, 140-142
free float, 25—-45 (Chapter 2)
free-float bounce, 45 (Exercise 2-2)
free-float (inertial) frame, 26—29 (Section 2.2)
defined, 31
Earth surface as, 46 (Exercise 2-5)
extent of near Earth, 3034 (Section 2.3), 46 (Ex-
ercise 2-6), 47 (Exercise 2-8), 285
extent of near Moon, 46—47 (Exercise 2-7)
local, 30-34 (Section 2.3), 284
rocket, 4143 (Section 2.9)
stripped down, 121-122 (Section 4.2)
super-rocket, 69, 71, 140-142
and test of twin effect, 133
touring spacetime without, 160—- 162 (Section 5.9)
verifying, 41, 279
what is same in different, 60— 62 (Section 3.3)
what is not same in different, 56— 60 (Section 3.2)
frequency of light and energy of a photon, 268 -269
(Exercise 8-31)
Fundy, Bay of, 32-33 (Box 2-1)
fusion, 237-238
fusion bomb, 248-249
future, active, 182

Galilean principle of relativity, 5355
Galilean transformation, 113 (Exercise L-3)
Galilei, Galileo
and gravitational acceleration, 36
and Newton and Einstein, 275 -276 (Section 9.2)
picture and quotes, 54
and Leaning Tower of Pisa, 36
and Principle of Relativity, 53-55
and tides, 32
gamma (Greek )), stretch factor, 99, 155— 160 (Section
5.8)
gamma rays, 237; see also photon
General Conference on Weights and Measures, 12, 58
general relativity, 275-298 (Chapter 9)
needed for Twin Paradox?, 132 (Box 4-1)
when required, 34, 35, 133, 276, 281
geometry
Euclidean, 8, 11, 126, 143, 151, 172, 177, 192
(Box 7-1), 198, 279
curved space, 280—281 (Section 9.4),
curved spacetime 284 —287 (Section 9.6)
Lorentz, 8, 11, 126, 143, 151, 172, 177, 192
(Box 7-1), 198, 284
gigaflop, 22 (Exercise 1-8)
gravitation
effect of on clocks, 118 (Exercise L-13)
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as curvature of spacetime, 284 —287 (Section 9.6)
tutorial in Newtonian, 258 (Exercise 8-6)
gravitational attraction of system containing photons, 257
gravitational collapse, 288, 292 -295 (Section 9.8)
gravitational radiation, 288-292 (Section 9.7)
gravitational red shift, 258 (Exercise 8-6)
test of, 272 (Exercises 8-37, 8-38)
graviton, 153, 176
gravity
as curved spacetime, 284 —287 (Section 9.6)
in brief, 275 (Section 9.1)
eliminate, 28 —29 (Section 2.2)
radiation, 288 —292 (Section 9.7)
relative acceleration as witness to, 30—36 (Sections
2.3, 2.4), 280287 (Sections 9.4, 9.5, 9.6)
waves, 288 —292 (Section 9.7)
Great Betrayal, 108-109 (Box L-1)
Great Pyramid, 209
grid, paradox of skateboard and, 116117 (Exercise L-12)

b, Planck’s constant, 265, 268269 (Exercise 8-31)
handle showing invariant magnitude of momenergy vec-
tor, 198
headlight effect, 115 (Exercise L-9)
heat
as system property, 224
weighing, 223
helium in Sun, 242 -245 (Sample Problem 8-5)
Himalaya Mountains, 48—-49
Hirohito, Emperor of Japan, 137
hole, black, 289 (Box 9-2), 292 -295 (Section 9.8)
as source of neutrinos, 80 (Exercise 3-8)
Horwitz, Paul, 186 (Exercise 6-6)
Hubble, Edwin, 264
Hubble constant, 264
Hubble time, 264
Hull, Penny, 19, 264, 272
Hulse, Russell A., 291
human cannonball, 45 (Exercise 2-1)
hydrogen bomb, 248249
hydrogen burning in Sun, 242 —245 (Sample Problem 8-5)
hydrogen molecule ion, 233
hyperbola
invariant, 143 (Section 5.3), 173-174
momenergy, 198

identically accelerated twins paradox, 117—118 (Exercise
L-13)
index of refraction and speed of light, 185 (Exercise 6-4)
inelastic collision, 222—-223
inertia, 31, 189
inertial frame, see free-float frame
integrity of photon, 259 (Exercise 8-11)
interaction energy, available, 261 (Exercise 8-17)
interferometer
Fizeau, 120 (Exercise L-16)

Kennedy — Thorndike, 86— 88 (Exercise 3-13)
Michelson—Morley, 84 -86 (Exercise 3-12)
verifying free-float frame using, 46 (Exercise 2-5)
interstellar travel, 274 (Exercise 8-41)
interval, 6
and event, 9—11 (Section 1.3)
invariance of, see invariance of interval
as lightlike relation between events, 175-177
as spacelike relation between events, 11, 173-174
as timelike relation between events, 11, 172-173
invariance of distance, 4, 17
invariance of interval, 6—7, 17, 18
for all free-float frames, 71 —73 (Section 3.8)
preserves cause and effecc, 180183
proved, 67 —70 (Section 3.7)
and spacetime hyperbola, 143 (Section 5.3), 173, 174
and spacetime map, 143 (Section 5.3)
used in derivation of the Lorentz transformation, 102
invariance of mass, 197, 246
invariance of momenergy, 194, 198, 210
invariance of speed of light, 60; 86—88 (Exercise 3-13)
invariance of transverse dimension, 65—67 (Section 3.6)
invariant, defined, 208-209 (Box 7-3)
invariant hyperbola, 143 (Section 5.3), 173, 174
inverse Compton scattering, 269 -270 (Exercise 8-32)
inverse Lorentz transformation, 102 —103 (Section L.6)

Japan, 27, 96-97, 161
Japan Microgravity Center (JAMIC), 27 (Figure 2-3)
Julius Caesar, 106—107 (Sample Problem L-2)

K*-meson, 72 (Sample Problem 3-2)

Kamisunagawa, 27

Kennedy — Thorndike experiment, 86—88 (Exercise 3-13)
Kepler, Johannes, 32

kinetic energy, 201, 203, 206

kinked worldline, 152-155 (Section 5.7)

Klingons, 108—-109 (Box L-1)

Krotkov, Robert V., 36

laboratory frame, 5, 41
lattice clocks, synchronizing, 3738, 45-46, (Exercises
2-3, 2-4)
latticework of clocks, 37 -39 (Section 2.6)
Law of Addition of Velocities, 82 -84 (Exercise 3-11),
103-110 (Section L.7)
laws, conservation, see energy; momentum; momenergy
Laws, Kenneth L., 77
Leaning Tower of Pisa, 36
length
mass in units of, 258 (Exercise 8-6)
time in units of, 11-13 (Section 1.4)
length along a path, 147 - 148 (Section 5.5)
length contraction, see Lorentz contraction
less is more, 154—155 (Sample Problem 5-1), 163 -164
(Exercise 5-1)



light
deflection of by Sun, 50—51 (Exercise 2-13)
frequency of and energy of a photon, 268269
(Exercise 8-31)
gravitational red shift of, 258 -259 (Exercises 8-6,
8-7)
pressure of, 254 (Exercise 8-3), 255
rocket propelled by, 274 (Exercise 8-41)
speed of, see light speed
See also photon
light, faster than?, 74—75 (Box 3-3), 96—99 (Section
L.2), 108-109 (Box L-1), 122-123 (Section 4.3)
four times the speed of light?, 89 —90 (Exercise 3-15)
superluminal expansion of quasar 3C273?, 90-92
(Exercise 3-16)
things that move faster than light, 88 -89 (Exercise
3-14)
light bulb
flickering, 186187 (Exercise 6-7)
speeding, 264 (Exercise 8-21)
light cone as partition in spacetime, 177 — 183 (Section 6.3)
light-flash clock, 12
lightlike relation between events, 172—177 (Section 6.2)
light propagation, ether theory of, 84, 88
light speed
as conversion factor, 6, 12, 16, 58—59 (Box 3-2),
200, 203, 250
index of refraction and, 185 (Exercise 6-4)
invariant magnitude of, 60 (Kennedy—Thorndike
experiment), 86—88 (Exercise 3-13)
isotropic (Michelson— Morley experiment), 84 —86
(Exercise 3-12)
as limit on causality, 171 (Section 6.1), 180—-183
as limit on observation, 39—-40
See also light, faster than?
light-second, 11—13 (Section 1.4)
light-year, 12
limb of Sun, Doppler shift at, 264 (Exetcise 8-22)
limits of Newtonian mechanics, 34, 113114 (Exercise
L-4), 217 (Exercise 7-11)
line, world, see worldline
line broadening, Doppler, 264 (Exercise 8-25)
linear accelerator, Stanford, 215 (Exercise 7-6)
local inertial frame, see free-float frame
local moving orders for mass, 277 —280 (Section 9.3)
local time, see proper time; interval
locating events with latticework, 37 -39 (Section 2.6)
Lorentz, Hendrik, 5
Lorentz contraction, 63 —65 (Section 3.5), 126-127
(Section 4.7)
for cosmic rays, 216 (Exercise 7-7)
described by stretch factor, 157
how it occurs, 119-120 (Exercise L-14)
or rotation, 92-93 (Exercise 3-17)
Lorentz frame, see free-float frame
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Lorentz-FitzGerald contraction hypothesis, 88
Lorentz geometry, 8, 11, 126, 143, 151, 172, 177, 192
(Box 7-1), 198, 284
Lorentz interval, 6; see a/so interval; invariance of interval
Lorentz transformation, 95—111 (Special Topic)
equations, 102
form of, 100 (Section L.4)
inverse equations, 102—103 (Section L.G)
for momenergy components, 215 (Exercise 7-5)
usefulness of, 95 (Section L.1)

manhole, paradox of rising, 116 (Exercise L-11)
map, spacetime, Ssee spacetime map
mapmaking
in space, 10, 21-22 (Exercise 1-6)
in spacetime, 164—166 (Exercise 5-3)
mass
abuse of the concept of, 244-251 (Section 8.8)
change in nuclear, 237-238
conversion of to energy, 237 —244 (Section 8.7),
254 (Exercise 8-1)
created by material particle, 234 —236 (Section 8.6)
created by photon, 233 —234 (Section 8.5)
and energy, 201, 203, 206, 250-251, 254-258
(Exercise 8-5)
energy in unit of, 190, 203
energy without (photon), 228-233 (Section 8.4)
invariance of, 197, 246
local moving orders for, 277 —280 (Section 9.3)
loss by Sun of, 242—-245 (Sample Problem 8-5)
as magnitude of momenergy 4-vector, 195, 197
momentum in unit of, 190, 200
momentum without?, 273 -274 (Exercise 8-40)
photon used to create, 233 —234 (Section 8.5)
proof, 277, 279
“relativistic,”” 250-251
“rest,”’ 251
as unit of length, 258 (Exercise 8-6)
use and abuse of the concept of, 244—251 (Section
8.8)
mass of photon, 230
mass of system of particles, 214 (Exercise 7-2), 224-228
(Section 8.3), 247
Maximal Aging, Principle of, 150
maximum speed of walking, 186 (Exercise 6-6)
mechanics
Newtonian, 113 —114 (Exercise L-4), 192 (Box
7-1), 217 (Exercise 7-11)
relativistic, 192 (Box 7-1)
megaflop, 22 (Exercise 1-8)
meson
decay of pi-naught, 267 (Exercise 8-28)
firing, 110 (Sample Problem L-3)
time stretching with, 23 —24 (Exercise 1-11), 24
(Exercise 1-12), 72-73 (Sample Problem 3-2)
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meter
defined, 58-59 (Box 3-2)
of time, 11-13 (Section 1.4)
as unit of mass, 258 (Exercise 8-6)
meter stick, tilted, 115—116 (Exercise L-10)
Michelson—Morley experiment, 84 —86 (Exercise 3-12)
microgravity, 27 (Figure 2-3), 277 (Figure 9-2)
Minkowski, Hermann, 15
mile
defined, 58-59 (Box 3-2)
as sacred unit, 1 -4
minus sign, 6-8, 26, 190, 197
minute, unit of distance and time, 11—13 (Section 1.4)
mormenergy
as 4-vector, 191, 192 (Box 7-1)
analogy of to tree, 210
arrow, 191-195 (Section 7.2)
components of, 195—-199 (Section 7.3), 204
(Sample Problem 7-3)
conservation of, 189—190 (Section 7.1), 207-210
(Section 7.6), 247
defined, 191-195 (Section 7.2)
energy as ‘‘time”’ part of, 201206 (Section 7.5)
handle showing invariant magnitude, 198
invariance of, 194, 198, 210
magnitude of is mass, 195, 197
momentum as “‘space” part of, 199-200 (Section
7.4)
quantities related to, 213 (Table 7-1)
tree, analogy of, 210
transformation of components of, 215 (Exercise 7-5)
units of, 194, 195, 200, 203
momentum, 196, 213 (Table 7.1)
components of, 196
conserved in a collision, 189—190 (Section 7.1),
207, 222-223 (Section 8.2), 239 (Box 8.2)
derived from conservation law, 217-219 (Exercise
7-12)
of light, 230
Newtonian expression for, 190, 200
as “‘space’’ part of momenergy, 199—-200 (Section
7.4)
transformation of, 215 (Exercise 7-5)
in unit of mass, 190, 200
without mass?, 273 -274 (Exercise 8-40)
momentum —energy 4-vector, see momenergy
Moon
floating to, 25—26 (Section 2.1)
tide-driving power of, 32-33 (Box 2-1)
Moral Principle, Wheeler’s First, 20
Méssbauer effect, 270
Minkowski, Hermann, 15
more is less, 154—155 (Sample Problem 5-1), 163164
~ (Exercise 5-1)
moving orders for mass, local, 277 —280 (Section 9.3)

mu-mesons, time stretching with, 23 (Exercise 1-11)

nanosecond, 5
Neptune, images from, 20 (Exercise 1-2)
neutral or unreachable region, 182
neutrino
described, 235 (Box 8-1)
detection of, 80 (Exercise 3-8)
neutron, described, 235 (Box 8-1)
neutron star, 288—289 (Box 9-2)
and gravity waves, 290-291
Newton, Isaac, 275-280
absolute space and time, 160, 284
Einstein’s admiration for, 284, 295
First Law of Motion, 31
and Galileo and Einstein, 275—-276 (Section 9.2)
picture and quotes, 278
Newtonian mechanics, 192 (Box 7-1)
First Law of Motion, 31
gravitational theory, tutorial, 258 (Exercise 8-6)
limits of, 34, 113 - 114 (Exercise L-4), 217 (Exer-
cise 7-11)
Nighttime surveyor, 1 -4 (Section 1.1), 16-17 (Box 1-1)
nuclear excitation, 259 (Exercise 8-8)

observer, 39 —-40 (Section 2.7)

oozing!, 12

oscillator, relativistic, 135-136 (Exercise 4-3)
oscilloscope writing speed, 89 (Exercise 3-14)

pair production by photon(s), 233 —234 (Section 8.5),
259 (Exercises 8-11, 8-12)
Parable of the Surveyors, 1-4 (Section 1.1), 16—17
(Box 1-1)
Parable of the Two Travelers, 281-283 (Section 9.5)
paradoxes
contracting train, 187 — 188 (Exercise 6-8)
detonator, 185— 186 (Exercise 6-5)
Einstein’s train, 62-63
flickering bulb, 186— 187 (Exercise 6-7)
identically accelerated twins, 117 —118 (Exercise
L-13)
passenger and dog, 25-26
pole and barn, 166 (Exetcise 5-4)
rising manhole, 116 (Exercise L-11)
runner on the train, 168 (Exercise 5-7)
scissors, 88 (Exercise 3-14)
skateboard and grid, 116—117 (Exercise L-12)
tilted meter stick, 115-116 (Exercise L-10)
See also Twin Paradox
particle, test, 36 (Section 2.5), 47 -48 (Exercise 2-10)
particles
backyard zoo of, 235 (Box 8-1)
creation of, 234 —236 (Section 8.6), 261-262 (Ex-
ercises 8-16, 8-17)



creation of by photons, 233 -234 (Section 8.5),
259-260 (Exercises 8-11 and 8-12)
encounter, 239 (Box 8-2)
measuring speed of, 40—41 (Section 2.8)
system of, 214 (Exercise 7-2), 221 (Section 8.1),
224 —228 (Section 8.3), 244251 (Section 8-8)
timelike worldline of, 172
used to create mass, 234 —236 (Section 8.6)
virtual, 56-57
worldline of, 143 —147 (Section 5.4)
partition in spacetime, light cone as, 177 — 183 (Section 6.3)
passenger and dog paradox, 25-26
passive past, 182
path, length along, 147 —148 (Section 5.5)
Peace Treaty of Shalimar, 108-109 (Box L-1)
Philoponus, John, of Alexandria, 36
photon, 228—-233 (Section 8.4), 246
from annihilation, 237 -238 (Section 8.7)
autobiography of, 184185 (Exetcise 6-4)
braking, 259 (Exercise 8-9)
Compton scattering of, 229, 231, 267-270 (Exer-
cises 8-29, 8-30, 8-32)
creation of particle—antiparticle pair using, 233 -
234 (Section 8.5)
energy of, 228—-233 (Section 8.4), 268-269 (Exer-
cise 8-31)
energy measurement of, 254 (Exercise 8-4)
energy shift of due to recoil of emitter, 270 (Exercise
8-33)
gravitational red shift of, 258-259 (Exercises 8-6
and 8-7)
integrity of, 259 (Exercise 8-11)
mass of, 228—231 (Section 8.4)
momentum of, 230
pair production by, 233234 (Section 8.5), 259 -
260 (Exercises 8-11, 8-12)
resonant scattering of, 271-272 (Exercises 8-35,
8-36)
rocket and interstellar travel, 274 (Exercise 8-41)
used to create mass, 233 —234 (Section 8.5)
physicist and the traffic light, 263 —-264 (Exercise 8-20)
pi-naught meson, decay of, 267 (Exercise 8-28)
pipes, speeding (thought experiment), 66
pi-plus mesons, time stretching with, 24 (Exercise 1-12)
Pisa, Leaning Tower of, 36
place, fundamental to surveying, 9, 16
plane of agreement of clocks, 120 (Exercise L-15)
Planck, Max, 229
Planck’s constant, 265, 268 —269 (Exercise 8-31)
plumb bob, deflection of by Himalaya Mountains,
48-49
Poincaré, Henri, 5—-6
pole and barn paradox, 166 (Exercise 5-4)
polyelectron, 233
positron, 233 -235
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positron —electron annihilation, 237 -238, 242-243
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15)
positron—electron pair production, 233 —234 (Section
8.5), 259 (Exercises 8-11, 8-12)
positronium, decay of, 260 (Exercise 8-13)
practical synchronization of clocks, 4546 (Exercises 2-3,
2-4)
pressure of light, 254 (Exercise 8-3), 255
principle of invariance of distance, 4, 17
Principle of Maximal Aging, 150
Principle of Relativity, 53 —60 (Sections 3.1, 3.2, 3.3)
examples of, 61-62 (Sample Problem 3-1), 78
(Exercise 3-4)
Galilean, 53-55
used in proof of invariance of interval, 73
proof mass (conscience), 277, 279
proper clock, 10
proper distance, 174, 184 (Exercise 6-3)
proper time, 10, 184 (Exercise 6-3)
along a worldline, 148-152 (Section 5.6)
tau as symbol of, 155
proton, described, 235 (Box 8-1)
proton —antiproton pair, creation of, 236
protons, fast, 214—215 (Exercise 7-4)
pulsar, 289
puppy, 224
puzzler, Einstein, 78 (Exercise 3-2)
Pyramid, Great, 209
Pythagorean theorem, 2, 7

quantum electrodynamics, 185 (Exercise 6-4)
quasar, 90-92 (Exercise 3-16), 114 (Exercise L-5),
294-295

radar speed trap, 166— 168 (Exercise 5-5)
radiation, Cerenkov, 80—81 (Exercise 3-8)
radiation, gravitational, 288 —-292 (Section 9.7)
radius of a black hole, 292
railway coach
rising, 47 (Exercise 2-9)
and tidal accelerations, 30— 34 (Section 2.3), 281
ray, gamma, see photon
ray, X-, see photon
rays, cosmic, 160, 215-216 (Exercise 7-7)
recoilless processes, 270—271 (Exercise 8-34)
recoil of emitter, energy shift due to, 270 (Exercise 8-33)
red shift, gravitational, 258 (Exercise 8-6), 272 (Exercises
8-37, 8-38)
reference clock, 37
reference event, 38
reference flash, 38
reference frame, 5; see also free-float frame
refraction, index of, and speed of light, 185 (Exercise 6-4)
regions of spacetime, 34 —36 (Section 2.4), 171-183
(Chapter 6)
relations between events, 172—-177 (Section 6.2)
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relative acceleration as witness to gravity, 30—36 (Sec-
tions 2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6)
relative synchronization of clocks, 130
relativistic chemistry, 254 (Exercise 8-2)
“relativistic’’ mass, 250-251
relativistic mechanics, 192 (Box 7-1)
relativistic momentum, 217 -219 (Exetcise 7-12)
relativistic oscillator, 135—136 (Exercise 4-3)
relativity
general, 34, 35, 132 (Box 4-1), 133, 276, 281
principle of, 53-62 (Sections 3.1, 3.2, 3.3), 78
special, 5, 18, 73, 78 (Exercise 3-1), 79 (Exercise
3-6), 131-134 (Section 4.10), 270-273 (Exer-
cises 8-33 to 8-39)
relativity of simultaneity, 62— 63 (Section 3.4), 128-131
(Section 4.9)
and contraction of length, 64
See also paradoxes
resonant scattering, 271 (Exercise 8-35)
measurement of Doppler shift by, 271-272 (Exer-
cise 8-36)
rest energy, 201, 203, 250
“rest mass,” 251
Riemann, G. F. B., 295
“rigid body” not an invariant concept, 116—117 (Exer-
cise L-12), 119-120 (Exercise L-14)
rising manhole paradox, 116 (Exercise L-11)
rising railway coach, 47 (Exercise 2-9)
rocket frame, 41 -43 (Section 2.9)
rocket, photon, and interstellar travel, 274 (Exercise 8-41)
rods, latticework of, 37 -39 (Section 2.6)
Roll, Peter G., 36
rotation or contraction?, 92—93 (Exercise 3-17)
Rumford, Count (Benjamin Thompson), 223
Ruml, Frances Towne, 29
runner on the train paradox, 168 (Exercise 5-7)

sacred unit

mile, 1-4

second, 5—7
Satellite (dog), 26
satellite

conscience-guided, 277-279

pressure of light on, 254 (Exercise 8-3)
scattering

Compton, 229, 231, 267-270 (Exercises 8-29,

8-30, 8-32)

resonant, 271-272 (Exercises 8-35, 8-36)
scissors paradox, 88 (Exercise 3-14)
Schmidt, Maarten, 294
second

defined, 58-59 (Box 3-2)

as sacred unit, 5—7

as unit of distance and time, 11—13 (Section 1.4)
Shalimar, Peace Treaty of 108—109 (Box L-1)

Sheldon, Eric, 19
shift, see Doppler shift; red shift
Shurdliff, William A., 19, 77, 198, 213
simultaneity,
relativity of, 62—-63 (Section 3.4), 64, 128131
(Section 4.9)
and transverse plane, 66—67
See also paradoxes
Sirius, density of companion of, 258-259 (Exercise 8-7)
skateboard and grid paradox, 116—117 (Exercise L-12)
Smith, Richard C., 19
Sommerfeld, Arthur, 53
solar constant, 242, 254 (Exercise 8-3)
solar wind, 245
space
“absolute’’ (Newton), 284
as different from time, 18
is ours!, 123 — 124 (Section 4.4)
spacelike relation between events, 11, 172177 (Section
6.2)
space travel, practical, 135 (Exercise 4-1)
space war, 79—81 (Exercise 3-7)
spacetime
as absolute elsewhere, 181
active future of, 182
emptiness of, 56—57 (Box 3-1)
exploded view of regions of, 182 (Figure 6-5)
“Ettu . .. ?"”, 106-107 (Sample Problem L-2)
light cone as partition of, 177 - 183 (Section 6.3)
Lorentz geometry of, 8, 192 (Box 7-1)
mapmaking in, 164-166 (Exercise 5-3)
neutral region of, 182
overview of, 1-19 (Chapter 1)
passive past of, 182
regions of, 34—36 (Section 2.4), 171-183 (Chap-
ter 6)
surveying, 5—8 (Section 1.2)
touring without reference frame, 160—162 (Section
5.9)
trekking through, 137—-163 (Chapter 5)
units of, 20—-21 (Exercises 1-2 and 1-3)
unity of, 7, 15— 18 (Section 1.5)
unreachable region of, 182
spacetime curvature, 280—287 (Sections 9.4, 9.5, 9.6)
contractile, 286—287 (Box 9-1)
equation (Einstein), 286
gravitation as, 284 —287 (Section 9.6)
noncontractile, 286—-287 (Box 9-1)
spacetime diagram, see spacetime map
spacetime displacement as 4-vector, 191 -194
spacetime geometry, see spacetime; spacetime curvature
spacetime interval, see interval; invariance of interval
spacetime map, 22 (Exercise 1-7), 137-139 (Section 5.1)
constructing, 164166 (Exercise 5-3)
special relativity, 5, 18



down with, 79 (Exercise 3-6)
four ideas of, 73
and swimming, 78 (Exercise 3-1)
tests of, 131-134 (Section 4.10), 270-273 (Exer-
cises 8-33 through 8-39)
spectral lines, Doppler broadening of, 264 (Exercise 8-25)
speed, measuring, 40—41 (Section 2.8)
speeding light bulb, 264 (Exercise 8-21)
speeding pipes thought experiment, 66
speeding train thought experiment, 65-66
speed of light, see light speed
speed of walking, maximum, 186 (Exercise 6-6)
speed trap, radar, 166— 168 (Exercise 5-5)
speeds, comparing, 20 (Exercise 1-1)
Stanford linear accelerator, 215 (Exercise 7-6)
starlight
aberration of, 81 (Exercise 3-9)
deflection of by Sun, 50-51 (Exercise 2-13)
Starship Enterprise, 106— 107
stellar aberration, 81 (Exercise 3-9)
stellar objects, compact, 288289 (Box 9-2)
storm, communications, 48 (Exercise 2-11)
stretch factor, 99, 155—160 (Section 5.8)
and Lorentz contraction, 157
as measure of speed, 157
stripped down free-float frame, 121-122 (Section 4.2)
Sun
conversion of mass to energy in, 242 —245 (Sample
Problem 8-5)
deflection of starlight by, 50—51 (Exercise 2-13)
Doppler shift at limb of, 264 (Exercise 8-22)
explosion of, 171
gravitational red shift of light from, 258 (Exercise 8-6)
helium in, 242245 (Sample Problem 8-5)
mass of in units of meters, 258
tide-driving power of, 32-33 (Box 2-1)
sunspot, 179180 (Sample Problem 6-3)
Super (superluminal bomb), 108-109 (Box L-1)
super cosmic rays, 215—-216 (Exercise 7-7)
superluminal expansion of quasar 3C273?, 90-92 (Exer-
cise 3-16)
supernova, 177, 289
super-rocket frame, 69, 71, 140-142
super-speed Super, 112 (Exercise L-1)
surveying spacetime, 5—8 (Section 1.2)
Surveyors, Parable of, 1 —4 (Section 1.1), 1617 (Box 1-1)
swimming and relativity, 78 (Exercise 3-1)
symmetric elastic collision, 240241 (Sample Problem 8-3)
synchronization of clocks, relative, 130
synchronizing lattice clocks, 37-38, 45—-46 (Exercises
2-3, 2-4)
system of particles, 221 (Section 8.1), 244—-251 (Section
8-8)
mass of, 214 (Exercise 7-2), 224—228 (Section
8.3), 247-248
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not isolated, 228
system property, heat as, 224

tangent vector to worldline, 194-195
tau (Greek 7), symbol for proper time, 155
Taylor
Bradley James, 179
Katherine Rose, 311
Joseph H., 291
Meredith Christine, 171
Samantha Marie, 23 (Exercise 1-10)
teraflop, 22 (Exercise 1-8)
test particle, 36 (Section 2.5), 47 —48 (Exercise 2-10)
tests of relativity, 131—-134 (Section 4.10), 270-273
(Exercises 8-33 through 8-39)
Thompson, Benjamin (Count Rumford), 223
thought experiments
speeding pipes, 66
speeding train, 65—66
three-vectors, Euclidean, 192 (Box 7-1)
threshold energy, 236, 259 (Exercise 8-12), 261 (Exercise
8-16)
tidal effects of large frame, 30—34 (Section 2.3), 280—
281 (Section 9.4)
tide-driving power of Moon and Sun, 32-33 (Box 2-1)
tides, 32-33 (Box 2-1), 281, 286-287 (Box 9-1)
tileed meter stick paradox 115-116 (Exercise L-10)
time
“absolute” (Newton), 160
as different from space, 18
of an event, 38, 137-139 (Section 5.1)
Hubble, 264
and length, 11-13 (Section 1.4)
and Lorentz transformation, 102
meter of, 12
proper, 10, 148—-152 (Section 5.6), 155, 184
wristwatch 10, 148152 (Section 5.6)
time delay in communication, 39 -40
timelike relation between events, 11, 172-177 (Section
6.2)
timelike worldline of a particle, 172
time stretching
experimental evidence of, 131-134 (Section 4.10),
272-273 (Exercise 8-39)
with K* mesons, 72-73 (Sample Problem 3-2)
with mu-mesons, 23 — 24 (Exercise 1-11)
with pi-plus mesons, 24 (Exercise (1-12)
and spacetime interval, 21 (Exercise 1-4)
See also Twin Paradox
time traveler, 127 —128 (Section 4.8)
touring spacetime without a reference frame, 160- 162
(Section 5.9)
traffic light, physicist and, 263 —264 (Exetcise 8-20)
train, mass effects of in collision, 214 (Exercise 7-3)
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train paradoxes, 62-63, 168 (Exercise 5-7), 187—-188
(Exercise 6-8)
train thought experiment, 65 —66
transformation
Galilean, 113 (Exercise L-3)
Lorentz, 95—-111 (Special Topic)
transformation of angles, 114-115 (Exercise L-6)
transformation of velocity direction, 115 (Exercises L-7,
L-8)
transforming worldlines, 164 (Exercise 5-2)
transverse dimension, invariance of, 65—67 (Section 3.6)
travel, interstellar, 274 (Exercise 8-41)
traveler, time, 127 — 128 (Section 4.8)
Travelers, Parable of the Two, 281 —283 (Section 9.5)
traveling clock, synchronization using, 45-46 (Exercise
2-4)
Treaty of Shalimar, 108109 (Box L-1)
tree analogy to momenergy, 210
Twin Paradox, 125-126 (Section 4.6)
atomic clocks (‘“‘airliner’’) test of, 131
circling airplane test of, 133
general relativity needed for?, 132 (Box 4-1)
one-way, 135 (Exercise 4-2)
oscillating iron atom test of, 134, 272-273 (Exer-
cise 8-39)
put to rest, 169—170 (Exercise 5-8)
radioactive particle test of, 133
using Doppler shift, 264 (Exercise 8-24)
twins, paradox of identically accelerated, 117 -118 (Exer-
cise L-13)
Two Travelers, Parable of, 281—283 (Section 9.5)

unit, same for space and time, 11-13 (Section 1.4)
units, 213 (Table 7-1)
units of energy, 203
units of momenergy, 194
units of momentum, 200
units of spacetime, 11-13 (Section 1.4), 20-21 (Exer-
cises 1-2, 1-3)
unit tangent vector to worldline, 194-195
unity of spacetime, 15— 18 (Section 1.5)
universe
expanding, 82 (Exercise 3-10), 264 (Exercise 8-23),
297 (Table 9-2)
models of, 296-297 (Section 9.9)
unreachable region, 182
uranium bomb, 249
uranium fission, 237

use and abuse of the concept of mass, 244-251 (Section
8.8)

Van Dam, Hendrik, 79 (Exercise 3-6)

vector, defined, 192 (Box 7-1)

velocities, addition of, 82 -84 (Exercise 3-11), 103-110
(Section L.7)

velocity

measuring, 40—-41 (Section 2.8)

velocity of recession from Doppler shift, 114 (Exercise
L-5), 264 (Exercise 8-23)

velocity of recession from period of light, 82 (Exercise 3-10)

velocity direction, transformation of, 115 (Exercises L-7,
L-8)

Verne, Jules, 25-26

virtual particles, 56-57 (Box 3-1)

visual appearance of relativistic objects, 64, 92-93 (Exer-
cise 3-17)

von Jagow, Peter, 44

walking, maximum speed of, 186 (Exercise 6-6)
war
American Civil, 25
space, 7981 (Exercise 3-7)
waves, gravity, 288-292 (Section 9.7)
weighing heat, 223
Weights and Measures, General Conference on, 12, 58
Weisskopf, V. W., 296
Weyl, Herman, quote, 189
Wheeler’s First Moral Principle, 20
white dwarf star, 258259 (Exercise 8-7), 288 (Box 9-2)
wind, solar 245
worldline, 143 — 147 (Section 5.4)
kinked, 152-155 (Section 5.7)
timelike, of a particle, 172
transforming, 164 (Exercise 5-2)
unit tangent vector to, 194-195
wristwatch (proper) time along, 148152 (Section
5.6)
wristwatch time, 10—11
along a worldline, 148152 (Section 5.6)

X-ray, see photon

y-velocity, transformation of, 115 (Exercise L-7)
year as unit of distance and time, 11-13 (Section 1.4)

zero mass for photon, 230
zero-total-momentum frame, 246-251
z00 of particles, backyard, 235 (Box 8-1)



SELECTED PHYSICAL CONSTANTS

Speed of light in a vacuum ¢ = 2.99792458 X {

10" meters/second
10" centimeters/second

_J 1 meter of distance/meter of light-travel time
| centimeter of distance/centimeter of hight-travel time

L - ) 10 " meter’/(kilogram-second”)
Gravitational constant G = 6.673 X " ‘,.}‘
10 * centimeter’/(gram-second )

10 " kilogram-meter /second
Planck constant bh = 6.626]1 X { 5

10" gram-centimeter’/second

10 - le/degree Kelv
Boltzmann constant E = 1.38066 X o pemle i lbeahing
10" erg/degree Kelvin

; 1.60218 X 10 " coulombs
Elementary charge ¢ =

4.80321 X 10" esu or (gram centimeter/second”)’!

. 10 " kilogram
Electron mass m = 91094 X s
' 10" gram

> ! S i 10" joules
Electron rest energy me’ = 8.1871 X 10" s
= (.510999 MeV

107" kilogram

Proton mass m, = 1.67262 X o
; 107" gram
10" joules
Proton rest energy i = 1.503279 X J
. / 10" ergs
= 038.272 MeV
s ~ . § 107" kilograms
Mass of Earch Mg = 5.9742 X _ 5
10" grams
Radius of a sphere having R. = 6.3710 % ]t)’}' meters
the same volume as Earth 10" centimeters
o H - - o w1 = (] !
Mean dlslt:ln{.t of L1.ll‘[l‘. Irulnl AU = 1495978 X th meters
Sun = “astronomical unit 10" centimeters

Mean speed of Earth in its
orbit about Sun v = 29.78 kilometers/second
10" meters

Mean distance of Moon 3.844 X s .
10" centimeters

from Earth

. 0" kilograms
Mass of Sun M., = 1.989 X {I = ]”'i"’r_lm"
10" grams
: . 3 [0® meters
Mean radius of Sun R = 6.9599 X G
10" centimerers

Conversion Factors

H o
1 second = 2.99792458 X i ey of light-travel time
10" centimeters

1 meter of light-travel time = 3.335641 X 10 second

I centimerter of light-travel nme = 3.335641 X 107" second
10" meters

I year = 3.156 X 107 seconds = 9.460 X . i
10'" centimerers

of light-travel time

1 kilometer = 0.6214 mile
1 electron-volt = 1.602 X 10" joule = 1.602 X 10" erg



